JPS62120093A - Semiconductor laser - Google Patents
Semiconductor laserInfo
- Publication number
- JPS62120093A JPS62120093A JP26040785A JP26040785A JPS62120093A JP S62120093 A JPS62120093 A JP S62120093A JP 26040785 A JP26040785 A JP 26040785A JP 26040785 A JP26040785 A JP 26040785A JP S62120093 A JPS62120093 A JP S62120093A
- Authority
- JP
- Japan
- Prior art keywords
- film
- thickness
- coating film
- ta2o5
- end faces
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】 (イ)産業上の利用分野 本発明は半導体レーデに関する。[Detailed description of the invention] (b) Industrial application fields The present invention relates to a semiconductor radar.
(ロ) 従来の技術
現在、半導体レーデの端面コーテイング膜とし:コーテ
ィング膜の屈折率、1i:正整敗)の厚さ?有するAz
zos(アルミナ)膜、51sNJ窒化シリコン)膜等
が用いられている。(b) Conventional technology Currently, as a coating film on the end face of a semiconductor radar, the refractive index of the coating film is 1i (normal deviation) and the thickness? Az with
ZOS (alumina) film, 51SNJ silicon nitride) film, etc. are used.
eウ 発明が解決しようとする問題点一般に発振波長
が約5oooXの半導体レーザO端面コーティング膜材
としてAt201(nA=1β5)を用いる際には斯る
膜厚は上記式=9約242OAの整数倍とする必要があ
る。eC Problems to be Solved by the Invention In general, when At201 (nA=1β5) is used as the end face coating material of a semiconductor laser whose oscillation wavelength is about 5ooo It is necessary to do so.
ところが、このようなコーテイング膜は通常高周波スパ
ッタリグを用いて豹へ之れるが、現在使用されている高
周波スパッタリング装置では基板温度、高周波電界等の
スパッタリング条件を長時間一定に保つことは非常に困
難であり、スパッタリング条件のわずかな笑動にエフ成
膜速度は約20%程度の変動を生じる。However, although such coating films can usually be produced using high-frequency sputtering rigs, it is extremely difficult to maintain sputtering conditions such as substrate temperature and high-frequency electric field constant for long periods of time with currently used high-frequency sputtering equipment. However, slight fluctuations in the sputtering conditions cause the film formation rate to fluctuate by about 20%.
例えば、半導体レーデの端面コーテイング膜として膜厚
2420AのAt20mを成長させる際に。For example, when growing At20m with a thickness of 2420A as an end face coating film of a semiconductor radar.
成膜速度100A/minになるようにスパッタリング
条件を設定し、24分間の高周波スパッタリングを行な
ったとしても成長した膜厚は所望値より約484A程度
の誤差を生じるこごとなる。Even if the sputtering conditions were set so that the film formation rate was 100 A/min and high frequency sputtering was performed for 24 minutes, the thickness of the grown film would deviate from the desired value by about 484 A.
このような膜厚O誤差を生じると半導体レーデ端面での
光反射率が約7チ低下し、結果的にしきい値電流が増大
し、半導体レーザの素子寿命の低下を招く結果となって
いt。When such a film thickness error occurs, the light reflectance at the semiconductor laser end face decreases by about 7 inches, resulting in an increase in threshold current and a reduction in the life of the semiconductor laser.
■
そこで、半導体レーデの端での光反射率とコー△
ティング膜の膜厚との関係が第5図に示す如くコサイン
カーブとなるという点に着目して、端面コーティング膜
’t200A程度とすることが考えられている。■ Therefore, focusing on the fact that the relationship between the light reflectance at the edge of the semiconductor radar and the thickness of the coating film forms a cosine curve as shown in Figure 5, it was decided to set the end face coating film to about 200A. is considered.
このように端面コーテイング膜を20OA厚とすると、
斯る膜の成長時間は2420A厚の膜を形成するときに
較べて/1゜程度となるtめ、スパッタリング条件の変
動による厚膜誤差も認められず、ま九端面の光反射率の
低下も2%程度であり、実質的にしきい値電流の増大は
認められない。In this way, if the end face coating film is 20OA thick,
The growth time of such a film is about 1° compared to when forming a film with a thickness of 2420A, so there was no thickness error due to variations in sputtering conditions, and there was no decrease in the light reflectance of the end face. It is about 2%, and no substantial increase in threshold current is observed.
然るに、At2os、S1虐N4等の膜はその厚さが1
000A以下では緻密性が悪く、斯る膜を通して酸素等
が半導体レーデの端面に侵入し斯る端面を劣化させると
いう問題があった。However, the thickness of films such as At2os and S1-N4 is 1
If it is less than 000A, the density is poor, and there is a problem in that oxygen and the like enter the end face of the semiconductor radar through the film and deteriorate the end face.
(ロ)問題点を解決するtめの手段 本発明は斯る問題点に鑑みてなされたもので。(b) Tth means to solve the problem The present invention has been made in view of these problems.
その構成的特徴はf@面ココ−ティング膜してTa20
3(五酸イbンタル)?用い九ことにある。Its structural features are the f@-plane co-coating film and Ta20
3 (pentaacid intal)? There are nine uses.
(ホ)作 用
上記’razo5からなる膜は200人程度の膜厚でも
緻密性に富む。(e) Effect The film made of the above-mentioned 'razo5 is highly dense even at a film thickness of about 200 layers.
(へ)実施例
第1図及び第2図は本発明の実施例を示し、第1図は第
2因のI−1’線断面図、第2図は第1図の1−1’線
断面図である。(f) Example Figures 1 and 2 show an example of the present invention. Figure 1 is a sectional view taken along line I-1' of the second factor, and Figure 2 is a sectional view taken along line 1-1' of Figure 1. FIG.
図において、(1)は−主面が(100)面のn型Ga
As基板であり、該基板のキャリア濃度は1〜2X 1
0 ”V4である。また斯る基板の一主面には第1図中
紙面垂直方向に延在する溝が形成され、斯る溝の幅は6
μm、深さは1.5μmである。(21は上記基板(1
)の一主面上に積層されt第1クラッド層であり、該ク
ラッド層はキャリア濃度が1〜3X 10 ”/dのn
型GaO,5ムt 0.5 A Bからなり。In the figure, (1) is an n-type Ga whose main surface is the (100) plane.
It is an As substrate, and the carrier concentration of the substrate is 1 to 2X 1
0"V4. Also, a groove extending in the direction perpendicular to the paper plane in FIG. 1 is formed on one main surface of the substrate, and the width of the groove is 6.
μm, and the depth is 1.5 μm. (21 is the above board (1
) is a first cladding layer laminated on one main surface of
Type GaO, consisting of 5 mt 0.5 A B.
その層厚は上記溝上部で1〜2μm、その他の部分(以
下、単に平坦部と称す)で0.1−0.3μmである。The layer thickness is 1 to 2 μm at the top of the groove, and 0.1 to 0.3 μm at the other portions (hereinafter simply referred to as flat portions).
〔3]は上記第1クラッド層(21上に積層されt活性
層であり、該活性層はキャリア濃度が10111〜10
/7のノンドープGa0.85 At O,15A
8からなり、その層厚はα1μmである。14]は上
記活性層(3)上に積層されt第2クラッド層であり。[3] is a t active layer laminated on the first cladding layer (21), and the active layer has a carrier concentration of 10111 to 10
/7 non-doped Ga0.85 At O,15A
8, and its layer thickness is α1 μm. 14] is a second cladding layer laminated on the active layer (3).
層厚は表面が平坦となるように溝上部で1.5μm。The layer thickness is 1.5 μm at the top of the groove so that the surface is flat.
平坦部で1.2μmとじ7’?:、+51は上記第2ク
ラッド層層(41上に積゛層さn九キャップ層であり、
該キャップ層はキャリア濃度が5X101a〜5 X
10 ”79のPlJGaAsからな、す、七O層厚は
0.5〜1.5μmである。(6)は共振@端面(la
)(lb庄に形成されたコーテイング膜であり、該コー
テイング膜t(Ta205からなり、その膜厚は200
人である。1.2μm binding on flat part 7'? :, +51 is the second cladding layer (n9 cap layers stacked on top of 41),
The cap layer has a carrier concentration of 5×101a to 5×
The thickness of the 7O layer is 0.5-1.5 μm. (6) is made of PlJGaAs of 10”79.
) (It is a coating film formed on the lb layer, and the coating film is made of Ta205, and its film thickness is 200 mm.
It's a person.
斯るコーテイング膜はアルゴンと酸素との混合比が9:
10雰囲気中においてターゲットをTa!o6とし、基
板温度140°C〜150°C1入力150Wの条件下
で2〜3分間分間波スパッタリングを行なうことにより
形成できる。Such a coating film has a mixing ratio of argon and oxygen of 9:
10 Ta to the target in the atmosphere! It can be formed by performing minute wave sputtering for 2 to 3 minutes at a substrate temperature of 140° C. to 150° C. and an input power of 150 W.
第3図中、○印のデータ曲&框高周波スパッタリングで
形成し7tTa!05膜の厚みと緻密性を示す誘電正接
との関係2示し、まt×印のデータ曲線は高周波スパッ
タリングで形成しft−At20B膜の厚みと誘電正接
との関係?示す。In Figure 3, the data marked with ○ are formed by high frequency sputtering and the frame is 7tTa! The relationship between the thickness of the FT-At20B film and the dielectric loss tangent indicating density 2 is shown, and the data curve marked with tx is formed by high-frequency sputtering. show.
誘□・ぜ正接は膜の緻密性か高いほど小さくなる。The dielectric loss tangent becomes smaller as the density of the film increases.
従って第3区より明らかな如(Ta205からなる20
0A厚の膜はAt201からなる1000Å以上の厚み
を有する膜と同等の緻密性を有している。Therefore, it is clear from the 3rd ward (20 consisting of Ta205
A film with a thickness of 0A has the same density as a film made of At201 and having a thickness of 1000 Å or more.
まLs Ta206からなる200A厚のコーテイング
膜(1)を有する半導体レーザの端面での光反射率はA
t!08からなる2420A厚のコーテイング膜を有す
る半導体レーデの端面τの光反射率に較べてわずかに2
%程度減少するだけであり、しきい値電流の上昇にはほ
とんど関係しない。The light reflectance at the end face of a semiconductor laser having a 200A thick coating film (1) made of Ls Ta206 is A.
T! The light reflectance of the end face τ of a semiconductor radar having a coating film of 2420A thick made of 08
%, and has almost no relation to the increase in threshold current.
第4図は木実施例装置の寿命(図中○印)とコーテイン
グ膜を242OA厚OAtgosで形成する従来の装置
の寿命(因中Δ印)とを測定した結果を示す、尚、斯る
測定は60°Cの雰囲気中で5mwの連続発根を行なっ
た際の半導体レーデの動作電流の変化を調べたものであ
る。Figure 4 shows the results of measuring the lifespan of the wooden embodiment device (marked with ○ in the figure) and the lifespan of a conventional device that forms a coating film with a thickness of 242OAtgos (marked with Δ in the figure). This study investigated changes in the operating current of a semiconductor radar when continuous rooting was performed at 5 mW in an atmosphere at 60°C.
第4図より明らかな如く、木実施例装置においても、従
来装置と同等の寿命特性が得られている。As is clear from FIG. 4, the wood-embodiment device also has the same life characteristics as the conventional device.
更に、太実施例のコーテイング膜f81は2〜3分とい
う短時間で形成できるので膜厚のばらつきは少なく、結
果的に端面での反射率のばらつきもlチ以内に抑えるこ
とができる。Further, since the coating film f81 of the thick embodiment can be formed in a short time of 2 to 3 minutes, there is little variation in film thickness, and as a result, variation in reflectance at the end face can be suppressed to within 1 inch.
(ト)発明の効果
本発明の如く半導体レーデの端面のコーディング膜をT
a!Oeで構成すると、200A程度の膜厚で緻密なも
のを得ることが可能であり、従って。(g) Effect of the invention As in the present invention, the coating film on the end face of the semiconductor radar is coated with T.
a! If it is made of Oe, it is possible to obtain a dense film with a thickness of about 200A.
半導体レーデの端面での光反射率を低下させることなく
高い歩留りで端面コーティングを行なうことができる。End face coating can be performed at a high yield without reducing the light reflectance at the end face of the semiconductor radar.
第1図及び第2図は本発明の実施例を示し、第1図は第
2図の1−1’線断面図、第2図は第1因のI−I線断
面図、第3図は膜厚と誘電圧接との関係を示す特性図、
第4図は寿命特性を示す特性図、第5図は半導体レーデ
端面のコーティング膜厚と斯る端面での光反射率との一
般的な関係と示す模式図である。
+61−・・コーテイング膜。1 and 2 show an embodiment of the present invention, FIG. 1 is a sectional view taken along line 1-1' in FIG. 2, FIG. 2 is a sectional view taken along line I-I of the first factor, and FIG. is a characteristic diagram showing the relationship between film thickness and dielectric voltage contact,
FIG. 4 is a characteristic diagram showing the life characteristics, and FIG. 5 is a schematic diagram showing the general relationship between the coating film thickness on the semiconductor radar end face and the light reflectance at such end face. +61-...Coating film.
Claims (1)
化タンタル)を用いたことを特徴とする半導体レーザ。(1) A semiconductor laser characterized in that Ta_2O_5 (tantalum pentoxide) is used as an end face coating film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26040785A JPH067636B2 (en) | 1985-11-20 | 1985-11-20 | Semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26040785A JPH067636B2 (en) | 1985-11-20 | 1985-11-20 | Semiconductor laser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62120093A true JPS62120093A (en) | 1987-06-01 |
JPH067636B2 JPH067636B2 (en) | 1994-01-26 |
Family
ID=17347489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26040785A Expired - Lifetime JPH067636B2 (en) | 1985-11-20 | 1985-11-20 | Semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH067636B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000323796A (en) * | 1998-12-04 | 2000-11-24 | Mitsubishi Chemicals Corp | Compound semiconductor light emitting element |
-
1985
- 1985-11-20 JP JP26040785A patent/JPH067636B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000323796A (en) * | 1998-12-04 | 2000-11-24 | Mitsubishi Chemicals Corp | Compound semiconductor light emitting element |
Also Published As
Publication number | Publication date |
---|---|
JPH067636B2 (en) | 1994-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5455818A (en) | Optical recording medium | |
JPS62293204A (en) | Waveguide | |
US5392311A (en) | Laser element | |
JP2001119096A (en) | Semiconductor laser | |
KR870002669A (en) | Semiconductor laser diode | |
JPS62120093A (en) | Semiconductor laser | |
JP2550730B2 (en) | Optical waveguide device and manufacturing method thereof | |
US5374587A (en) | Method of manufacturing optical semiconductor element | |
JPH10178232A (en) | Semiconductor laser and its manufacture | |
US6958852B2 (en) | Optical modulator, method of achieving velocity matching and impedance matching of optical modulator, and method of manufacturing optical modulator | |
JP3243772B2 (en) | Surface emitting semiconductor laser | |
JPS61207090A (en) | Semiconductor light-emitting device | |
JPS6091692A (en) | Semiconductor laser device | |
JP3368607B2 (en) | Distributed feedback semiconductor laser | |
JPS6320389B2 (en) | ||
JPS6297386A (en) | Distributed feedback type bistable semiconductor laser | |
JPH11220215A (en) | Semiconductor laser | |
JP2847770B2 (en) | Method for forming protective layer on end face of semiconductor laser cavity | |
JPH04133486A (en) | Semiconductor laser device | |
JP3255909B2 (en) | Wavelength selective reflector | |
JPS58178583A (en) | Semiconductor laser | |
JPH02241075A (en) | Semiconductor laser | |
JPH05198022A (en) | Optical recording medium | |
JP2000200938A (en) | Passivation film of semiconductor laser, and semiconductor laser and laser module using the same | |
JPH04137783A (en) | Super luminescent diode apparatus |