JPS60203505A - Pneumatic tire - Google Patents
Pneumatic tireInfo
- Publication number
- JPS60203505A JPS60203505A JP59061655A JP6165584A JPS60203505A JP S60203505 A JPS60203505 A JP S60203505A JP 59061655 A JP59061655 A JP 59061655A JP 6165584 A JP6165584 A JP 6165584A JP S60203505 A JPS60203505 A JP S60203505A
- Authority
- JP
- Japan
- Prior art keywords
- tire
- tread
- groove
- tread surface
- side wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/04—Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
- B60C11/042—Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag further characterised by the groove cross-section
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/0306—Patterns comprising block rows or discontinuous ribs
- B60C11/0309—Patterns comprising block rows or discontinuous ribs further characterised by the groove cross-section
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/13—Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
- B60C11/1307—Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
- B60C11/1323—Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls asymmetric
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はタイヤトレッド面の縦溝のタイヤ軸方向外側の
側壁を傾斜角度の異なる第1斜面と第2斜面で形成し走
行時での縦溝の変形を最小限に抑制することによりコー
ナリング時の排水性、操縦安定性、グリップ性を改善し
た空気入りタイヤに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention minimizes deformation of the longitudinal groove during running by forming the axially outer sidewall of the longitudinal groove on the tire tread surface with a first slope and a second slope with different inclination angles. This invention relates to a pneumatic tire that improves drainage performance, handling stability, and grip during cornering by suppressing the amount of water.
一般にタイヤのトレッド面は、湿潤路面の排水性、グリ
ップ性を改善するためタイヤ円周方向に連なる複数の縦
溝が配設される。排水性を改善する観点からは縦溝の幅
、深さあるいは溝数を増加して溝容積を増大することが
効果的であるといえる。しかし、縦溝の幅等を増加する
とトレッド部のいわゆる海/陸比の値が大きくなりトレ
ッド部の剛性が低下し、操縦安定性、耐摩耗性が低下す
ることとなり、前者の特性は後者の特性と二律背反する
関係となる。そこで従来からこれらの特性のバランスを
考慮してトレッド面の溝形状の設側がなされており、溝
幅・溝深さ及び溝数はおのずと一定の範囲に限られるこ
ととなる。そして縦溝の断面形状は偏摩耗防止あるいは
美的外観の観点から溝の側壁が相互に対称となるように
形成されている。このような従来の溝の設計技術では、
排水性と操縦安定性、耐摩耗性を同時に向上することが
困難である。In general, the tread surface of a tire is provided with a plurality of vertical grooves that are continuous in the tire circumferential direction in order to improve drainage performance and grip performance on a wet road surface. From the viewpoint of improving drainage performance, it can be said that it is effective to increase the groove volume by increasing the width, depth, or number of vertical grooves. However, when the width of the longitudinal groove is increased, the value of the so-called sea/land ratio of the tread increases, the rigidity of the tread decreases, and the handling stability and wear resistance decrease, and the former characteristics are inferior to the latter. It has a contradictory relationship with the characteristics. Therefore, conventionally, the shape of the grooves on the tread surface has been designed with consideration to the balance of these characteristics, and the groove width, groove depth, and number of grooves are naturally limited to a certain range. The cross-sectional shape of the vertical groove is formed so that the side walls of the groove are symmetrical to each other from the viewpoint of preventing uneven wear and aesthetic appearance. With such conventional groove design technology,
It is difficult to simultaneously improve drainage performance, handling stability, and wear resistance.
そこで本発明者は上記問題点を解決するため、タイヤ走
行時のトレッド面の変形挙動をモデル化し、溝の断面形
状とその変形状態の関係を詳細に検討し、かかる知見に
基づき溝の断面形状を最適化することにより排水性を犠
牲にすることなく、操縦安定性、耐摩耗性の向上を達成
し得たのである。Therefore, in order to solve the above problems, the present inventor modeled the deformation behavior of the tread surface during tire running, studied in detail the relationship between the cross-sectional shape of the groove and its deformation state, and based on this knowledge, the cross-sectional shape of the groove By optimizing this, we were able to improve handling stability and wear resistance without sacrificing drainage performance.
本発明はトレッド表面にタイヤ周方向に連続する複数の
縦溝を有し、該縦溝のうちの少なくとも1つの縦溝はそ
の断面形状においてタイヤ軸方向外側の側壁はトレッド
表面に隣接する第1斜面とトレッド底部に隣接する第2
斜面よりなり、これらの斜面のタイヤトレッド表面の法
線に対する角度(β、)(β2)は相互に異なっており
、しかも第1斜面第2斜面のタイヤ表面の法線に対する
角度(β1)(β2)は5°〜30°の範囲であるトレ
ッド部を備えたことを特徴とする空気入りタイヤである
。The present invention has a plurality of vertical grooves continuous in the tire circumferential direction on the tread surface, and at least one of the vertical grooves has a cross-sectional shape such that the outer side wall in the tire axial direction is a first groove adjacent to the tread surface. a second adjacent to the slope and the bottom of the tread;
The angles (β, ) (β2) of these slopes with respect to the normal to the tire tread surface are different from each other, and the angles (β1) (β2) of the first slope and the second slope with respect to the normal to the tire surface are different from each other. ) is a pneumatic tire characterized by having a tread portion having an angle in the range of 5° to 30°.
以下図面にしたがって本発明の詳細な説明する。第1図
は本発明のラジアル構造の空気入リタイヤの概略断面図
の右半分、第2図は第1図の縦溝の拡大図である。第1
図においてx−xはタイヤ軸と平行な線Y−Yはタイヤ
赤道面である。The present invention will be described in detail below with reference to the drawings. FIG. 1 is the right half of a schematic cross-sectional view of a pneumatic tire with a radial structure according to the present invention, and FIG. 2 is an enlarged view of the longitudinal grooves in FIG. 1. 1st
In the figure, xx is a line parallel to the tire axis, and YY is the tire equatorial plane.
本発明の空気入りタイヤ(1)は一対のビードコア(2
)とそのまわりを内側から外側にかけて折り返されるカ
ーカス(3)と、このカーカスのクラウン部外側に配設
されるベルト層(4)を有している。そしてタイヤトレ
ッド表面にタイヤ周方向に連続する2本の縦溝(Gl、
G2)が配置されている。そして1つの縦溝(G2)の
側壁(5a、5b)はタイヤトレッド表面の法線(L)
に対してそれぞれ所定の角度(α)及び(β1)(β2
)を形成するように傾斜している。そして、タイヤ軸方
向外側の側壁5aはトレッド表面に隣接する第1斜面(
5aa)とトレッド底部に隣接する第2斜面(5ab)
よりなり、これらの斜面のタイヤトレッド表面の法線に
対する角度(β、)(β2)は相互に異なっている。そ
して前記第1斜面の角度(β1)は好ましくは第2斜面
の角度(β2)よりも小さく形成されている。The pneumatic tire (1) of the present invention has a pair of bead cores (2
), a carcass (3) that is folded back from the inside to the outside around the carcass, and a belt layer (4) disposed on the outside of the crown portion of the carcass. Then, there are two vertical grooves (Gl,
G2) is located. The side walls (5a, 5b) of one longitudinal groove (G2) are aligned with the normal (L) of the tire tread surface.
(α) and (β1) (β2
) is inclined to form a. The outer side wall 5a in the tire axial direction is a first slope (
5aa) and a second slope (5ab) adjacent to the tread bottom.
The angles (β, ) (β2) of these slopes with respect to the normal line of the tire tread surface are different from each other. The angle (β1) of the first slope is preferably smaller than the angle (β2) of the second slope.
また第1斜面(5aa)と第2斜面の境界(P)のトレ
ッド表面からの距離は縦溝G2の溝深さくD)の30%
〜80%の範囲に形成される。Also, the distance from the tread surface to the boundary (P) between the first slope (5aa) and the second slope is 30% of the groove depth D) of the vertical groove G2.
~80%.
ここでタイヤ軸方向外側の側壁の前記各斜面(5aa)
(5ab)の角度(β1)(β2)はタイヤ軸方向内側
の側壁(5b)の角度(α)よりも大きく傾斜する非対
称溝とすることが好ましい。ここで側壁(5a15b)
はいずれもタイヤ周方向にほぼ一定の傾斜で形成するほ
かタイヤ円周方向に傾斜角度が変化するように形成する
ことらできる。縦溝の断面形状を上述の如く形成するこ
とにより′i@1斜面が第2斜面により補強されること
となりタイヤ走行時のトレッド部剛性が向上し、そのた
め縦溝の変形量が軽減でき、安定した縦溝容積が維持さ
れ、排水性が保持されるとともに操縦安全性も一層向上
する。このことはタイヤ走行時のトレッド面の変形挙動
をモデル化し溝の断面形状とその変化状態の関係から確
認できた。Here, each slope (5aa) of the outer side wall in the tire axial direction
It is preferable that the angles (β1) and (β2) of (5ab) are asymmetrical grooves that are inclined more than the angle (α) of the axially inner side wall (5b) of the tire. Here the side wall (5a15b)
Both can be formed with a substantially constant inclination in the tire circumferential direction, or can be formed with an inclination angle that changes in the tire circumferential direction. By forming the cross-sectional shape of the vertical groove as described above, the 'i@1 slope is reinforced by the second slope, which improves the rigidity of the tread part when the tire is running, which reduces the amount of deformation of the vertical groove and provides stability. The vertical groove volume is maintained, drainage performance is maintained, and operational safety is further improved. This was confirmed by modeling the deformation behavior of the tread surface during tire running and from the relationship between the cross-sectional shape of the groove and its changing state.
つまり第3図においてタイヤTはp方向に走行しながら
左方向(PL方向)にコーナリングする際、タイヤの右
半分(斜線部分)のトレッド部はf方向の変形を受ける
こととなる。これをトレッド部の右半分断面図を示す第
4図において説明すると無荷重状態のトレッド表面輪郭
線(OL)はコーナリング時においては変形し、縦溝G
a5Gbの溝幅は大きく狭められることとなり、それに
伴ない接地特性が低下することとなる。例えばコーナリ
ング時縦溝Gaの溝幅はWlからW2に縮少するように
変形するため縦溝の容積が減少し排水性が低下すること
となる。そこで縦溝の溝幅の変化量をできるだけ減少す
ることが好ましいがこの溝幅の変化量と縦溝の側壁角度
の関係を検討したところ溝幅の変化量は縦溝のタイヤ軸
方向外側の側壁角度(β)の増加とともに小さくなるこ
と、更にタイヤ軸方向内側の側壁Galはタイヤ軸方向
外側の側壁Ga2よりもその変形量の側壁角度に対する
寄与率が小さいことが判明した。That is, in FIG. 3, when the tire T corners in the left direction (PL direction) while traveling in the p direction, the tread portion of the right half (shaded area) of the tire undergoes deformation in the f direction. To explain this with reference to FIG. 4, which shows a right half sectional view of the tread section, the tread surface contour (OL) in an unloaded state deforms during cornering, and the vertical groove G
The groove width of a5Gb will be significantly narrowed, and the grounding characteristics will deteriorate accordingly. For example, during cornering, the groove width of the vertical groove Ga is deformed so as to decrease from Wl to W2, so the volume of the vertical groove decreases and drainage performance deteriorates. Therefore, it is preferable to reduce the amount of change in the width of the longitudinal groove as much as possible, but when we examined the relationship between the amount of change in groove width and the side wall angle of the longitudinal groove, we found that the amount of change in groove width is the same as the amount of change in the width of the longitudinal groove on the outer side wall in the axial direction of the tire. It was found that the angle (β) decreases as the angle (β) increases, and that the axially inner sidewall Gal of the tire has a smaller contribution rate to the sidewall angle of the amount of deformation than the axially outer sidewall Ga2 of the tire.
例えば第5図及び第6図に示すトレッド部にf方向の力
が作用した場合の縦溝GΔ、G’Bのそれぞれの両側壁
はその傾斜角度の相違によって第1表の如く変形量は異
なってくる。第5図においてαは5度、βは5度、また
第6図においてG1は5度、β1β2は5度また第1斜
面と第2斜面の境界のトレッド表面からの距離は溝深さ
の60%である。表からタイヤ軸方向外側の側壁を第1
斜面と第2斜面の2段に構成した第6図の縦溝GC1G
Dは溝幅の減少が大幅に軽減できることが認められる。For example, when a force in the f direction is applied to the tread shown in FIGS. 5 and 6, the amount of deformation of the respective side walls of the longitudinal grooves GΔ and G'B differs as shown in Table 1 due to the difference in the inclination angle. It's coming. In Fig. 5, α is 5 degrees, β is 5 degrees, and in Fig. 6, G1 is 5 degrees, β1β2 is 5 degrees, and the distance from the tread surface to the boundary between the first slope and the second slope is 60 degrees of the groove depth. %. From the front, place the axially outer side wall of the tire first.
The vertical groove GC1G in Fig. 6 is configured in two stages: a slope and a second slope.
It is recognized that in case of D, the decrease in groove width can be significantly reduced.
第1表
なお縦溝の傾斜角度を大きくするとトレッド部の接地面
積が減少し縦溝による排水効果及び耐摩耗性が低下する
ため、その傾斜角度にはおのずと限界がある。本発明で
はタイヤ軸方向内側の側壁(5b)(6b)のタイヤト
レッド表面の法線に対する角度(al>(a’2)はO
o−10°の範囲で、一方タイヤ軸方向外側の側壁(5
a>(6a)の各斜面のタイヤトレッド表面の法線に対
する角度(β、)
(β2)は5°〜30°の範囲に設定されることが好適
である。Table 1 Note that if the inclination angle of the vertical groove is increased, the ground contact area of the tread portion will be reduced, and the drainage effect and wear resistance of the vertical groove will be reduced, so there is naturally a limit to the inclination angle. In the present invention, the angle (al>(a'2) of the inner sidewall (5b) (6b) in the tire axial direction with respect to the normal line of the tire tread surface is O
o - 10°, on the other hand, the outer side wall in the tire axial direction (5
The angle (β, ) (β2) of each slope with respect to the normal line of the tire tread surface where a>(6a) is preferably set in the range of 5° to 30°.
このように本発明では縦溝のタイヤ軸方向外側の側壁を
傾斜角度の異なる2つの斜面で構成し、更に側壁の傾斜
角度をタイヤ軸方向内側で小さく、タイヤ軸方向外側で
大きくし、しかもその傾斜角度を特定範囲に設定してい
るため、側壁の変形を最小限にとどめ縦溝の容積をほぼ
一定に保持することが可能となり、コーナーリング時の
排水性、制動性、耐摩耗性が総合的に向上する。In this way, in the present invention, the side wall of the longitudinal groove on the outside in the tire axial direction is composed of two slopes with different inclination angles, and the inclination angle of the side wall is made smaller on the inside in the axial direction of the tire and larger on the outside in the tire axial direction. By setting the inclination angle within a specific range, it is possible to minimize the deformation of the sidewall and maintain the volume of the vertical groove almost constant, which improves drainage performance, braking performance, and wear resistance during cornering. improve.
なお本発明はタイヤトレッド部がスチールコード等の高
弾性繊維コードで補強されたベルト層を備えたラジアル
タイヤに好適に採用されるが、ベルテッドバイヤスタイ
ヤ、クロスプライタイヤにも同様に採用することができ
る。Although the present invention is suitably employed in radial tires whose tire tread portions include a belt layer reinforced with high-elastic fiber cords such as steel cords, it can also be similarly employed in belted bias tires and cross-ply tires. can.
また本発明は、タイヤ周方向に連続する縦溝を有するい
わゆるリブパターンのほか、ブロックパターン、リブ−
ラグパターン、リブ−ブロックパターンも同様に適用し
つる。In addition to the so-called rib pattern having vertical grooves continuous in the circumferential direction of the tire, the present invention also applies to block patterns, rib patterns, etc.
Rag patterns and rib-block patterns can also be applied in the same way.
第1図は本発明のタイヤの断面図の右半分、第2図はそ
の縦溝部分の拡大図、第3図は走行時のタイヤの踏面、
第4図、第5図、第6図はトレッド部の部分断面図であ
る。
■・・・タイヤ、 2・・・ビードコア、3・・・カー
カス、 4・・・ベルト層、5a、5b、6a、 6b
−・−・・・・・、−側壁、G1、G2、GΔ、GB、
GCGD・・・縦溝、特許出願人 住友コム工業株式会
社
代 理 人 弁理士 仲村 後事
’A 1 F!Fig. 1 is the right half of the cross-sectional view of the tire of the present invention, Fig. 2 is an enlarged view of the vertical groove portion, and Fig. 3 is the tread of the tire when running.
4, 5, and 6 are partial cross-sectional views of the tread portion. ■... Tire, 2... Bead core, 3... Carcass, 4... Belt layer, 5a, 5b, 6a, 6b
-・-・・・・Side wall, G1, G2, GΔ, GB,
GCGD... vertical, patent applicant Sumitomo Com Industries Co., Ltd. Agent Patent attorney Nakamura Post'A 1 F!
Claims (2)
溝を有し、該縦溝のうちの少なくきも1つの縦溝はその
断面形状においてタイヤ軸方向外側の側壁メトレッド表
面に隣接する第1斜面きトレッド底部に隣接する第2斜
面よりなり、これらの斜面のタイヤトレッド表面の法線
に対する角(β1)(β2)は相互に異なっており、し
かも前記第1斜面及び第2斜面のタイヤトレッド表面の
法線に対する角度(βl)(β2)は5°〜30°の範
囲であるトレッド部を備えたことを特徴とする空気入り
タイヤ。(1) The tread surface has a plurality of longitudinal grooves continuous in the tire circumferential direction, and at least one of the longitudinal grooves has a cross-sectional shape that is the first groove adjacent to the tire axially outer sidewall metred surface. a second slope adjacent to the bottom of the sloped tread, the angles (β1) (β2) of these slopes with respect to the normal to the tire tread surface are different from each other; A pneumatic tire comprising a tread portion whose angle (βl) (β2) with respect to the normal to the surface is in the range of 5° to 30°.
面の法線に対する角度(lはO〜10゜の範囲である特
許請求の範囲第1項記載の空気入りタイヤ。(2) The pneumatic tire according to claim 1, wherein the angle (l) of the axial side wall of the longitudinal groove with respect to the normal line of the tire tread surface is in the range of 0 to 10 degrees.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59061655A JPS60203505A (en) | 1984-03-28 | 1984-03-28 | Pneumatic tire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59061655A JPS60203505A (en) | 1984-03-28 | 1984-03-28 | Pneumatic tire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60203505A true JPS60203505A (en) | 1985-10-15 |
Family
ID=13177453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59061655A Pending JPS60203505A (en) | 1984-03-28 | 1984-03-28 | Pneumatic tire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60203505A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000038738A (en) * | 1998-12-09 | 2000-07-05 | 조충환 | Pneumatic tire with improved steering stability |
WO2006128550A1 (en) * | 2005-06-01 | 2006-12-07 | Continental Aktiengesellschaft | Tread profile with asymmetric circumferential grooves for a commercial vehicle tyre |
EP2119574A1 (en) | 2008-05-16 | 2009-11-18 | Continental Aktiengesellschaft | Bearing surface profile of a vehicle tyre |
WO2010049264A1 (en) * | 2008-10-30 | 2010-05-06 | Continental Reifen Deutschland Gmbh | Pneumatic vehicle tire |
EP2329966A1 (en) * | 2009-12-03 | 2011-06-08 | Continental Reifen Deutschland GmbH | Bearing surface profile of a vehicle tyre |
US20140000775A1 (en) * | 2011-02-25 | 2014-01-02 | Bridgestone Corporation | Pneumatic tire |
US20230278370A1 (en) * | 2022-03-02 | 2023-09-07 | Sumitomo Rubber Industries, Ltd. | Tire for motorcycle for running on rough terrain |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57186505A (en) * | 1981-05-13 | 1982-11-17 | Bridgestone Corp | Pneumatic radial tire for heavy load |
JPS60203504A (en) * | 1984-03-28 | 1985-10-15 | Sumitomo Rubber Ind Ltd | Pneumatic tire |
-
1984
- 1984-03-28 JP JP59061655A patent/JPS60203505A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57186505A (en) * | 1981-05-13 | 1982-11-17 | Bridgestone Corp | Pneumatic radial tire for heavy load |
JPS60203504A (en) * | 1984-03-28 | 1985-10-15 | Sumitomo Rubber Ind Ltd | Pneumatic tire |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000038738A (en) * | 1998-12-09 | 2000-07-05 | 조충환 | Pneumatic tire with improved steering stability |
WO2006128550A1 (en) * | 2005-06-01 | 2006-12-07 | Continental Aktiengesellschaft | Tread profile with asymmetric circumferential grooves for a commercial vehicle tyre |
EP2119574A1 (en) | 2008-05-16 | 2009-11-18 | Continental Aktiengesellschaft | Bearing surface profile of a vehicle tyre |
WO2010049264A1 (en) * | 2008-10-30 | 2010-05-06 | Continental Reifen Deutschland Gmbh | Pneumatic vehicle tire |
CN102196925A (en) * | 2008-10-30 | 2011-09-21 | 大陆轮胎德国有限公司 | Pneumatic vehicle tire |
US8490664B2 (en) | 2008-10-30 | 2013-07-23 | Continental Reifen Deutschland Gmbh | Pneumatic vehicle tire |
EP2329966A1 (en) * | 2009-12-03 | 2011-06-08 | Continental Reifen Deutschland GmbH | Bearing surface profile of a vehicle tyre |
US20140000775A1 (en) * | 2011-02-25 | 2014-01-02 | Bridgestone Corporation | Pneumatic tire |
US9545825B2 (en) * | 2011-02-25 | 2017-01-17 | Kabushiki Kaisha Bridgestone | Pneumatic tire with tread having shoulder circumferential grooves |
US20230278370A1 (en) * | 2022-03-02 | 2023-09-07 | Sumitomo Rubber Industries, Ltd. | Tire for motorcycle for running on rough terrain |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8887778B2 (en) | Motorcycle tire for off-road traveling | |
US5044414A (en) | Pneumatic tire with directional tread | |
JP4950491B2 (en) | Heavy duty tire | |
US5277235A (en) | Pneumatic radial tire with high cornering and steering stability | |
US20120132333A1 (en) | Pneumatic tire | |
US8881778B2 (en) | Motorcycle tire | |
US4266592A (en) | Pneumatic tire for a heavy duty vehicle | |
US5435364A (en) | Pneumatic radial tire with four main grooves | |
US20030005992A1 (en) | Sacrificial ribs for improved tire wear | |
JPS63235107A (en) | Tread for radial carcass tire with projection element | |
WO2010041720A1 (en) | Tire | |
JPH04228307A (en) | All season type tire tread | |
JPS60193704A (en) | Aired tire | |
US4296789A (en) | Tread for pneumatic tire | |
JP2013071633A (en) | Pneumatic tire | |
JPS60203504A (en) | Pneumatic tire | |
US5394915A (en) | Tire for heavy load that prevents center wear and river wear | |
JPS60203505A (en) | Pneumatic tire | |
JPS5861008A (en) | Radial tire inflated by air for heavy vehicle | |
JPS63134313A (en) | Pnermatic radial tire | |
JP2966759B2 (en) | Pneumatic tire | |
JPH02128908A (en) | Tire for motorcycle | |
US4862934A (en) | Heavy duty pneumatic tires with composite tread patterns | |
JPH0342306A (en) | Pneumatic tire | |
JP2905256B2 (en) | High-speed pneumatic tires |