JPS6212023A - Electromagnetic relay - Google Patents

Electromagnetic relay

Info

Publication number
JPS6212023A
JPS6212023A JP15199885A JP15199885A JPS6212023A JP S6212023 A JPS6212023 A JP S6212023A JP 15199885 A JP15199885 A JP 15199885A JP 15199885 A JP15199885 A JP 15199885A JP S6212023 A JPS6212023 A JP S6212023A
Authority
JP
Japan
Prior art keywords
armature
fixed
iron core
contact
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15199885A
Other languages
Japanese (ja)
Inventor
串田 直人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15199885A priority Critical patent/JPS6212023A/en
Publication of JPS6212023A publication Critical patent/JPS6212023A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cookers (AREA)
  • Surgical Instruments (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はzt電磁継電器関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a zt electromagnetic relay.

〔従来の技術〕[Conventional technology]

第8図は従来の電磁継電器の側断面図、第9図は第8図
の電磁継電器の動作状態を示す側断面図である。第8図
の電磁継電器は、鉄心19巻線ス継鉄3.接極子4.可
動ばね5.開離ばね6.開離ばね加圧用突起7.可動接
点8a、可動接点8b、固定接点9a、固定接点9b、
固定接点端子10a、および固定接点端子10b’i有
する。巻線2は鉄心1を回巻し、継鉄3はL字状の断面
をもち、鉄心1の中心軸にほぼ平行な第一の平面を内側
にもつ第一の部分と、前記第一の平面とほぼ垂直な第二
の平面を内側にもつ第二の部分とを有し、磁性材料で作
られ、前記第二の平面を鉄心1の中心軸方向の一端に固
定される。接極子4は表面の中央部に突起41を有し、
平面状の裏面を有し、磁性材料で作られる板状をなし、
一端辺を前記第一の部分の端部に回動自在に素止される
。可動ばね5は先端部の表裏両面におのおの可動接点3
a 、3bを固定され、長方形の表面をもつ板ばねで、
一端を突起41に固定される。開離ばね6は一端を突起
41に固定され、中央部で所定の角度に曲げられる板ば
ねである。開離ばね加圧用突起7は、一端面を電磁継電
器のフレーム(図示せず)に固定され、前記一端面と対
向する他端面を開離ばね6の他端に押圧して配設される
長方体状の突起である。固定接点9aは可動接点8aに
接触し、押圧され、固定接点端子10aの一端部に配設
される。固定接点9bは可動接点8bに対向して固定接
点端子10bの一端部に配設される。
FIG. 8 is a side sectional view of a conventional electromagnetic relay, and FIG. 9 is a side sectional view showing the operating state of the electromagnetic relay of FIG. The electromagnetic relay shown in Fig. 8 has a yoke with 19 windings and 3. Armature 4. Movable spring 5. Opening spring 6. Separation spring pressurizing protrusion 7. Movable contact 8a, movable contact 8b, fixed contact 9a, fixed contact 9b,
It has a fixed contact terminal 10a and a fixed contact terminal 10b'i. The winding 2 is wound around the iron core 1, and the yoke 3 has an L-shaped cross section and includes a first portion having a first plane substantially parallel to the central axis of the iron core 1 inside, and The iron core 1 has a second portion having a second plane on the inside that is substantially perpendicular to the plane, and is made of a magnetic material, and the second plane is fixed to one end of the iron core 1 in the central axis direction. The armature 4 has a protrusion 41 in the center of the surface,
It has a flat back surface and is plate-shaped made of magnetic material,
One end side is rotatably fixed to the end of the first portion. The movable spring 5 has movable contacts 3 on both the front and back sides of the tip.
a, 3b are fixed leaf springs with rectangular surfaces,
One end is fixed to the projection 41. The separation spring 6 is a leaf spring whose one end is fixed to the protrusion 41 and whose central portion is bent at a predetermined angle. The separation spring pressurizing protrusion 7 has one end surface fixed to a frame (not shown) of the electromagnetic relay, and the other end surface opposite to the one end surface has a length pressed against the other end of the separation spring 6. It is a square-shaped protrusion. The fixed contact 9a contacts and is pressed by the movable contact 8a, and is disposed at one end of the fixed contact terminal 10a. The fixed contact 9b is disposed at one end of the fixed contact terminal 10b, facing the movable contact 8b.

固定接点端子10aの他端および固定接点端子10bの
他端はおのおの前記フレームに固定される。
The other end of the fixed contact terminal 10a and the other end of the fixed contact terminal 10b are each fixed to the frame.

第10図は、第8図の継電器の動作を説明するための接
極子−力特性図で、横軸は接極子変位を表わし1点Aお
よび点Bは、第4図の継電器の動作時および不動作時に
おける接極子4の位置を相対的に表わす点である。縦軸
は力を表わし、fは可動ばね5と開離ばね6とによる接
極子4に対する負荷力を示す折線であり%Flは固定接
点9aと可動接点8aとの接触力、F2は固定接点9b
と可動接点8bとの接触力である。F(Φ)は、巻線2
が励磁されたときの接極子4と鉄心1との間に生ずる磁
気吸引力全表わす。第8図にて1巻線2に電流が流され
ると、鉄心1−接極子4−継鉄3の径路に磁束Φが発生
し、接極子4と鉄心1との間隙をこの磁束Φが通るので
、接極子4は鉄心1に磁気吸引力により吸引される。第
10図に示すようにこの磁気吸引力F(Φ)が可動ばね
5と開離ばね6とによる接極子4′o負荷力fよりも大
きければ、接極子4は、鉄心1から離れた、コイルに電
流を流さない不動作のときの点Bの位置から、コイルに
電流を流した動作のときの点Aの位置に向って矢印方向
に移動する。すなわち、接極子4は点Bから開離ばね6
の復元力に抗し、可動ばね5の復元力にほう助されて点
Cに達し、点Cから開離Aに達し、停止し、この電磁継
電器は動作状態に安定する。
FIG. 10 is an armature-force characteristic diagram for explaining the operation of the relay shown in FIG. This point relatively represents the position of the armature 4 during non-operation. The vertical axis represents the force, f is a broken line showing the load force on the armature 4 due to the movable spring 5 and the separation spring 6, %Fl is the contact force between the fixed contact 9a and the movable contact 8a, and F2 is the fixed contact 9b.
This is the contact force between the movable contact 8b and the movable contact 8b. F(Φ) is winding 2
It represents the total magnetic attraction force generated between the armature 4 and the iron core 1 when the armature is excited. In Fig. 8, when a current is passed through the first winding 2, a magnetic flux Φ is generated in the path of the iron core 1 - armature 4 - yoke 3, and this magnetic flux Φ passes through the gap between the armature 4 and the iron core 1. Therefore, the armature 4 is attracted to the iron core 1 by magnetic attraction force. As shown in FIG. 10, if this magnetic attraction force F (Φ) is larger than the load force f on the armature 4' due to the movable spring 5 and the separation spring 6, the armature 4 will be separated from the iron core 1. It moves in the direction of the arrow from the position of point B when it is inactive, with no current flowing through the coil, to the position of point A when it is in operation, with current flowing through the coil. That is, the armature 4 moves from the point B to the opening spring 6.
The electromagnetic relay resists the restoring force of , is assisted by the restoring force of the movable spring 5, reaches point C, reaches the opening A from point C, and stops, and this electromagnetic relay is stabilized in the operating state.

〔発明が解決しようとする問題点3 以上述べたように、第8図の電磁継電器を動作させるた
めには、磁束Φによる接極子4と鉄心1との間に働く磁
気吸引力F(Φ)が接極子4の全行程において負荷曲線
fで示される開離ばね6と可動ばね5との機械的な負荷
力よりも犬きくなければならない。そこで、この電磁継
電器の駆動電力を小さくする念めには、第10図に示す
接点の接触力Fl、F2 を小さくするか、または接極
子4の移動距離を小さくする必要がある。しかし、接点
の接触力を小さくすれば、接触の信頼性が悪くなり、接
極子4の移動距離を小さくすれば、同じ接触の信頼性を
保つためには、構成部品の精度を高めることを必要とし
、電磁継電器が高価になるという問題点がある。
[Problem to be Solved by the Invention 3] As stated above, in order to operate the electromagnetic relay shown in FIG. must be greater than the mechanical load force of the separation spring 6 and the movable spring 5 shown by the load curve f over the entire stroke of the armature 4. Therefore, in order to reduce the driving power of this electromagnetic relay, it is necessary to reduce the contact forces Fl and F2 of the contacts shown in FIG. 10, or to reduce the moving distance of the armature 4. However, if the contact force of the contact points is reduced, the reliability of the contact deteriorates, and if the moving distance of the armature 4 is reduced, it is necessary to increase the accuracy of the component parts in order to maintain the same reliability of contact. However, there is a problem in that the electromagnetic relay is expensive.

本発明の目的は信頼性を確保しながら低駆動電力の電磁
継電器を提供することにある。
An object of the present invention is to provide an electromagnetic relay that uses low driving power while ensuring reliability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による電磁継電器は、磁性材料で作られる鉄心と
、前記鉄心全回巻する巻線と、前記鉄心の中心軸方向の
一端に一方の磁極面を固定され、前記一方の磁極面にほ
ぼ平行な他方の磁極面を有する永久磁石と、断面がL字
状をなし、前記鉄心2の中心軸にほぼ平行な第一の平面
を内側にもつ第−の部分と、前記第一の平面と垂直な第
二の平面を内側にもつ第二の部分とを有し、磁性体材料
で作られ、前記第二の平面を前記永久磁石の他方の磁極
面に固定される継鉄と、前記第一の部分の端部に回動自
在に繋止され、磁性材料で作られる接極子と、一端部を
前記接極子に固定される可動ばねと、前記可動ばねの先
端に固定される第一。
An electromagnetic relay according to the present invention includes an iron core made of a magnetic material, a winding wound around the entire iron core, one magnetic pole surface fixed to one end in the central axis direction of the iron core, and substantially parallel to the one magnetic pole surface. a permanent magnet having the other magnetic pole surface, a second portion having an L-shaped cross section and having a first plane on the inside that is substantially parallel to the central axis of the iron core 2, and a second portion that is perpendicular to the first plane. a second portion having a second flat surface on the inside thereof, the yoke is made of a magnetic material and has the second flat surface fixed to the other magnetic pole surface of the permanent magnet; an armature made of a magnetic material and rotatably fixed to an end of the section; a movable spring having one end fixed to the armature; and a first arm fixed to the tip of the movable spring.

第二の可動接点と、前記第一、第二の可動接点に対向し
て配設される第一、第二の固定接点と、前記接極子全前
記鉄心から離す方向の力を前記接極子に付与する開離部
材とを具備し、前記巻線に電流を流さないとき、前記永
久磁石の磁束による吸引力によって前記鉄心〆の他端に
前記接極子が接触し、前記第一の可動接点が前記第一の
固定接点を押圧し、前記第二の可動接点が前記第二の固
定接点と所定の間隙全室いて対向し、前記永久磁石によ
る生ずる磁束と反対方向の磁束を前記鉄心内に生ずる電
流を巻線に流し、前記吸引力を減少させることによって
前記鉄心の他端から前記接極子が離れ、前記第一の可動
接点が前記第一の固定接点を離れ、前記第二の可動接点
が前記第二の固定接点を押圧することを特徴とするもの
である。
A second movable contact, first and second fixed contacts disposed opposite to the first and second movable contacts, and a force applied to the armature in a direction to separate the entire armature from the iron core. When no current is applied to the winding, the armature comes into contact with the other end of the iron core due to the attractive force caused by the magnetic flux of the permanent magnet, and the first movable contact The first fixed contact is pressed, the second movable contact faces the second fixed contact across a predetermined gap, and magnetic flux is generated in the iron core in a direction opposite to the magnetic flux generated by the permanent magnet. By passing current through the winding and reducing the attractive force, the armature separates from the other end of the iron core, the first movable contact separates from the first fixed contact, and the second movable contact separates from the other end of the iron core. The second fixed contact is pressed.

〔実施例〕〔Example〕

第1図は本発明の電磁継電器の一実施例を示す側断面図
、第2図は第1図の電磁継電器の動作状態を示す側断面
図である。第1図の電磁継電器はl永久磁石11.鉄心
11巻線2.継鉄3.接極子4、可動ばね5.開離ばね
6.開離ばね加圧用突起7.可動接点3a、可動接点8
b、固定接点9a、固定接点9b、固定接点端子10a
、および固定接点端子10bを有する。巻線2は鉄心1
を回巻し、永久磁石11は鉄心1の中心軸方向の一端に
一方の磁極面を固定され、前記一方の磁極面にほぼ平行
な他方の磁極面を有する。継鉄3はL字状の断面をもち
、鉄心1の中心軸にほぼ平行な第一の平面を内側にもつ
第一の部分と、前記第一の平面とほぼ垂直な第二の平面
を内側にもつ第二の部分とを有し、磁性材料で作られ、
前記第二の平面に永久磁石11の他方の磁極面が固定さ
れる。
FIG. 1 is a side sectional view showing an embodiment of the electromagnetic relay of the present invention, and FIG. 2 is a side sectional view showing the operating state of the electromagnetic relay of FIG. The electromagnetic relay shown in Fig. 1 consists of l permanent magnets 11. Iron core 11 winding 2. Yoke 3. Armature 4, movable spring 5. Opening spring 6. Separation spring pressurizing protrusion 7. Movable contact 3a, movable contact 8
b, fixed contact 9a, fixed contact 9b, fixed contact terminal 10a
, and a fixed contact terminal 10b. Winding 2 is iron core 1
The permanent magnet 11 has one magnetic pole surface fixed to one end of the iron core 1 in the central axis direction, and has the other magnetic pole surface substantially parallel to the one magnetic pole surface. The yoke 3 has an L-shaped cross section, and has a first part having a first plane on the inside that is substantially parallel to the central axis of the iron core 1, and a second part that has a second plane that is substantially perpendicular to the first plane on the inside. a second portion having a magnetic material;
The other magnetic pole surface of the permanent magnet 11 is fixed to the second plane.

接極子4は表面の中央部に突起41を有し、平面状の裏
面を有し、磁性材料で作られる板状金なし。
The armature 4 has a protrusion 41 in the center of the front surface, has a flat back surface, and does not have a metal plate made of magnetic material.

一端辺を前記第一の部分の端部に回動自在に繋止される
。可動ばね5は先端部の表裏両面におのおの可動接点8
a、8bを固定される長方形の表面をもつ板ばねで、一
端を突起41に固定される。
One end side is rotatably fixed to the end of the first portion. The movable spring 5 has movable contacts 8 on both the front and back sides of the tip.
It is a leaf spring with a rectangular surface to which a and 8b are fixed, and one end is fixed to the protrusion 41.

開離ばね6は一端を突起41に固定され、中央部で所定
の角度に曲げられる板ばねである。開離ばね加圧用突起
7は、一端面を電磁継電器のフレーム(図示せず)K固
定され、前記一端面と対向する他端面を開離ばね6の他
端に押圧して配設される長方体状の突起である。固定接
点9aは可動接点8aに対向して固定接点端子10aの
一端部に配設される。固定接点9bは可動接点8bに対
向して固定接点端子10bの一端部に配設される。
The separation spring 6 is a leaf spring whose one end is fixed to the protrusion 41 and whose central portion is bent at a predetermined angle. The separation spring pressing protrusion 7 has one end surface fixed to a frame (not shown) of the electromagnetic relay, and the other end surface facing the one end surface is pressed against the other end of the separation spring 6. It is a square-shaped protrusion. The fixed contact 9a is disposed at one end of the fixed contact terminal 10a, facing the movable contact 8a. The fixed contact 9b is disposed at one end of the fixed contact terminal 10b, facing the movable contact 8b.

固定接点端子10aの他端および固定接点端子10bの
他端はおのおの前記フレームに固定すれる。
The other end of the fixed contact terminal 10a and the other end of the fixed contact terminal 10b are each fixed to the frame.

第3図は、第1図の継電器の動作を説明する九めの負荷
−吸引力特性図で、横軸は接極子変位であり1点Aおよ
び点Bは第1図の継電器の不動作時および動作時におけ
る接極子4の位置を相対的に表わす点である。縦軸は力
を表わし、fは可動げね5と開離ばね6とによる接極子
4の負荷力を示す曲線であり、Flは固定接点9aと可
動接点8aとの接触力、F2は固定接点9bと可動接点
8bとの接触力である。F(Φo)、F(Φ2)は第1
図の継電器の不動作時および動作時における接極子4と
鉄心1との間の磁気吸引力を表わす。巻線2に電流を流
さない不動作時においては、第1図に示すように、永久
磁石11−継鉄3−接極子4−鉄心1の経路を通る磁束
Φ0により、接極子4は鉄心1に吸引され、接触し、第
3図の横軸の点への位置にある。鉄心1と接極子4とが
接触すると、可動接点8bは固定接点9bを押圧し、可
動接点8aは固定接点9aと所定の間隙金保って対向す
る。
Figure 3 is the ninth load-attractive force characteristic diagram explaining the operation of the relay in Figure 1, where the horizontal axis is the armature displacement and points A and B are when the relay in Figure 1 is not operating. and a point that relatively represents the position of the armature 4 during operation. The vertical axis represents the force, f is a curve showing the load force on the armature 4 due to the movable spring 5 and the separation spring 6, Fl is the contact force between the fixed contact 9a and the movable contact 8a, and F2 is the fixed contact force. 9b and the movable contact 8b. F(Φo), F(Φ2) are the first
It represents the magnetic attraction force between the armature 4 and the iron core 1 when the relay shown in the figure is not operating and when it is operating. When the winding 2 is not in operation, as shown in FIG. is attracted to and comes into contact with, and is located at the point on the horizontal axis in FIG. When the iron core 1 and the armature 4 come into contact, the movable contact 8b presses the fixed contact 9b, and the movable contact 8a faces the fixed contact 9a with a predetermined gap.

この電磁継電器を動作させるには、磁束Φ。の方向と反
対方向の鉄心1−接極子4−継鉄3−永久磁石11の径
路を通る磁束Φlを発生させるように巻線2に電流を流
し、鉄心と接極子4間の磁束を磁束Φ0と磁束Φlの差
の磁束Φ2に減じて磁束Φ2による吸引力F(Φ2)を
第3図に示すように接極子の点Aの位置において、ばね
負荷力極子4の点りの位置でF(Φ2)くfの関係があ
ると離れ、さらに可動接点8aは固定接点9aに接極子
4の点Cの位置でF(Φ2)くfの関係を満足して接触
する。可動接点8aが固定接点に接触してからは、可動
ばね5の復元力と開離ばね6の復元力の差が磁気吸引力
F(Φ2)と釣合った状態で接極子4は横軸上の点B′
の位置で停止し、電磁継電器は第2図に示すような動作
状態となる。この状態では可動接点8aと固定接点9a
との接触力は、開離ばね6の復元力と磁気吸引力F(Φ
2)との差で磁束Φ2に依存する。第3図において巻線
2に電流を流して生ずる磁束Φ1は、接極子4が鉄心1
に接する状態で永久磁石11による磁束の約50%程度
であり、巻線2に流す電流も、永久磁石11による磁束
Φ0と等しい磁束を生ずる電流の約50%程度である。
To operate this electromagnetic relay, the magnetic flux Φ is required. A current is passed through the winding 2 so as to generate a magnetic flux Φl passing through the path of the iron core 1 - armature 4 - yoke 3 - permanent magnet 11 in the direction opposite to the direction of The attractive force F(Φ2) due to the magnetic flux Φ2 is reduced by the magnetic flux Φ2 which is the difference between If there is a relationship of Φ2)×f, the movable contact 8a will be separated, and further, the movable contact 8a will come into contact with the fixed contact 9a at the position of point C of the armature 4, satisfying the relationship of F(Φ2)×f. After the movable contact 8a contacts the fixed contact, the armature 4 moves on the horizontal axis in a state where the difference between the restoring force of the movable spring 5 and the restoring force of the separation spring 6 balances the magnetic attraction force F (Φ2). point B'
It stops at the position , and the electromagnetic relay enters the operating state as shown in FIG. In this state, the movable contact 8a and the fixed contact 9a
The contact force with the separation spring 6 is the restoring force of the separation spring 6 and the magnetic attraction force F (Φ
2) depends on the magnetic flux Φ2. In FIG. 3, the magnetic flux Φ1 generated by passing a current through the winding 2 is caused by the fact that the armature 4 is connected to the iron core 1.
The current flowing through the winding 2 is about 50% of the magnetic flux generated by the permanent magnet 11 when the permanent magnet 11 is in contact with the magnetic flux Φ0.

第8図の電磁継電器の駆動電力の約25俤の電力で駆動
することが出来る。
It can be driven with approximately 25 yen of the driving power of the electromagnetic relay shown in FIG.

第3図の横軸の点Aから点B′間の接極子変位AB’は
第8図の電磁継電器の接極子変位AB(第10図)の約
90%程度得られる。電磁継電器の第3図に示す可動接
点8aと固定接点9aとの接触力F1は第8図の電磁継
電器の接触力F2の約1/2程度であり、実質的には接
点の信頼性を十分保つことが出来る。即ち、第1図の電
磁継電器は、第8図に示すような永久磁石11を有しな
い従来の電磁継電器と比較して駆動電力が約1/4とな
り、実質的に接点の信頼性も保たれる。
The armature displacement AB' between point A and point B' on the horizontal axis in FIG. 3 is approximately 90% of the armature displacement AB of the electromagnetic relay in FIG. 8 (FIG. 10). The contact force F1 between the movable contact 8a and the fixed contact 9a shown in FIG. 3 of the electromagnetic relay is about 1/2 of the contact force F2 of the electromagnetic relay shown in FIG. can be kept. That is, the electromagnetic relay shown in Fig. 1 requires approximately 1/4 the driving power compared to a conventional electromagnetic relay that does not have a permanent magnet 11 as shown in Fig. 8, and substantially maintains the reliability of the contacts. It will be done.

第4図、第5図および第6図、第7図は本発明の第二お
よび第三の実施例におけるおのおのの不動作状態、動作
状態を示す図である。第4図は。
FIGS. 4, 5, 6, and 7 are diagrams showing the non-operating state and operating state of the second and third embodiments of the present invention, respectively. Figure 4 is.

第1図の電磁継電器における開離ばね6に代えて折れ曲
っ念板状のヒンジスプリング12r[鉄3動作状態金示
す図である。第4図の電磁継電器醪、巻線2に永久磁石
11による磁束と反対方向の磁束を生ずるような方向に
所定の電流を流せば、第1図の電磁継電器と同様に、第
5図に示すように動作状態とすることが出来る。第6図
は、第1図の電磁継電器における開離ばね6に代えてつ
る巻き状のコイルスプリング13を、継鉄3を固定され
る電磁継電器のフレーム(図示せず)と接極子4との間
に、両端をおのおの前記フレームと接極子4の裏面、に
固定した電磁継電器の不動作状態を示す図である。第6
図の電磁継電器1;、巻線2に永久磁石11による磁束
と反対方向の磁束を生ずるような方向に所定の電流を流
せば、第1図の電磁継電器と同様に、第7図に示すよう
に動作状態とすることが出来る。
In place of the separation spring 6 in the electromagnetic relay of FIG. 1, a bent plate-shaped hinge spring 12r is shown in the operating state. In the electromagnetic relay shown in Fig. 4, if a predetermined current is passed through the winding 2 in a direction that produces a magnetic flux in the opposite direction to the magnetic flux produced by the permanent magnet 11, the electromagnetic relay shown in Fig. 5 will be similar to the electromagnetic relay shown in Fig. 1. It can be put into an operating state like this. FIG. 6 shows a helical coil spring 13 in place of the separation spring 6 in the electromagnetic relay shown in FIG. FIG. 4 is a diagram showing an inoperative state of an electromagnetic relay in which both ends are fixed to the frame and the back surface of the armature 4, respectively. 6th
In the electromagnetic relay 1 shown in the figure, if a predetermined current is passed through the winding 2 in a direction that generates a magnetic flux in the opposite direction to the magnetic flux produced by the permanent magnet 11, the electromagnetic relay 1 shown in FIG. It can be put into operation state.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、以上説明したように、巻線を回巻する
鉄心に接して永久磁石を設けることにより駆動電力が小
さく、接点接触の信頼性のある電磁継電器が得られる。
According to the present invention, as described above, by providing a permanent magnet in contact with the iron core around which the winding is wound, an electromagnetic relay with low driving power and reliable contact contact can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の電磁継電器の一実施例の構造
を示す側断面図、第3図は第1図の電磁継電器の接極子
変位−力特性図、第4図、第5図は本発明の第二の実施
例の構造を示す側断面図。 第6図、第7図は本発明の第三の実施例の構造を示す側
断面図、第8図、第9図は従来の電磁継電器の構造を示
す側断面図、第10図は第8図の電トン 磁継電器の椿脚与変イ立力特性図である。 1・・・・・・鉄心、2・・・・・・巻線、3・・・・
・・継鉄、4・・・・・・接極子、5・・・・・・可動
ばね、6・・・・・開離ばね、7・・・・・開離ばね加
圧用突起、8a、8b・・・・・・可動接点、9a 、
9b・・・・・・固定接点、10a、10b・・・・・
・固定接点端子、11・・・・・・永久磁石、12・・
・・・ヒンジスプリング、13・・・・・・コイルスプ
リング。 代理人 弁理士  内 原   晋 第21 図 牛2図 崇3 図 叶きネを子変イ立 第S図 阜8図 磐lO図 主疎4シi子シ2−イ亡
1 and 2 are side sectional views showing the structure of an embodiment of the electromagnetic relay of the present invention, FIG. 3 is an armature displacement-force characteristic diagram of the electromagnetic relay of FIG. 1, and FIGS. The figure is a side sectional view showing the structure of a second embodiment of the present invention. 6 and 7 are side sectional views showing the structure of a third embodiment of the present invention, FIGS. 8 and 9 are side sectional views showing the structure of a conventional electromagnetic relay, and FIG. FIG. 2 is a diagram showing the characteristics of the camellia leg and variable forces of the electromagnetic relay shown in the figure. 1...Iron core, 2...Winding, 3...
... Yoke, 4 ... Armature, 5 ... Movable spring, 6 ... Separation spring, 7 ... Separation spring pressurizing projection, 8a, 8b...Movable contact, 9a,
9b...Fixed contact, 10a, 10b...
・Fixed contact terminal, 11...Permanent magnet, 12...
... Hinge spring, 13... Coil spring. Agent Patent Attorney Susumu Uchihara No. 21 Ushi 2 Takashi 3 Ushi 2 Takashi 3 Ushi 2 Takashi 3 Ushi 2 Takashi 3 Ushi 2 Takashi

Claims (1)

【特許請求の範囲】[Claims] 磁性材料で作られる鉄心と、前記鉄心を回巻する巻線と
、前記鉄心の中心軸方向の一端に一方の磁極面を固定さ
れ、前記一方の磁極面にほぼ平行な他方の磁極面を有す
る永久磁石と、断面がL字状をなし、前記鉄心の中心軸
にほぼ平行な第一の平面を内側にもつ第一の部分と、前
記第一の平面とほぼ垂直な第二の平面を内側にもつ第二
の部分とを有し、磁性体材料で作られ、前記第二の平面
を前記永久磁石の他方の磁極面に固定される継鉄と、一
端辺を前記第一の部分の端部に回動自在に繋止され、磁
性材料で作られる接極子と、一端部を前記接極子に固定
される可動ばねと、前記可動ばねの先端に固定される第
一、第二の可動接点と、前記第一、第二の可動接点に対
向して配設される第一、第二の固定接点と、前記接極子
を前記鉄心から離す方向の力を前記接極子に付与する開
離部材とを具備し、前記巻線に電流を流さないとき、前
記永久磁石の磁束による吸引力によって前記鉄心の他端
に前記接極子が接触し、前記第一の可動接点が前記第一
の固定接点を押圧し、前記第二の可動接点が前記第二の
固定接点と所定の間隙を置いて対向し、前記永久磁石に
より生ずる磁束と反対方向の磁束を前記鉄心内に生ずる
電流を前記巻線に流し、前記吸引力を減少させることに
よって前記鉄心の他端から前記接極子が離れ、前記第一
の可動接点が前記第一の固定接点を離れ、前記第二の可
動接点が前記第二の固定接点を押圧することを特徴とす
る電磁継電器。
An iron core made of a magnetic material, a winding wound around the iron core, one magnetic pole surface fixed to one end in the central axis direction of the iron core, and the other magnetic pole surface substantially parallel to the one magnetic pole surface. a permanent magnet; a first portion having an L-shaped cross section and having a first plane on the inside that is substantially parallel to the central axis of the iron core; and a second plane that is substantially perpendicular to the first plane on the inside; a yoke made of a magnetic material and having the second plane fixed to the other pole face of the permanent magnet; an armature made of a magnetic material and rotatably fixed to the armature, a movable spring having one end fixed to the armature, and first and second movable contacts fixed to the tips of the movable spring. , first and second fixed contacts disposed opposite to the first and second movable contacts, and a separating member that applies a force to the armature in a direction to separate the armature from the iron core. and when no current flows through the winding, the armature contacts the other end of the iron core due to the attractive force due to the magnetic flux of the permanent magnet, and the first movable contact contacts the first fixed contact. is pressed, the second movable contact faces the second fixed contact with a predetermined gap, and a current is generated in the iron core to cause a magnetic flux in the opposite direction to the magnetic flux generated by the permanent magnet to be applied to the winding. The armature separates from the other end of the iron core by flowing and reducing the suction force, the first movable contact separates from the first fixed contact, and the second movable contact separates from the second fixed contact. An electromagnetic relay characterized by pressing contacts.
JP15199885A 1985-07-09 1985-07-09 Electromagnetic relay Pending JPS6212023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15199885A JPS6212023A (en) 1985-07-09 1985-07-09 Electromagnetic relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15199885A JPS6212023A (en) 1985-07-09 1985-07-09 Electromagnetic relay

Publications (1)

Publication Number Publication Date
JPS6212023A true JPS6212023A (en) 1987-01-21

Family

ID=15530829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15199885A Pending JPS6212023A (en) 1985-07-09 1985-07-09 Electromagnetic relay

Country Status (1)

Country Link
JP (1) JPS6212023A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212850A (en) * 1990-12-06 1992-08-04 Yamato Esuron Kk Vessel made of polyester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212850A (en) * 1990-12-06 1992-08-04 Yamato Esuron Kk Vessel made of polyester

Similar Documents

Publication Publication Date Title
JPH08180785A (en) Electromagnetic relay
JPS6212023A (en) Electromagnetic relay
US3599133A (en) Latch relay motor structure
JP3632437B2 (en) Switch with reset function
JP2613904B2 (en) Polarized electromagnet
JP2598611B2 (en) Single-stable type polarized electromagnet
JPH0117797Y2 (en)
JPH028353Y2 (en)
JPH0446357Y2 (en)
JPS6346997Y2 (en)
JPH0316264Y2 (en)
US4673908A (en) Polarized relay
JPH0347298Y2 (en)
JPS61198526A (en) Electromagnetic relay
JPH039293Y2 (en)
JPS5834535A (en) Electromagnetic relay
JPH0228583Y2 (en)
JPH0510328Y2 (en)
JPS60176776A (en) Electromagnet device for spring releasing type dot printer
JPS61248318A (en) Monostable type polar solenoid
JPS61248317A (en) Monostable type polar solenoid
JPS63237503A (en) Electromagnet device
JPS61198525A (en) Electromagnetic relay
JPS6332820A (en) Polar electromagnetic relay
JPH08138509A (en) Dc electromagnetic contactor