JPS6212041B2 - - Google Patents

Info

Publication number
JPS6212041B2
JPS6212041B2 JP56071945A JP7194581A JPS6212041B2 JP S6212041 B2 JPS6212041 B2 JP S6212041B2 JP 56071945 A JP56071945 A JP 56071945A JP 7194581 A JP7194581 A JP 7194581A JP S6212041 B2 JPS6212041 B2 JP S6212041B2
Authority
JP
Japan
Prior art keywords
tread
groove
tire
main groove
groove wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56071945A
Other languages
Japanese (ja)
Other versions
JPS57186505A (en
Inventor
Kazuyuki Endo
Shigeo Makino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP56071945A priority Critical patent/JPS57186505A/en
Priority to US06/374,664 priority patent/US4446901A/en
Publication of JPS57186505A publication Critical patent/JPS57186505A/en
Publication of JPS6212041B2 publication Critical patent/JPS6212041B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/04Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
    • B60C11/042Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag further characterised by the groove cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • B60C11/0309Patterns comprising block rows or discontinuous ribs further characterised by the groove cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1307Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
    • B60C11/1323Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls asymmetric

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

PURPOSE:To use a tire on good and bad roads further prevent its uneven wear, in the captioned tire having at least five tread main grooves, by changing a sloped angle of groove walls at each main groove of central part, side parts and intermediate parts between these side parts and the central part. CONSTITUTION:In a tire of tread pattern, having at least five circumferentially extended zigzag shaped tread main grooves, a central part circumferential main groove 1, arranged in the central area of a tread Tr, a pair of side part circumferential main grooves 3, partitioning outermost side ribs 6 of the tread Tr, and intermediate part circumferential main groove 2, arranged between these grooves, the main groove 1 is formed to laterally symmetrical cross sectional shape sloped at a prescribed angle. While the main groove 2 is formed to laterally symmetrical cross sectional shape having a folding linear groove wall slope, further the main groove 3 is formed to laterally unsymmetrical cross sectional shape with a sloped angle of an axially outside groove wall larger than that of an axially inside groove wall.

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は重荷重用空気入りラジアルタイヤに
関し、とくにトラツク、バスなど良路における高
速連続走行に供されると同時に、一般の非舗走路
あるいは工事現場のごとき悪路をも、走行路の一
部として包むような使用に供されるこの種のタイ
ヤのトレツドの溝形状の改良に関するものであ
る。 一般に金属コードをベルトの補強材として用い
たラジアルタイヤは普通のバイアスタイヤなどと
比べ強靭なベルトがトレツドゴムとカーカスプラ
イの間に配置されているため、耐摩耗性、耐パン
ク性等の数々の利点を有する反面、ベルトによる
剛強な補強効果の故に乗心地に難があることから
悪路での使用はともかくとして、特に良路用とし
て開発が進められ、高速道路網の発展完備などの
道路事情の著るしい改善に伴なつて需要の伸びが
近年著るしい。 かような用途において、タイヤのトレツドはト
ラクシヨンならびに制動性能その他一般耐摩耗、
耐発熱性などを考慮し、タイヤの周方向にジグザ
グ状をなしてのびる複数のトレツド主溝によつて
限界された周方向リブが設けられ、このようなト
レツドパターンは一般にリブタイプと呼ばれこの
トレツド主溝によるリブの区画数は、タイヤのウ
エツト性能すなわちウエツト時のトラクシヨン、
制動、耐横すべりなどの性能と、耐摩耗性とのか
ね合いならびにトレツド幅などを考慮して種々に
設計されているが上記のウエツト性能を重視する
とき、またトレツド幅の広いときトレツド主溝は
数本を必要とする。 かかるリブはタイヤの周方向に連続するのが普
通であり、ときにはタイヤの幅方向に沿う横溝に
よつて遮断され周方向に不連続をなす場合もある
が、何れにしても高い運行速度の下で長距離にわ
たる連続走行の際、独特の偏摩耗が発生する。 すなわち、ひとつは主に直進連続走行によつ
て、第1図にタイヤの一部子午断面図で示したよ
うにたとえばタイヤTの周方向リブ5の側端部に
始まつて周方向に連続し、幅W、段差δにわたつ
て促進されていくいわゆるレールウエイ摩耗と呼
ばれる偏摩耗であり、さらに主として旋回の影響
を受けて第2図にタイヤの軸方向から見た一部外
観図で示したようにとくに軸方向最外側の周方向
リブ6の軸方向外側端部に始まりタイヤTの周方
向に沿つて断続的に段差δ′が生じ、周方向リブ
6がタイヤTの周方向に沿つて部分的に摩耗する
波状摩耗と呼ばれる偏摩耗である。 これらの偏摩耗はタイヤTの外観を著しく見苦
しくするのみならず、種々のタイヤ性能、特にト
ラクシヨン、制動性能あるいは旋回性能等に悪影
響を及ぼし、タイヤの寿命を大幅に低下する。 しかも良路向けタイヤを装着した車両といえど
も、その走路の一部に悪路を含むのはさけられな
いところで、たとえばトラツクの如きは、工事現
場への乗り入れは不可欠なため、路面に散乱する
砕石などの異物が、トレツド主溝にかみ込まれる
機会も多い。 重荷重用空気入りラジアルタイヤは、上記のよ
うに強靭なトレツド部補強によつて接地域でのト
レツド動きが抑制されるので、石かみを生じ易い
上に石かみを生じるとその拘束が強くて放出され
にくく、従つてタイヤの回転の度毎にトレツド主
溝の溝底で、トレツド部の補強すなわちベルトと
の間におけるベースゴムを打撃し、その破壊や、
ひいては補強構造の内部破損を生じ、とくにベル
トが金属コードのときにはベースゴムの損傷部か
らの水分の浸入で発銹を引起し、ゴムとの剥離に
より結果的にはタイヤの更新を含めた耐久使用寿
命で致命的な損傷に至るおそれがある。 従来、上記した2つの欠点、すなわち偏摩耗の
発生と石かみの問題を個々に解決しようとした試
みは種々見られたが、それらのいずれもすべての
トレツド主溝の横断面形状をほぼ同一に設定して
いるためこれらの欠点を同時に解決することはで
きなかつた。あるいはまた、たとえば特公昭51−
15282号公報に見られるように、中央リブに隣接
するトレツド主溝の横断面形状を、前記中央リブ
の幅がタイヤの半径方向内方に向かつて減少する
ようにし、かつリブから切れ目によつて分離され
た突出部を設けて溝の形状を整え、これらにより
各トレツド主溝についてレールウエイ摩耗を減少
させると同時に石かみを生じさせないようにした
ものもあるが、溝の形状が複雑で製造上難があ
り、しかもトレツド全体として上記問題を効果的
に解決してはいない。 そこでこの発明は、良路に使用されると同時に
悪路での使用をも避けられないこの種のタイヤの
上記した2種の偏摩耗と石かみの問題を、同時に
有利かつ簡便にしかもとくに数本のトレツド溝で
周方向リブを区画したタイヤのトレツドの全体に
わたつて効果的に解決したタイヤを提供すること
を目的とする。 発明者らは5本のトレツド溝によつて周方向リ
ブを区画した例を図解した第3図に示したような
トレツドパターンに関し、 (1) すべてのトレツド主溝1,2,3の各溝縁を
通るトレツドの法線に対して鋭角をなす溝壁傾
斜角度を比較的大きく設定した場合、良路走行
時、周方向リブ4の外側端部4-2及び周方向リ
ブ5の両側端部5-2,5-3にレールウエイ摩耗
が発生しやすいこと (2) すべてのトレツド主溝1,2,3の上記溝壁
傾斜角度を比較的小さく設定した場合、良路走
行時、最外側リブ6にその外側端部6-0に端を
発して波状摩耗が発生しやすく、また、悪路走
行時にはトレツド主溝1,2,3に石かみが生
じやすく、しかもより中央寄りのトレツド主溝
ほど石かみの度合が大きいこと を見出した。この傾向はトレツド主溝1を1対と
して、6本のトレツド溝により周方向リブを区画
した場合も同様であつた。 以上の事実に基き、トレツドにおいて、レール
ウエイ摩耗、波状摩耗などの偏摩耗および石かみ
のそれぞれ発生しやすい位置が異なる点に着目
し、トレツド主溝の各位置ごとに溝壁傾斜角度を
変化させることで、上述した問題点の改良を施
し、もつて良路及び悪路での併用に有利に適合し
うるタイヤを提供し得ることを究明したものであ
る。 この発明は、タイヤのラジアル面(この面と極
く浅い角度をなす平面を含む)内にコードを配列
した少なくとも1層のプライからなるカーカス
と、このカーカスのまわりを取囲みタイヤの周方
向に対して小さな角度の交差配列でトレツドの直
下を剛固に補強する少なくとも2層の金属コード
のプライからなるベルトを有し、前記トレツドは
タイヤの周方向に沿つてジグザグ状に延びる複数
のトレツド主溝によつて区画した連続又は不連続
なジグザグ状の周方向リブをそなえ、前記トレツ
ド主溝は、トレツドの中央区域に配置した1本又
は1対の中央部周方向主溝と、トレツドの最外側
リブを区画する1対の側部周方向主溝および前記
中央部周方向主溝と前記側部周方向主溝の間に配
置した1対の中間部周方向主溝とからなる重荷重
用空気入りラジアルタイヤであつて、前記中央部
周方向主溝は、その溝壁に垂直な断面において溝
縁を通るトレツドの法線に対し鋭角をなす溝壁の
傾斜角度が14〜24゜で左右対称の横断面形状を有
し、 前記中間部周方向主溝は、同様に、溝壁の半径
方向内方部分における傾斜角度が半径方向外方部
分のそれよりも大きい折線状の溝壁傾斜を有する
左右対称の横断面形状を有し、 さらに前記側部周方向主溝は、同様に、軸方向
外側の溝壁における傾斜角度が軸方向内側の溝壁
のそれよりも大きい左右非対称の横断面形状を有
することを特徴とする重荷重用空気入りラジアル
タイヤである。 以下図面を用いて本発明を詳細に説明する。 この発明のタイヤのトレツドパターン自体は、
その1例を第3図に示したような従来タイヤのも
のと変わらず、このパターンでは、トレツドTr
の中央区域に配置された1本または図示はしない
が一対の中央部周方向主溝1と、トレツドTrの
最外側リブ6を区画する1対の側部周方向主溝3
と、さらにこれらの間に配置された1対の中間部
周方向主溝2とからなる都合5本又は6本の、周
方向にジグザグ状に延びるトレツド主溝を有する
が、必要に応じ、周方向リブ4,5,6に狭い幅
(トレツド幅のせいぜい2%以下程度)で周方向
に延びる細溝を追加配列すること、またすでに触
れたように周方向リブ4,5,6を横溝により周
方向に分断することはこの発明の本質に影響しな
い。 なお中央部周方向主溝1を1対とするとき、こ
れらをタイヤの中央周線を狭んでほぼ左右対称の
位置に配置すればよくこの点通常の場合と同様で
ある。 さて第4図a,bおよびcは、それぞれ第3図
のA−A,B−BおよびC−Cのように溝壁に垂
直な各断面で示したこの発明によるタイヤの各ト
レツド主溝の横断面形状である。第4図aは中央
部周方向主溝1の横断面形状であり、溝縁を通る
トレツドTrの法線に対し鋭角をなす溝壁1′の傾
斜角度αを、比較的大きいものとした左右対称
の横断面形状とする。 中央部周方向主溝1では、悪路走行時にとくに
石かみが生じやすく、このため溝壁1′の上記傾
斜角度αを比較的大きくする。角度αは好ま
しくは14〜24゜、さらに好ましくは17〜21゜とす
る。 なお、溝壁の傾斜角度は、正規内圧充てん無負
荷の状態で、上に定義した基準に従うものとし、
以下のべる中間部および側部各周方向主溝につい
ても同様とする。 サイズ10.00R20のタイヤにつき速度30KM/H
で悪路走行の実地試験を行なつた結果を第5図に
示した通り、溝壁1′の傾斜角度を14゜以上とし
た場合に石かみ防止の効果が著しい。なお24゜よ
り大とするとレールウエイ摩耗の発生が無視でき
ないほどになりうる可能性があるので、中央部周
方向主溝1の溝壁1′の傾斜角度αは上記の範
囲とするのが望ましい。 第4図bは中間部周方向主溝2の横断面形状で
あり、溝壁の半径方向内方部分2′-Iの傾斜角度
αが半径方向外方部分2′-0の傾斜角度βより
も大きい折線状つまり2段階の溝壁傾斜角度を有
する左右対称の横断面形状とする。中間部周方向
主溝2では良路走行時初期に特にレールウエイ摩
耗が、さらに悪路走行時には石かみが発生しやす
く、このため上記の横断面形状とする。角度βは
好ましくは0〜10゜、さらに好ましくは4〜8゜
またαは14〜24゜、さらに好ましくは17〜21゜
とする。 段差δ(第1図参照)にて代表させたレールウ
エイ摩耗量は、第6図に上掲供試タイヤの(良路
連続走行結果)を示すように溝壁の傾斜角度が減
少するとともに減少し、特に10゜以下でレールウ
エイ摩耗を減少し、あるいは発生時期を遅らせる
効果が著しいので、この中間部周方向主溝2の溝
壁の半径方向外方部分2′-0の傾斜角度βは10゜
以下とするのが好ましい。但し、0゜未満にする
と製造が困難となり、またリブ端部が欠ける危険
性が生じるので好ましくない。また、半径方向外
方部分2′-0の高さhの、この溝2の深さDに対
する割合は、レールウエイ摩耗及び石かみ防止、
両者のバランスを考えて、好ましくは5〜50%、
さらに好ましくは20〜40%とする。 第4図cは側部周方向主溝3の横断面形状であ
り、最外側リブ6に面する軸方向外側の溝壁3′
-6の傾斜角度αが、リブ5に面する軸方向内側
の溝壁3′-5の傾斜角度γよりも大きい左右非対
称の横断面形状とする。 側部周方向主溝3では、良路走行時に軸方向内
側の溝壁3′-5に隣接するリブ端部5-3にはレー
ルウエイ摩耗が、またこの主溝3の軸方向外側に
隣接する最外側リブ6には波状摩耗が発生しやす
いので、上記の溝形状となる。 角度αは好ましくは14〜24゜、さらに好まし
くは17〜21゜、また角度γは好ましくは7〜17
゜、さらに好ましくは10〜14゜とする。最外側リ
ブ6の外側端部6-0に発生する波状摩耗量(段
差)δ′(第2図参照)は、第7図に定常旋回試
験の結果を示す通り側部周方向主溝3の溝壁傾斜
角度を増大させるにしたがつて減少し、14゜以上
とした場合に減少の効果が著しく、また24゜より
大とするとレールウエイ摩耗の発生が無視し得な
くなる可能性があるので、軸方向外側の溝壁3′
-6の傾斜角度αは上記範囲内とするのが好まし
い。また軸方向内側の溝壁3′-5には先に述べた
通りレールウエイ摩耗が発生しやすいが、この側
部周方向主溝3においても悪路走行時の石かみの
発生が必ずしも無視できないので、これらをとも
に考慮し、溝壁3′-5の傾斜角度γは先の範囲と
するのが好ましい。 さて次にこの発明の効果を明らかにした比較試
験の結果を示す。 供試タイヤはサイズ10.00R20でタイヤの実質
上のラジアル面内にコードを配列した少なくとも
1層のプライからなるカーカスと、このカーカス
のまわりを取囲みタイヤの周方向に対し比較的小
さな角度の交差配列でトレツドの直下を剛固に補
強する少なくとも2層の金属コードのプライから
なるベルトを有する重荷重用ラジアルタイヤであ
り、トレツドパターンは第3図に示したようにほ
ぼ同等の幅の6本の周方向リブを限界するように
5本のトレツド主溝を有している。中央部周方向
主溝1、中間部周方向主溝2、側部周方向主溝3
はそれぞれ第4図a,b,cに示した溝形状を有
し、角度α,α,β,α,γ及び割合h/
Dはそれぞれ18゜、20゜、7゜、20゜、13゜及び
0.3とした。 一方比較に供したコントロールタイヤは、トレ
ツド主溝1,2,3の溝形状が、すべて同等で溝
壁傾斜角度αが14゜である第4図aに示した溝
形状であるほかは、上記したこの発明のタイヤと
全く同等の構造を有する。これら両タイヤにつき
内圧7.25Kg/cm2、正規荷重下で2万Km(うち、良
路:90%、速度60Km/h;悪路:10%、速度30
Km/h)走行後、石かみの個数、レールウエイ摩
耗量(段差)δ、波状摩耗量(段差)δ′を測定
した。以下の結果を次の表に示した。なお数値は
比較タイヤを100として指数表示で示した。
This invention relates to a pneumatic radial tire for heavy loads, and is particularly suitable for high-speed continuous running on good roads for trucks and buses, as well as on rough roads such as general unpaved roads or construction sites. This invention relates to an improvement in the groove shape of the tread of this type of tire used for wrapping purposes. In general, radial tires that use metal cords as belt reinforcements have a stronger belt placed between the tread rubber and carcass ply than ordinary bias tires, so they have many advantages such as wear resistance and puncture resistance. On the other hand, due to the strong reinforcing effect of the belt, there is a problem with ride comfort, so it is not suitable for use on rough roads, but it has been developed especially for use on good roads, and it is suitable for road conditions such as the development of expressway networks. Demand has increased significantly in recent years as a result of significant improvements. In such applications, tire tread determines traction, braking performance, general wear resistance,
In consideration of heat resistance, etc., a circumferential rib is provided that is limited by a plurality of tread main grooves that extend in a zigzag shape in the circumferential direction of the tire.Such a tread pattern is generally called a rib type. The number of rib sections in the tread main groove determines the wet performance of the tire, i.e. the traction when wet.
Various designs are designed taking into account the balance between performance such as braking and skidding resistance, wear resistance, and tread width. However, when the above-mentioned wet performance is emphasized, or when the tread width is wide, the tread main groove is Requires several books. These ribs are usually continuous in the circumferential direction of the tire, but sometimes they are interrupted by horizontal grooves along the width of the tire, making them discontinuous in the circumferential direction, but in any case, under high operating speeds, During continuous driving over long distances, unique uneven wear occurs. In other words, one type is mainly continuous running in a straight line, which starts at the side end of the circumferential rib 5 of the tire T and continues in the circumferential direction, as shown in a partial meridional cross-sectional view of the tire in FIG. , Width W, and uneven wear called railway wear that accelerates over the step δ.Furthermore, it is mainly affected by turning, and Fig. 2 shows a partial external view of the tire as seen from the axial direction. In particular, a step δ' occurs intermittently along the circumferential direction of the tire T starting from the axially outer end of the outermost circumferential rib 6 in the axial direction, and the circumferential rib 6 This is uneven wear called wavy wear where the wear occurs partially. Such uneven wear not only makes the appearance of the tire T extremely unsightly, but also adversely affects various tire performances, particularly traction, braking performance, turning performance, etc., and significantly shortens the life of the tire. Moreover, even if a vehicle is equipped with tires designed for good roads, it is unavoidable that some of its routes include rough roads.For example, trucks, for example, have to drive to construction sites, so they are scattered on the road surface. There are many opportunities for foreign objects such as crushed stones to get caught in the main groove. Heavy-duty pneumatic radial tires have strong tread reinforcement as described above to suppress tread movement in the contact area, so they are susceptible to stone entrapment, and if stone encroachment occurs, the restraint is strong enough to cause the tire to eject. Therefore, each time the tire rotates, the groove bottom of the tread main groove hits the reinforcement of the tread part, that is, the base rubber between it and the belt, causing its destruction.
This can lead to internal damage to the reinforcing structure, and especially when the belt is a metal cord, water can enter from the damaged base rubber, causing rusting, and peeling from the rubber can result in long-term use, including tire replacement. There is a risk of fatal damage over the lifespan. In the past, various attempts have been made to individually solve the two drawbacks mentioned above, namely the occurrence of uneven wear and the problem of stone formation, but all of them have been made by making the cross-sectional shape of all tread main grooves almost the same. Because of the setting, it was not possible to solve these drawbacks at the same time. Or, for example,
As seen in Japanese Patent No. 15282, the cross-sectional shape of the tread main groove adjacent to the central rib is such that the width of the central rib decreases inward in the radial direction of the tire, and the width of the central rib is reduced by a cut from the rib. Some systems have been designed with separate protrusions to adjust the shape of the grooves, thereby reducing railway wear in each tread main groove and at the same time preventing stone build-up, but the grooves have complex shapes and are difficult to manufacture. Moreover, Toledo as a whole does not effectively solve the above problems. Therefore, this invention solves the above-mentioned two problems of uneven wear and stone build-up of this type of tire, which can be used on both good roads and unavoidable use on bad roads. To provide a tire in which circumferential ribs are partitioned by regular tread grooves, and the tread of the tire is effectively resolved over the entire tread. Regarding the tread pattern shown in FIG. 3, which illustrates an example in which circumferential ribs are partitioned by five tread grooves, the inventors have found that (1) each of all the tread main grooves 1, 2, and 3 is When the inclination angle of the groove wall, which forms an acute angle with respect to the normal line of the tread passing through the groove edge, is set relatively large, when driving on a good road, the outer end 4 -2 of the circumferential rib 4 and both ends of the circumferential rib 5 Railway wear is likely to occur in sections 5-2 and 5-3 . (2) If the above-mentioned groove wall inclination angles of all tread main grooves 1, 2, and 3 are set to a relatively small Wave-like wear is likely to occur on the outer rib 6 starting from the outer end 6 -0 , and when driving on rough roads, stones are likely to form in the tread main grooves 1, 2, and 3. It was found that the degree of rock formation was greater in the main groove. This tendency was the same when the circumferential ribs were divided by six tread grooves, with one pair of tread main grooves 1. Based on the above facts, we focused on the fact that the positions where uneven wear such as railway wear, wave wear, and stone chips are likely to occur are different in the tread, and changed the groove wall inclination angle for each position of the tread main groove. Thus, it has been found that it is possible to improve the above-mentioned problems and provide a tire that is advantageously suitable for use on both good and bad roads. This invention consists of a carcass consisting of at least one ply in which cords are arranged in the radial surface of the tire (including a plane making a very shallow angle with this surface), and a carcass that surrounds the carcass and extends in the circumferential direction of the tire. The tread has a belt consisting of at least two plies of metal cords rigidly reinforcing just below the tread in an intersecting arrangement at a small angle to the tire. The tread main groove has continuous or discontinuous zigzag circumferential ribs defined by grooves, and the tread main groove includes one or a pair of central circumferential main grooves disposed in the central area of the tread, Heavy load air comprising a pair of side circumferential main grooves that partition outer ribs and a pair of intermediate circumferential main grooves arranged between the center circumferential main groove and the side circumferential main groove. In the tire, the central circumferential main groove is symmetrical, with the groove wall having an acute angle of 14 to 24 degrees with respect to the normal line of the tread passing through the groove edge in a cross section perpendicular to the groove wall. The intermediate circumferential main groove similarly has a groove wall inclination in the form of a broken line in which the inclination angle in the radially inner part of the groove wall is larger than that in the radially outer part. The side circumferential main groove has a laterally symmetrical cross-sectional shape, and the side circumferential main groove also has a laterally asymmetrical cross-sectional shape in which the inclination angle of the axially outer groove wall is larger than that of the axially inner groove wall. This is a heavy-duty pneumatic radial tire characterized by having: The present invention will be explained in detail below using the drawings. The tread pattern of the tire of this invention itself is
An example of this is shown in Figure 3, which is the same as that of a conventional tire.
one or a pair of central circumferential main grooves 1 (not shown) disposed in the central region of the tread Tr, and a pair of side circumferential main grooves 3 that partition the outermost ribs 6 of the tread Tr.
and a pair of intermediate circumferential main grooves 2 disposed between these, there are five or six tread main grooves extending in a zigzag shape in the circumferential direction. The directional ribs 4, 5, 6 are additionally arranged with thin grooves extending in the circumferential direction with a narrow width (approximately 2% or less of the tread width), and as already mentioned, the circumferential ribs 4, 5, 6 are arranged with lateral grooves. Dividing in the circumferential direction does not affect the essence of the invention. Note that when a pair of central circumferential main grooves 1 are provided, they may be arranged at approximately symmetrical positions narrowing the center circumferential line of the tire, as in the usual case. Now, FIGS. 4a, b and c show the main tread grooves of the tire according to the present invention shown in cross-sections perpendicular to the groove walls as shown in A-A, B-B and C-C in FIG. 3, respectively. It has a cross-sectional shape. Figure 4a shows the cross-sectional shape of the central circumferential main groove 1, in which the inclination angle α1 of the groove wall 1', which forms an acute angle to the normal line of the tread Tr passing through the groove edge, is relatively large. The cross-sectional shape is bilaterally symmetrical. In the central circumferential main groove 1, stones are particularly likely to form when driving on rough roads, and therefore the above-mentioned inclination angle α1 of the groove wall 1' is made relatively large. The angle α 1 is preferably between 14 and 24 degrees, more preferably between 17 and 21 degrees. In addition, the inclination angle of the groove wall shall be in accordance with the standards defined above under the condition of normal internal pressure filling and no load.
The same applies to each of the circumferential main grooves in the intermediate portion and side portions below. Speed 30KM/H per tire size 10.00R20
As shown in FIG. 5, the results of a field test of driving on rough roads show that when the inclination angle of the groove wall 1' is 14 degrees or more, the effect of preventing rock formation is remarkable. If the angle is larger than 24°, the occurrence of railway wear may become so large that it cannot be ignored. desirable. Figure 4b shows the cross-sectional shape of the intermediate circumferential main groove 2, where the inclination angle α 2 of the radially inner part 2' -I of the groove wall is the inclination angle β of the radially outer part 2' -0 . The groove wall has a symmetrical cross-sectional shape having a broken line shape, that is, a two-stage groove wall inclination angle. In the intermediate circumferential main groove 2, railway wear is particularly likely to occur in the early stages when the vehicle is running on a good road, and rock formation is likely to occur when the vehicle is running on a rough road.Therefore, the cross-sectional shape described above is adopted. The angle β is preferably 0 to 10 degrees, more preferably 4 to 8 degrees, and α2 is 14 to 24 degrees, more preferably 17 to 21 degrees. The amount of railway wear represented by the step difference δ (see Figure 1) decreases as the inclination angle of the groove wall decreases, as shown in Figure 6 (results of continuous running on good roads) for the above sample tire. However, since the effect of reducing railway wear or delaying its onset is particularly significant when the angle is less than 10°, the inclination angle β of the radially outer portion 2' -0 of the groove wall of the intermediate circumferential main groove 2 is The angle is preferably 10° or less. However, if it is less than 0°, manufacturing becomes difficult and there is a risk that the rib ends may be chipped, which is not preferable. Furthermore, the ratio of the height h of the radially outer portion 2' -0 to the depth D of this groove 2 is determined to prevent railway wear and stone entrapment.
Considering the balance between the two, preferably 5 to 50%,
More preferably, it is 20 to 40%. FIG. 4c shows the cross-sectional shape of the side circumferential main groove 3, and shows the axially outer groove wall 3' facing the outermost rib 6.
The groove wall 3' has an asymmetrical cross-sectional shape in which an inclination angle α3 of -6 is larger than an inclination angle γ of the axially inner groove wall 3' -5 facing the rib 5. In the side circumferential main groove 3, when running on a good road, railway wear occurs on the rib end 5-3 adjacent to the axially inner groove wall 3' -5 , and railway wear occurs on the rib end 5-3 adjacent to the axially outer side of the main groove 3. Since wave-like wear is likely to occur in the outermost rib 6, the groove shape described above is formed. The angle α 3 is preferably 14-24°, more preferably 17-21°, and the angle γ is preferably 7-17°.
°, more preferably 10 to 14 °. The amount of wavy wear (step) δ' (see Fig. 2) that occurs at the outer end 6 -0 of the outermost rib 6 is the same as that of the side circumferential main groove 3, as shown in Fig. 7 as the result of the steady rotation test. It decreases as the groove wall inclination angle increases, and when it is set at 14 degrees or more, the reduction effect is significant, and when it is set at more than 24 degrees, the occurrence of railway wear may become impossible to ignore. Axial outer groove wall 3'
The inclination angle α3 of -6 is preferably within the above range. In addition, as mentioned above, railway wear is likely to occur on the axially inner groove wall 3' -5 , but the occurrence of stone build-up during driving on rough roads cannot necessarily be ignored in this side circumferential main groove 3 as well. Therefore, taking both of these into consideration, it is preferable that the inclination angle γ of the groove wall 3'- 5 is set within the above range. Next, we will show the results of a comparative test that clarified the effects of this invention. The test tire had a size of 10.00R20 and consisted of a carcass consisting of at least one ply with cords arranged in the substantial radial plane of the tire, and a carcass surrounding the carcass and intersecting at a relatively small angle with respect to the circumferential direction of the tire. This is a heavy-duty radial tire that has a belt consisting of at least two plies of metal cords that rigidly reinforces the area just below the tread in an array, and the tread pattern consists of six cords of approximately equal width as shown in Figure 3. It has five main tread grooves so as to limit the circumferential ribs. Center circumferential main groove 1, middle circumferential main groove 2, side circumferential main groove 3
have the groove shapes shown in FIG. 4a, b, c, respectively, and the angles α 1 , α 2 , β, α 3 , γ and the ratio h/
D is 18°, 20°, 7°, 20°, 13° and
It was set to 0.3. On the other hand, the control tire used for comparison had the groove shapes of the tread main grooves 1, 2, and 3 all the same as shown in Fig. 4a, in which the groove wall inclination angle α1 was 14 degrees. It has exactly the same structure as the tire of the present invention described above. Both tires have an internal pressure of 7.25Kg/cm 2 and 20,000km under normal load (of which, good roads: 90%, speed 60km/h; bad roads: 10%, speed 30km/h)
Km/h) After traveling, the number of stone chips, amount of railway wear (step) δ, and amount of wavy wear (step) δ' were measured. The following results are shown in the following table. The numerical values are expressed as an index with the comparative tire set as 100.

【表】 この結果から明らかな通りこの発明のタイヤは
比較タイヤに比して、有利にかつトレツド踏面の
ほぼ全体にわたり効果的に偏摩耗及び石かみの防
止をはかることができた。なお、この発明のタイ
ヤのリブ4の内側端部4-1のレールウエイ摩耗量
は比較タイヤに比し多少増大しているがこの部分
のレールウエイ摩耗量の絶対量自体が小さく無視
し得るものである。 以上述べた様にこの発明によれば、良路、悪路
併用を余義なくされる重荷重用ラジアルタイヤの
偏摩耗及び石かみの防止に関し、従来品の欠点を
改良し、顕著な効果を上げることが可能である。
[Table] As is clear from the results, the tire of the present invention was able to advantageously and effectively prevent uneven wear and stone build-up over almost the entire tread surface compared to the comparative tire. Although the amount of railway wear at the inner end 4 -1 of the rib 4 of the tire of the present invention is somewhat increased compared to the comparative tire, the absolute amount of railway wear at this portion itself is small and can be ignored. It is. As described above, the present invention improves the shortcomings of conventional products and achieves remarkable effects in preventing uneven wear and stone build-up in heavy-duty radial tires that are forced to be used on both good and bad roads. Is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はレールウエイ摩耗の発生状況を示すタ
イヤの一部子午断面図、第2図は波状摩耗の発生
状況を示すタイヤの軸方向から見た一部外観図、
第3図はタイヤのトレツドパターンを示した展開
図、第4図a,b,cはそれぞれ第3図A−A,
B−B,C−C線に沿う本発明のタイヤの溝の横
断面図、第5図は溝壁の傾斜角度と石かみの個数
の関係を示したグラフ、第6図は溝壁の傾斜角度
をパラメータとした走行距離とレールウエイ摩耗
量の関係を示したグラフ、第7図は溝壁の傾斜角
度と波状摩耗量の関係を示したグラフである。 1……中央部周方向主溝、2……中間部周方向
主溝、3……側部周方向主溝、4,5,6……周
方向リブ、4-1,4-2,5-2,5-3,6-3,6-0
……周方向リブの側端部、1′,2′-1,2′-0
3′-5,3′-6……溝壁、T……タイヤ、Tr……ト
レツド、α,α,β,α,γ……溝壁の傾
斜角度、h……中間部周方向主溝の溝壁の半径方
向外方部分の高さ、D……中間部周方向主溝の深
さ。
Fig. 1 is a partial meridional cross-sectional view of a tire showing the occurrence of railway wear, and Fig. 2 is a partial external view of the tire viewed from the axial direction showing the occurrence of wave-like wear.
Fig. 3 is a developed view showing the tread pattern of the tire, Fig. 4 a, b, and c are Fig. 3 A-A, respectively.
A cross-sectional view of the tire groove of the present invention along lines B-B and C-C, FIG. 5 is a graph showing the relationship between the inclination angle of the groove wall and the number of stones, and FIG. 6 is the inclination of the groove wall. FIG. 7 is a graph showing the relationship between travel distance and railway wear amount using angle as a parameter, and FIG. 7 is a graph showing the relationship between groove wall inclination angle and wavy wear amount. 1... Central part circumferential main groove, 2... Middle part circumferential main groove, 3... Side circumferential main groove, 4, 5, 6... Circumferential rib, 4 -1 , 4 -2 , 5 -2 , 5 -3 , 6 -3 , 6 -0
...Side ends of circumferential ribs, 1', 2' -1 , 2' -0 ,
3' -5 , 3' -6 ...Groove wall, T...Tire, Tr...Tread, α 1 , α 2 , β, α 3 , γ...Inclination angle of groove wall, h...Middle part circumference The height of the radially outward portion of the groove wall of the direction main groove, D...the depth of the intermediate circumferential main groove.

Claims (1)

【特許請求の範囲】 1 タイヤのラジアル面内にコードを配列した少
なくとも1層のブライからなるカーカスと、この
カーカスのまわりを取囲みタイヤの周方向に対し
て小さな角度の交差配列でトレツドの直下を剛固
に補強する少なくとも2層の金属コードのプライ
からなるベルトを有し、 前記トレツドはタイヤの周方向に沿つてジグザ
グ状に延びる複数のトレツド主溝によつて区画し
た連続又は不連続なジグザグ状の周方向リブをそ
なえ、 前記トレツド主溝は、トレツドの中央区域に配
置した1本又は1対の中央部周方向主溝と、トレ
ツドの最外側リブを区画する1対の側部周方向主
溝および前記中央部周方向主溝と前記側部周方向
主溝の間に配置した1対の中間部周方向主溝とか
らなる 重荷重用空気入りラジアルタイヤであつて、 前記中央部周方向主溝は、その溝壁に垂直な断
面において溝縁を通るトレツドの法線に対し鋭角
をなす溝壁の傾斜角度が14〜24゜で左右対称の横
断面形状を有し、 前記中間部周方向主溝は、同様に、溝壁の半径
方向内方部分における傾斜角度が半径方向外方部
分のそれよりも大きい折線状の溝壁傾斜を有する
左右対称の横断面形状を有し、 さらに前記側部周方向主溝は、同様に、軸方向
外側の溝壁における傾斜角度が軸方向内側の溝壁
のそれよりも大きい左右非対称の横断面形状を有
すること を特徴とする重荷重用空気入りラジアルタイヤ。 2 中間部周方向主溝の溝壁の半径方向内方部分
及び側部周方向主溝の外側の溝壁の各傾斜角度が
14〜24゜である特許請求の範囲1記載のタイヤ。 3 中間部周方向主溝の溝壁の半径方向外方部分
の傾斜角度が0〜10゜である特許請求の範囲1ま
たは2記載のタイヤ。 4 側部周方向主溝の内側の溝壁の傾斜角度が7
〜17゜である特許請求の範囲1、2または3記載
のタイヤ。 5 中間部周方向主溝の溝壁の半径方向外方部分
がトレツドから中間部周方向主溝の深さの5〜50
%にわたる特許請求の範囲1、2、3または4記
載のタイヤ。
[Scope of Claims] 1. A carcass consisting of at least one layer of braais in which cords are arranged in the radial plane of the tire, and a carcass surrounding the carcass and directly under the tread in a criss-cross arrangement at a small angle with respect to the circumferential direction of the tire. The tread has a belt made of at least two plies of metal cords that rigidly reinforces the tread, and the tread has a continuous or discontinuous tread groove defined by a plurality of tread main grooves extending in a zigzag shape along the circumferential direction of the tire. The tread main groove has a zigzag circumferential rib, and the tread main groove includes one or a pair of central circumferential main grooves disposed in the central area of the tread and a pair of side circumferential grooves that define outermost ribs of the tread. A heavy-load pneumatic radial tire comprising a directional main groove and a pair of intermediate circumferential main grooves disposed between the center circumferential main groove and the side circumferential main groove, The direction main groove has a symmetrical cross-sectional shape with the groove wall having an acute angle of 14 to 24 degrees with respect to the normal line of the tread passing through the groove edge in a cross section perpendicular to the groove wall, and the intermediate portion The circumferential main groove similarly has a symmetrical cross-sectional shape with a broken line groove wall inclination in which the inclination angle in the radially inner part of the groove wall is larger than that in the radially outer part, and Similarly, the side circumferential main groove has an asymmetrical cross-sectional shape in which the inclination angle of the axially outer groove wall is larger than that of the axially inner groove wall. radial tire. 2. Each inclination angle of the radially inner part of the groove wall of the intermediate circumferential main groove and the outer groove wall of the side circumferential main groove is
The tire according to claim 1, which has an angle of 14 to 24 degrees. 3. The tire according to claim 1 or 2, wherein the radially outer portion of the groove wall of the intermediate circumferential main groove has an inclination angle of 0 to 10 degrees. 4 The inclination angle of the inner groove wall of the side circumferential main groove is 7.
The tire according to claim 1, 2 or 3, wherein the angle is -17°. 5 The radially outer portion of the groove wall of the intermediate circumferential main groove is 5 to 50 mm deep from the tread to the depth of the intermediate circumferential main groove.
%. Tire according to claim 1, 2, 3 or 4.
JP56071945A 1981-05-13 1981-05-13 Pneumatic radial tire for heavy load Granted JPS57186505A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP56071945A JPS57186505A (en) 1981-05-13 1981-05-13 Pneumatic radial tire for heavy load
US06/374,664 US4446901A (en) 1981-05-13 1982-05-04 Heavy duty pneumatic radial tires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56071945A JPS57186505A (en) 1981-05-13 1981-05-13 Pneumatic radial tire for heavy load

Publications (2)

Publication Number Publication Date
JPS57186505A JPS57186505A (en) 1982-11-17
JPS6212041B2 true JPS6212041B2 (en) 1987-03-16

Family

ID=13475133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56071945A Granted JPS57186505A (en) 1981-05-13 1981-05-13 Pneumatic radial tire for heavy load

Country Status (1)

Country Link
JP (1) JPS57186505A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820502A (en) * 1981-07-31 1983-02-07 Bridgestone Corp Pneumatic radial tire for heavy load
JPS601006A (en) * 1983-06-15 1985-01-07 Toyo Tire & Rubber Co Ltd Pneumatic tire
JPS60203505A (en) * 1984-03-28 1985-10-15 Sumitomo Rubber Ind Ltd Pneumatic tire
JPS60236807A (en) * 1984-05-09 1985-11-25 Sumitomo Rubber Ind Ltd Pneumatic tyre
JP6907758B2 (en) * 2017-06-28 2021-07-21 住友ゴム工業株式会社 tire

Also Published As

Publication number Publication date
JPS57186505A (en) 1982-11-17

Similar Documents

Publication Publication Date Title
US7163039B2 (en) High-performance tire for a motor vehicle
US4700762A (en) Pneumatic tire therad with wide central groove and arcuate grooves
EP1992504B1 (en) Motorcycle tire for off-road traveling
US6488064B1 (en) Sacrificial ribs for improved tire wear
EP0508090B1 (en) Pneumatic tire having a unique footprint
JP2617713B2 (en) Pneumatic radial tire for heavy loads
US4736783A (en) Heavy load pneumatic radial tire
EP0688685B1 (en) Pneumatic Tires
US5337815A (en) Pneumatic tire having improved wet traction
US5178699A (en) Pneumatic tire
US4798236A (en) High performance tire tread
AU709446B2 (en) An on/off road radial pneumatic light truck or automobile tire
JPH11291718A (en) Pneumatic tire
JP2002538030A (en) Tire with sacrificial bridging
US4446901A (en) Heavy duty pneumatic radial tires
US4756352A (en) Pneumatic tire tread with divided shoulder
JPH0268205A (en) Pneumatic tire
US4739812A (en) Pneumatic tire tread with recessed shoulder portion
JP2003503266A (en) High performance tires for automobiles
US5318085A (en) Radial tire having reduced treadwear
US5501258A (en) Tire tread having a circumferential groove deeper than tread element height
JPS6212041B2 (en)
JP2003165311A (en) Pneumatic tire
JP2000238507A (en) Tire for heavy loarding
JPH0159121B2 (en)