JPS62121382A - High counting rate measurement use semiconductor type fluorescent x-ray counter - Google Patents

High counting rate measurement use semiconductor type fluorescent x-ray counter

Info

Publication number
JPS62121382A
JPS62121382A JP26101785A JP26101785A JPS62121382A JP S62121382 A JPS62121382 A JP S62121382A JP 26101785 A JP26101785 A JP 26101785A JP 26101785 A JP26101785 A JP 26101785A JP S62121382 A JPS62121382 A JP S62121382A
Authority
JP
Japan
Prior art keywords
ray
rate measurement
semiconductor type
counting rate
detectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26101785A
Other languages
Japanese (ja)
Inventor
Asao Nakano
朝雄 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26101785A priority Critical patent/JPS62121382A/en
Publication of JPS62121382A publication Critical patent/JPS62121382A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To execute quickly a high counting rate measurement by using plural pieces of X-ray detectors. CONSTITUTION:In accordance with each of plural semiconductor type X-ray detectors 1113, amplifiers 21-23, 31-33, A/D converters 41-43, and multi-channel memories 51-53 are provided, and also one data processor 6 is prepared so as to be common to each detector 11-13, so that all of them are operated as one counting device. Accordingly, comparing with the case by a single detec tor, a fluorescent X-ray counting rate of (n) times is obtained, in case (n) pieces of detectors are used, therefore, the measuring time is shortened to 1/n, and also a high counting rate measurement can be executed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はX線計数装置に係り、特にシンクロトロン放射
光を励起源としたけい光X線計数に好適な高計数率測定
用半導体型けい光X線計数装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an X-ray counting device, and in particular to a semiconductor-type fluorescent device for high count rate measurement suitable for fluorescent X-ray counting using synchrotron radiation as an excitation source. This invention relates to an X-ray counting device.

〔発明の背景〕[Background of the invention]

これまでの半導体型X線計数装置としては。 As a conventional semiconductor type X-ray counting device.

ROLF WOLDSETHによるエックスレイ番エナ
ジー・スペクトロメトリー(X−rayBnerg3’
 Spect−rometr7 ) (KEVEX C
arp、 1973年6月発行)においてその第2章(
chapter 2)に示されているように、半導体型
X線検出器の本質的な特性から2.000〜3,000
aps (カウント7秒)を超える計数率ともなると、
入力カウント数に対する出力カウント数の比が急激に1
より小さくなるようになっている。
X-rayBnerg3' by ROLF WOLDSETH
Spect-rometer7) (KEVEX C
arp, June 1973), Chapter 2 (
As shown in chapter 2), from the essential characteristics of semiconductor X-ray detectors, the
When the counting rate exceeds aps (count 7 seconds),
The ratio of the number of output counts to the number of input counts suddenly becomes 1.
It is becoming smaller.

この特性を補正するために、これまでにあっては増幅部
とA/D変換器の動作時間が調整されるようになってい
る。しかしながら、このような方法を用いてもせいぜい
10,0OOcpsの入力計数率程度までが補正の限度
であり、シンクロトロン放射光のような強力な励起X線
源を用いたけい光X線計数装置として用いるには入射X
線の強度を抑制する必要があり、測定時間が長くなる等
の不具合がある。
In order to correct this characteristic, the operating times of the amplifier section and A/D converter have been adjusted so far. However, even if such a method is used, the correction is limited to an input count rate of 10,000 cps at most, and it cannot be used as a fluorescence X-ray counter using a powerful excitation X-ray source such as synchrotron radiation. To use the incident
It is necessary to suppress the strength of the line, and there are problems such as a long measurement time.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、シンクロトロン放射光のような強力な
励起X1fs源を用いる場合でも、速やかな高計数率測
定が可能とされた高計数率測定用半導体型けい光X線計
数装置を供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor type fluorescence X-ray counting device for high count rate measurement, which enables quick high count rate measurement even when using a powerful excitation X1fs source such as synchrotron radiation. be.

〔発明の概要〕[Summary of the invention]

この目的のため本発明による高計数率測定用半導体型け
い光Xa計数装置では、複数の半導体型X線検出器各々
に対応して増幅部、A/D変換器およびマルチ・チャン
ネルメモリを設けるとともに、各検出器に共通に1つの
データ処理装置を用意し、これら全体で一つの計数装置
として動作するようになしたものである。複数の検出器
を1本の棒状熱伝導体の先端に設置し、また複数のマル
チ・チャンネルメモリからのデータを1つのデータ処理
装置で処理する場合には、これまでのものに比し検出器
並列設置数に比例して高計数率計測を可能とするもので
ある。
For this purpose, the semiconductor type fluorescence Xa counting device for high count rate measurement according to the present invention is provided with an amplifier section, an A/D converter, and a multi-channel memory corresponding to each of the plurality of semiconductor type X-ray detectors. , one data processing device is provided in common for each detector, and these devices collectively operate as one counting device. When multiple detectors are installed at the tip of a single rod-shaped thermal conductor and when data from multiple multi-channel memories are processed by a single data processing device, the detector This enables high counting rate measurement in proportion to the number of parallel installations.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を説明すれば、第1図は半導体
検出器そのものからマルチ・チャンネルメモリまでが3
重の並列計数系として構成された高計数率測定用半導体
型けい光X線計数装置の概要構成を示したものである。
Hereinafter, one embodiment of the present invention will be explained. Figure 1 shows a three-dimensional structure from the semiconductor detector itself to the multi-channel memory.
This figure shows the general configuration of a semiconductor-type fluorescent X-ray counting device for high count rate measurement configured as a heavy parallel counting system.

図示のように3つの半導体型検出器11〜13各々に対
しては、半導体型検出器1.〜1.の極く近傍に設置さ
れる前置増幅器2、〜25、前置増幅器2.〜25から
の出力信号を十分大きくするための増幅器3.〜35、
増幅器3.〜33からの出力信号をディジタル信号に変
換するめ変換器41〜45およびA/D変換器4.〜4
5の出力データを蓄えるためのマルチ・チャンネルメモ
リ5、〜53が設けられるようになっている。データ処
理装置6はマルチ・チャンネルメモリ5.〜53のデー
タを用い必要な測定値データを得るためのものであり、
各種処理結果は表示装置7に表示されるものとなってい
る。なお、8は検出器動作用の高圧電源であり、9は半
導体型検出器を低温に保持するための冷媒供給器である
As shown in the figure, for each of the three semiconductor type detectors 11 to 13, one semiconductor type detector 1. ~1. Preamplifiers 2, to 25, preamplifiers 2. An amplifier to make the output signal from ~25 sufficiently large 3. ~35,
Amplifier 3. Converters 41 to 45 and A/D converters 4. to 45 convert output signals from 4. to 33 into digital signals. ~4
Multi-channel memories 5, to 53 are provided for storing output data of 5. The data processing device 6 includes a multi-channel memory 5. This is to obtain the necessary measurement value data using the data of ~53,
Various processing results are displayed on the display device 7. Note that 8 is a high-voltage power supply for operating the detector, and 9 is a refrigerant supply device for maintaining the semiconductor type detector at a low temperature.

このようにマルチ・チャンネルメモリに蓄えられた測定
データはデータ処理装置に転送され、所定に補正された
うえデータ処理装置内でそれら測定データが演算処理さ
れるようになっているが、ここでいう演算処理とは具体
的には加算処理である。
The measurement data stored in the multi-channel memory in this way is transferred to a data processing device, corrected in a prescribed manner, and then processed within the data processing device. Specifically, the arithmetic processing is addition processing.

半導体型Xi検出器11〜15からは入射X線光子のエ
ネルギに比例した電圧パルスを出力されるため、このパ
ルス電圧を所定に増幅したうぇA/D変換器4.〜45
でディジタル信号に変換し、これらディジタル信号をマ
ルチ・チャンネルメモリ5.〜5、にアドレス信号とし
て入力せしめ、そのアドレス信号対応のメモリ内容をそ
のアドレス信号が入力される度に+1ずつ加算(インク
リメント)するようにしたものである。これによりアド
レスがX線光子のエネルギを、また、その番地の内容が
X線光子のカウント数としてスペクトルが測定されるも
のである。よって、後にマルチ・チャンネルメモリ5.
〜53の同一アドレス対応の内容を全て加算するように
すれば、3つの半導体型X線検出器1.〜15に入射さ
れたX線全てのスペクトルが得られるわけである。
Since the semiconductor type Xi detectors 11 to 15 output a voltage pulse proportional to the energy of the incident X-ray photon, the A/D converter 4. amplifies this pulse voltage to a predetermined value. ~45
5. converts these digital signals into digital signals and stores them in a multi-channel memory 5. -5 as an address signal, and the memory contents corresponding to the address signal are incremented by +1 each time the address signal is input. As a result, the spectrum is measured using the address as the energy of the X-ray photon and the content of the address as the count number of the X-ray photon. Therefore, later multi-channel memory 5.
If all the contents corresponding to the same address of 53 to 53 are added, three semiconductor X-ray detectors 1. This means that the spectra of all the X-rays incident on the rays 1 to 15 can be obtained.

第2図は以上述べた6つのX線検出器相互間の相対的配
置態様と、線源に対するX線検出器全体の配置関係を示
したものである。なお、第2図(a)。
FIG. 2 shows the relative arrangement of the six X-ray detectors mentioned above and the arrangement of the entire X-ray detector with respect to the radiation source. In addition, FIG. 2(a).

(b)中にはこれまでのX線検出部も符号1oとして併
せて示されているが、これは単一のXi検出器として構
成されたものとなっている。
In (b), the conventional X-ray detector is also shown as 1o, but this is configured as a single Xi detector.

先ず第2図(a)は点線源に対する配置関係を示したも
のである。点線源11から距離1の位置にX線検出部1
0が配置されるとすれば、本発明に係るX線検出器1.
〜13はへ1の位置に配置されるというわけである。こ
れによりX線検出部1oによるカウント数と、3つのX
線検出器1.〜15によるカウント数の和とは同一とな
るものである。
First, FIG. 2(a) shows the arrangement relationship for a point ray source. An X-ray detection unit 1 is located at a distance 1 from the point ray source 11.
0 is arranged, the X-ray detector according to the present invention 1.
.about.13 is placed at the 1 position. As a result, the number of counts by the X-ray detector 1o and the number of
Line detector 1. .about.15 is the same as the sum of the counts.

次に第2図(b)について説明すれば、平行なX線束の
場合について示したものである。この場合には複数のX
線検出器を用いても1つの検出器当りノカウント数はX
線検出部1oによるカウント数と同一とな)、入射X線
強度を抑制する必要がある。したがって、複数個のX線
検出器を並列に用いることによって高計数率測定が可能
となる場合とは、X線発生源が点線源となるけい光X線
計数のような発散X線系に限られることになる。
Next, referring to FIG. 2(b), it shows the case of parallel X-ray fluxes. In this case, multiple
Even if a line detector is used, the number of counts per detector is
(the number counted by the ray detection unit 1o), it is necessary to suppress the intensity of incident X-rays. Therefore, cases where high count rate measurement is possible by using multiple X-ray detectors in parallel are limited to divergent X-ray systems such as fluorescent X-ray counting where the X-ray source is a point source. It will be done.

このように本例によれば、6個のX線検出器を用いたこ
とによって、これまでの6倍の計数率のX線束を単一の
X線検出器と同様な操作で扱うことが可能となシ、測定
時間を1/3に短縮し得ることになる。
In this way, according to this example, by using six X-ray detectors, it is possible to handle X-ray flux with a count rate six times higher than before with the same operation as a single X-ray detector. This means that the measurement time can be reduced to 1/3.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、これまでの単一検
出器による場合に比しそれをn個用いた場合はn倍のけ
い光X線計数率が得られるため、測定時間をi/nに短
縮し得、シンクロトロン放射光を励起源とするけい光X
線の半導体検出器による測定が高計数率で行なえるとい
う効果がある。
As explained above, according to the present invention, when using n detectors, n times the fluorescence X-ray count rate can be obtained compared to the conventional case using a single detector, so the measurement time is i/ Fluorescence X that can be shortened to n and uses synchrotron radiation as an excitation source
This has the advantage that measurements using a semiconductor detector can be performed at a high counting rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による装置の一例での概要構成を示す
図、第2図(a) 、 (b)は、本発明に係るX線検
出器相互間の相対的配置態様と、各種線源に対するX線
検出器全体の配置関係を説明するための図である。 1、〜15・・・・・・半導体型(X線)検出器21〜
25・・・・・・前置増幅器 3、〜35・・・・・・増幅器 4、〜45・・・・・・A/D変換器 5、〜5.・・・・・・マルチ・チャンネルメモリ6・
・・・・・データ処理装置 5JL
FIG. 1 is a diagram showing a schematic configuration of an example of the apparatus according to the present invention, and FIGS. 2(a) and 2(b) are diagrams showing the relative arrangement of X-ray detectors according to the present invention and various lines. FIG. 3 is a diagram for explaining the arrangement relationship of the entire X-ray detector with respect to the source. 1, ~15...Semiconductor type (X-ray) detector 21~
25...Preamplifier 3, ~35...Amplifier 4, ~45...A/D converter 5, ~5. ...Multi-channel memory 6.
...Data processing device 5JL

Claims (1)

【特許請求の範囲】[Claims] 冷媒により冷却可能な棒状熱伝導体の先端に載置された
複数の半導体型X線検出器と、該検出器各々の出力信号
を増幅するための増幅部と、該増幅部各々のアナログ出
力信号をディジタル信号に変換するためのA/D変換器
と、該変換器各々のディジタル出力信号を蓄えるための
マルチ・チャンネルメモリと、該メモリ各々に蓄えられ
ているデータを処理して必要なデータを得るための単一
のデータ処理装置とからなる構成を特徴とする高計数率
測定用半導体型けい光X線計数装置。
A plurality of semiconductor X-ray detectors mounted on the tip of a rod-shaped heat conductor that can be cooled by a refrigerant, an amplifying section for amplifying the output signal of each of the detectors, and an analog output signal of each of the amplifying sections. an A/D converter for converting the digital signal into a digital signal; a multi-channel memory for storing the digital output signal of each converter; and a multi-channel memory for storing the digital output signal of each converter, and processing the data stored in each memory to generate necessary data. 1. A semiconductor type fluorescent X-ray counting device for high count rate measurement, characterized by a configuration consisting of a single data processing device for obtaining data.
JP26101785A 1985-11-22 1985-11-22 High counting rate measurement use semiconductor type fluorescent x-ray counter Pending JPS62121382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26101785A JPS62121382A (en) 1985-11-22 1985-11-22 High counting rate measurement use semiconductor type fluorescent x-ray counter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26101785A JPS62121382A (en) 1985-11-22 1985-11-22 High counting rate measurement use semiconductor type fluorescent x-ray counter

Publications (1)

Publication Number Publication Date
JPS62121382A true JPS62121382A (en) 1987-06-02

Family

ID=17355892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26101785A Pending JPS62121382A (en) 1985-11-22 1985-11-22 High counting rate measurement use semiconductor type fluorescent x-ray counter

Country Status (1)

Country Link
JP (1) JPS62121382A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242945A (en) * 1988-03-25 1989-09-27 Nec Corp Fluorescent x-ray analyzer
JP2014524034A (en) * 2011-07-20 2014-09-18 ザ・サイエンス・アンド・テクノロジー・ファシリティーズ・カウンシル Neutron detection method and apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242945A (en) * 1988-03-25 1989-09-27 Nec Corp Fluorescent x-ray analyzer
JP2014524034A (en) * 2011-07-20 2014-09-18 ザ・サイエンス・アンド・テクノロジー・ファシリティーズ・カウンシル Neutron detection method and apparatus
US9857484B2 (en) 2011-07-20 2018-01-02 The Science And Technology Facilities Council Method and apparatus for neutron detection

Similar Documents

Publication Publication Date Title
Allen et al. PHENIX inner detectors
US3978337A (en) Three-dimensional time-of-flight gamma camera system
US11506803B2 (en) Method and device for processing nuclear energy spectrum
EP1840596B1 (en) Radiation directivity detector, and radiation monitoring method and device
Pace et al. Gamma ray imager on the DIII-D tokamak
US20020071519A1 (en) Energy dispersion-type x-ray detection system
JPS63259952A (en) Position detector
JPS62121382A (en) High counting rate measurement use semiconductor type fluorescent x-ray counter
JP3824211B2 (en) Radiation monitor device
JP2010530058A (en) X-ray imaging apparatus having a polychromatic X-ray source
Stern et al. Ion chambers for fluorescence and laboratory EXAFS detection
Pisharody et al. Dose measurements of bremsstrahlung-produced neutrons from thick targets
Curioni et al. A study of the LXeGRIT detection efficiency for MeV gamma-rays during the 2000 balloon flight campaign
Pani et al. Flat Panel PMT for photon emission imaging
JP5450356B2 (en) Radiation detection method
US3242333A (en) Multi-channel charged particle spectrometer with delay means to sequentially record detector signals
JPS5827079A (en) Radiation analyzer
US3558887A (en) Apparatus for measuring of quantum radiation
JPH0566275A (en) Directional variable radiation detector
JP3065625B2 (en) Radiation detector
Redus et al. A nuclear survey instrument with imaging capability
Pacella et al. Self Consistent Calibration of Detectors and Sources for Hard and Soft X-Ray Diagnostics
Maltsev et al. Infrared synchrotron methods and systems for monitoring and controlling particle beams in real time
Fan et al. X-ray Measurement System Based on Attenuation Transmission Method for Tokamak
Zhou et al. Design of Electronic System for 2d Hard X-Ray Spectrum Camera on East