JPS62120620A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS62120620A
JPS62120620A JP26004185A JP26004185A JPS62120620A JP S62120620 A JPS62120620 A JP S62120620A JP 26004185 A JP26004185 A JP 26004185A JP 26004185 A JP26004185 A JP 26004185A JP S62120620 A JPS62120620 A JP S62120620A
Authority
JP
Japan
Prior art keywords
magnetic recording
film
recording medium
magnetic
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26004185A
Other languages
Japanese (ja)
Inventor
Koichi Shinohara
紘一 篠原
Hideki Yoshida
秀樹 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26004185A priority Critical patent/JPS62120620A/en
Publication of JPS62120620A publication Critical patent/JPS62120620A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve the S/N and the stability with time by providing a magnetic recording layer formed by disposing a carbon film on a high-polymer film and diffusing Bi or Sb at the grain boundary of the surface of pulverized Co or Co-Ni particles. CONSTITUTION:This magnetic recording medium is provided with the magnetic recording layer 3 formed by disposing the carbon film 2 of the high-polymer film 1 and diffusing Bi or Sb at the grain boundary of the surface of the pulverized Co or Co-Ni particles. The pulverized Co or Co-Ni particles are made uniform and a grain boundary diffusion layer is made thin by such constitution and therefore, the magnetic sepn. among the particles is improved and noise is considerably improved. The remaining of the excess Bi or Sb is obviated. The stability with time is improved as well.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高密度磁気記録に利用できる磁気テープ、磁気
ディスク等の磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to magnetic recording media such as magnetic tapes and magnetic disks that can be used for high-density magnetic recording.

従来の技術 近年、高密度磁気記録に適した磁気記録媒体として、C
o−0r垂直磁化膜に代表される垂直磁気記録用、Go
−Ni70  面内磁化膜に代表される長手磁気記録用
のいわゆる金属薄膜型の磁気記録媒体の実用化研究が盛
んである。
Conventional technology In recent years, C has been used as a magnetic recording medium suitable for high density magnetic recording.
For perpendicular magnetic recording represented by o-0r perpendicular magnetization film, Go
-Ni70 Research into the practical application of so-called metal thin film type magnetic recording media for longitudinal magnetic recording, typified by in-plane magnetized films, is active.

いずれのタイプにしても(1)飽和磁束密度が大きいこ
と、(2)磁化容易軸方向の角型性が良いこと、((2
)保母力が大きいことが基本的要求として強磁性金属薄
膜にあり、その前提に立って、ノイズの低い、耐久性能
の良好で、錆びにくい材料構成が必要となる0 現状でこれらを比較的バランス良く満足できるものとし
てはGo−Ni−0膜が知られるが、飽和磁束密度が3
000ガウスから6000ガウスと余り犬きくないこと
から改良が行われている。
Regardless of the type, (1) the saturation magnetic flux density is large, (2) the squareness in the direction of the axis of easy magnetization is good ((2
) A basic requirement for a ferromagnetic metal thin film is that it has a large retaining force, and based on that premise, a material composition that has low noise, good durability, and is resistant to rust is required.At present, these are relatively balanced. Go-Ni-0 film is known to be highly satisfactory, but the saturation magnetic flux density is 3.
Improvements have been made since it does not have much noise, ranging from 000 Gauss to 6000 Gauss.

磁気記録層としては、当面有望なものは垂直磁化でない
強磁性金属薄膜であるとされ、数多くの提案がなされて
いる。〔例えば、外国論文誌、アイ・イー・イー・イー
出気学会報(I EEKTr&nsI!Lction 
on Magnetics ) ’io l 、 MA
G−21゜PP、217〜1220(1985)参照〕
それらの中で、Bi上下地上にCO合金を蒸着した後熱
処理してB11Co合金微粒子の表面層近くに拡散させ
ることで得られる磁気記録層が、上記した基本要求を満
足できる上に、従来の斜め蒸着法によらず蒸着効率をあ
げることができる量産性の面からも注目されている。
As a magnetic recording layer, a ferromagnetic metal thin film without perpendicular magnetization is said to be promising for the time being, and many proposals have been made. [For example, foreign journals, IEEKTr&nsI!Lction
on Magnetics) 'io l, MA
See G-21゜PP, 217-1220 (1985)]
Among them, a magnetic recording layer obtained by depositing a CO alloy on top and bottom of Bi and then heat-treating it to diffuse it near the surface layer of the B11Co alloy fine particles satisfies the above basic requirements and also It is also attracting attention from the aspect of mass production, which can increase vapor deposition efficiency regardless of the vapor deposition method.

発明が解決しようとする問題点 しかしながら上記したような構成では、短波長記録時の
再生感度は犬きくできるが、雑音も大きくディジタル記
録、アナログ記録での高密度化に必要な十分大きい信号
対雑音比(S/Nと以下記す)を得ることが出来ないの
と、経時変化に対する安定性が因いという問題があった
。本発明は上記事情に鑑みなされたもので、S/Nが改
良され且つ、経時安定性の改良された磁気記録媒体を提
供するものである。
Problems to be Solved by the Invention However, with the above-mentioned configuration, the playback sensitivity during short wavelength recording can be improved, but the noise is also large, and the signal-to-noise ratio is large enough to achieve high density digital recording and analog recording. There were problems in that it was not possible to obtain a ratio (hereinafter referred to as S/N) and in stability against changes over time. The present invention was made in view of the above circumstances, and provides a magnetic recording medium with improved S/N ratio and improved stability over time.

問題点を解決するための手段 上記問題点を解決するために本発明の磁気記録媒体は高
分子フィルム上にカーボン膜を配し、Co又はCo−N
i微粒子表面にBi又はsbを粒界拡散させた研気記録
層全備えたものである。
Means for Solving the Problems In order to solve the above problems, the magnetic recording medium of the present invention includes a carbon film disposed on a polymer film, and Co or Co-N.
It is entirely equipped with a polishing recording layer in which Bi or sb is diffused at the grain boundaries on the surface of i-fine particles.

作用 本発明の磁気記録媒体は上記した構成により、GO又は
Go−Ni微粒子が均一になることと、粒界拡散層を薄
くできるので、飽和磁化が大きくなることと、粒界拡散
層を均一にできるので、粒子間の磁気的分離が改良され
、雑音が大幅に改良され、過剰なりi又はsbが残らな
いので、経時安定性も改良されることになるのである。
Effect The magnetic recording medium of the present invention has the above-described configuration, so that GO or Go-Ni fine particles can be made uniform, the grain boundary diffusion layer can be thinned, so the saturation magnetization can be increased, and the grain boundary diffusion layer can be made uniform. This results in improved magnetic separation between particles, greatly improved noise, and improved stability over time since no excess i or sb remains.

実施例 以下図面全参照しながら、本発明の実施例について説明
する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to all the drawings.

第1図は本発明の第1の実施例の磁気記録媒体の拡大断
面図である。第1図に於て、1は厚み10/Imのポリ
アミドフィルムで、2は高周波スパッタ法にて形成した
厚み360へのカーボン膜で、3は斜め蒸着法で得られ
たGo−Ni(Ni;20wt%)薄膜〔膜厚150o
人〕を構成する微粒子で、この微粒子は表面にB工又は
sbの拡散層4を有した構造となっているものである。
FIG. 1 is an enlarged sectional view of a magnetic recording medium according to a first embodiment of the present invention. In FIG. 1, 1 is a polyamide film with a thickness of 10/Im, 2 is a carbon film with a thickness of 360 mm formed by high-frequency sputtering, and 3 is Go-Ni (Ni) obtained by oblique evaporation. 20wt%) thin film [film thickness 150o
These fine particles have a structure having a diffusion layer 4 of B or sb on the surface.

5は模式的に示した微粒子内部の核で強磁性を担う部分
である。
Reference numeral 5 designates the core inside the microparticle, which is schematically shown, and is a portion responsible for ferromagnetism.

本発明の製造条件と比較例としてカーボン膜なしの製造
条件の主なものに次の第1表に示した。
The following Table 1 shows main manufacturing conditions of the present invention and manufacturing conditions without a carbon film as a comparative example.

以上のム〜Dの実施例、に、Fの比較例について、8g
幅の磁気テープ全製造したものの、磁気特性と、0.8
μmの記録を行った時のS/Nを相対比較した結果を次
の第2表にまとめて示した。
For the above Examples M to D, and the comparative example F, 8 g
Although all magnetic tapes with a width of 0.8
The results of a relative comparison of S/N when recording in μm are summarized in Table 2 below.

(以 下金 白〕 以上のように、本発明の製法によれば、B1゜sb 1
カーボン膜上に形成した時、100人でも均一な連続膜
が形成されるため、その後の熱処理で粒界拡散が均一に
行えるようになるので、磁気特性も改良され、S/Nも
良好となり、60’Cの加熱保存で代表させた経時安定
性も良好であるのに対し、E、Fではまだ200Aのポ
リアミド上への直接膜形成では連続膜とならずに、島構
造であるため粒界拡散が十分行えないGo−Ni微粒子
が含まれるため、磁気的分離が悪く、磁気特性もS/N
も悪い。
(hereinafter referred to as gold and white) As described above, according to the manufacturing method of the present invention, B1゜sb1
When formed on a carbon film, even 100 people can form a uniform continuous film, which allows for uniform grain boundary diffusion during subsequent heat treatment, improving magnetic properties and improving S/N. The stability over time as represented by heating storage at 60'C is also good, whereas in E and F, direct film formation on 200A polyamide does not form a continuous film, but has an island structure, so grain boundaries Contains Go-Ni fine particles that cannot diffuse sufficiently, resulting in poor magnetic separation and poor S/N magnetic properties.
Too bad.

例え従来法でSt) 、Bi (i−460人形成し、
粒界拡散層の均一性を改良しても、こんどはSb、Bi
の残留分が生じて、経時変化が大きくなり、耐食性も悪
くなるので本発明の優位性は明らかである。
For example, if the conventional method is to form St), Bi (i-460 people,
Even if the uniformity of the grain boundary diffusion layer is improved, Sb, Bi
The superiority of the present invention is clear because a residual amount is generated, the change over time becomes large, and the corrosion resistance deteriorates.

第2図は、本発明の第2の実施例の磁気記録媒体の拡大
断面図である。
FIG. 2 is an enlarged sectional view of a magnetic recording medium according to a second embodiment of the present invention.

第2図で、6は厚み26μmのポリイミドフィルムで7
はフラッシュ蒸着法により形成した厚み400人のカー
ボン膜で、8は粒界拡散層(sb又はBi (i−拡散
元素として用いることができる)9を有するCO微粒子
で、膜厚は700Aで、高周波スパッタリング法で形成
したものである。
In Figure 2, 6 is a polyimide film with a thickness of 26 μm, and 7
8 is a carbon film with a thickness of 400 μm formed by flash vapor deposition, 8 is CO fine particles with a grain boundary diffusion layer (SB or Bi (which can be used as an i-diffusion element) 9, and the film thickness is 700 A. It is formed by a sputtering method.

粒界拡散層の形成のために、先ずカーボン膜の上にsb
層、Bi層を夫々110人、電子ビーム蒸着法で形成し
、その上にcoヲムr+N、、(ムr:N2=1=2)
分圧lX10  TOrrで、高周波(13,56MH
2、最大出力3KW)スパッタ法で薄膜化し、230℃
、37分間、ムr雰囲気で熱処理した。
In order to form a grain boundary diffusion layer, sb is first deposited on the carbon film.
110 people each formed a Bi layer and a Bi layer by electron beam evaporation, and then coated them with a co-coat r+N, (mu r:N2=1=2).
High frequency (13,56MH
2. Maximum output 3KW) Thin film made by sputtering method and heated to 230℃
, heat treatment was carried out for 37 minutes in a murky atmosphere.

こうして得られた磁気記録層は、保磁力500(Oe)
  、残留磁束密度1aooo(fly)で、ディスク
状にして、0.25μmギャップ長、12μm トラッ
ク幅のアモルファス(Go−Zr−Nb系)合金リング
型磁気ヘッドで、0.6μmの記録を行い再生、S/N
’i同一ヘッドで測定した。
The magnetic recording layer thus obtained has a coercive force of 500 (Oe)
, with a residual magnetic flux density of 1 aooo (fly), in the form of a disk, with an amorphous (Go-Zr-Nb system) alloy ring type magnetic head with a gap length of 0.25 μm and a track width of 12 μm, recording and reproduction of 0.6 μm, S/N
'i Measured with the same head.

S/NのO(dB)は、カーボン膜なし、即ちポリイミ
ド上に直接470A、Bi i電子ビーム蒸着し、その
上同−条件でGo膜’1700人形成し、250°C1
時間、ムr雰囲気で熱処理して得た磁気ディスクの値で
ある。
The S/N O (dB) was measured without a carbon film, that is, directly on the polyimide with 470A Bi electron beam evaporation, and then a Go film of 1700 was formed under the same conditions, and at 250°C.
This is the value of a magnetic disk obtained by heat treatment in an uneven atmosphere for a long time.

本発明品と比較例を、初期値及び60°C環境放置での
S/Nを比較した(第3表参照)。本発明品はBi、S
bのいずれも同じ値を示した。
The product of the present invention and the comparative example were compared in initial value and S/N when left in an environment at 60°C (see Table 3). The product of this invention is Bi, S
All of the b values showed the same value.

(以 下金 白) 以上のように本発明品は、S/Nが良好で且つ安定性も
高いものであることがわかる。
(hereinafter referred to as "Kinpaku") As described above, it can be seen that the product of the present invention has a good S/N ratio and high stability.

尚、第1の実施例、第2の実施例で、高分子フィルムを
夫々ポリアミド、ポリイミドとしたが、他にポリエーテ
ルスルフォン、ポリフェニレンサルファイド、ポリエチ
レンナフタレート、ポリエチレンテレフタレート等とし
ても良い。
In the first and second embodiments, the polymer films are made of polyamide and polyimide, respectively, but they may also be made of polyether sulfone, polyphenylene sulfide, polyethylene naphthalate, polyethylene terephthalate, etc.

発明の効果 以上のように本発明によれば、リング型磁気ヘッドを用
い、テープ状、ディスク状のいずれの形態に於ても、高
密度磁気記録再生を良好なS/Nで行えると共に、経時
安定性も極めて良好であるといったすぐれた効果を得る
ことができる。
Effects of the Invention As described above, according to the present invention, by using a ring-type magnetic head, high-density magnetic recording and reproduction can be performed with good S/N in both tape-shaped and disk-shaped formats, and Excellent effects such as extremely good stability can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の磁気記録媒体の拡大断
面図、第2図は本発明の第2の実施例の磁気記録媒体の
拡大断面図である。 1.6・・・・・・高分子フィルム、2,7・・・・・
・カーボン膜、4,9・・・・・・粒界拡散層。
FIG. 1 is an enlarged sectional view of a magnetic recording medium according to a first embodiment of the invention, and FIG. 2 is an enlarged sectional view of a magnetic recording medium according to a second embodiment of the invention. 1.6...Polymer film, 2,7...
- Carbon film, 4, 9... Grain boundary diffusion layer.

Claims (1)

【特許請求の範囲】[Claims] 高分子フィルム上にカーボン膜を配し、Co又はCo−
Ni微粒子表面にBi又はSbを粒界拡散させた磁気記
録層を配したことを特徴とする磁気記録媒体。
A carbon film is placed on a polymer film, and Co or Co-
A magnetic recording medium characterized in that a magnetic recording layer in which Bi or Sb is diffused at grain boundaries is arranged on the surface of Ni fine particles.
JP26004185A 1985-11-20 1985-11-20 Magnetic recording medium Pending JPS62120620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26004185A JPS62120620A (en) 1985-11-20 1985-11-20 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26004185A JPS62120620A (en) 1985-11-20 1985-11-20 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS62120620A true JPS62120620A (en) 1987-06-01

Family

ID=17342478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26004185A Pending JPS62120620A (en) 1985-11-20 1985-11-20 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS62120620A (en)

Similar Documents

Publication Publication Date Title
JPS63237210A (en) Magnetic recording medium
JPH0328735B2 (en)
JPH0546013B2 (en)
JPS62120620A (en) Magnetic recording medium
JPS6153769B2 (en)
JPH0552566B2 (en)
JPH0311531B2 (en)
JP2558770B2 (en) Magnetic recording media
JPS58171717A (en) Magnetic recording medium
JPS615424A (en) Magnetic recording medium
JPS6037528B2 (en) Manufacturing method for magnetic recording media
JPH0328733B2 (en)
JPH0218711A (en) Magnetic disk and production thereof
JPS58164032A (en) Magnetic disk medium
JPS6166219A (en) Magnetic recording medium
JPS60219625A (en) Magnetic recording medium
JPH02141918A (en) Magnetic recording medium
JPH061550B2 (en) Method of manufacturing magnetic recording medium
JPS60254423A (en) Production of vertically magnetizable recording medium
JPH02240820A (en) Magnetic recording medium
JPH0319124A (en) Magnetic recording medium
JPH04206017A (en) Magnetic recording medium and manufacture thereof
JPH054724B2 (en)
JPH0354720A (en) Magnetic recording medium
JPH07122931B2 (en) Perpendicular magnetic recording medium