JPS62120072A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPS62120072A
JPS62120072A JP60260927A JP26092785A JPS62120072A JP S62120072 A JPS62120072 A JP S62120072A JP 60260927 A JP60260927 A JP 60260927A JP 26092785 A JP26092785 A JP 26092785A JP S62120072 A JPS62120072 A JP S62120072A
Authority
JP
Japan
Prior art keywords
capacitor
film
memory cell
leakage current
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60260927A
Other languages
Japanese (ja)
Inventor
Masao Taguchi
眞男 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60260927A priority Critical patent/JPS62120072A/en
Publication of JPS62120072A publication Critical patent/JPS62120072A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To process against a leakage current at low temperature by using a dielectric film having specific dielectric constant larger than a silicon nitride as the insulating film of a capacitor, and operating it in the state cooled colder than an ambient temperature in DRAM using a charge storage capacitor as a memory cell to increase a storage capacitance. CONSTITUTION:Capacitor electrodes 20 are contacted at the center with a diffused region 14b, risen at one side on a gate electrode 16a, at the other side on a word line 16b, and a dielectric film 22 and capacitor electrodes 24 are formed in the same shape as the electrodes 20 (stacked capacitor type). Since Ta2O5 capacitor is formed in the step after forming an MOS transistor, it is less exposed within high temperature atmosphere. Since Ta2O5 film varies in its crystal structure in atmosphere of 600 deg.C or higher, it can prevent a leakage current from abruptly increasing. PMOS is used for a transfer transistor of the memory cell to prevent a hot electron effect from occurring at low temperature. The memory cell employs a CMOS structure in n-well to prevent minority carrier from implanting to the capacitor due to alpha-ray emission.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電荷蓄積キャパシタを記憶セルとするダイナ
ミック型半導体記憶装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a dynamic semiconductor memory device using a charge storage capacitor as a memory cell.

〔従来の技術〕[Conventional technology]

ダイナミック型ランダムアクセスメモリ (DRAM)
のメモリセルはいわゆる1トランジスタ1キヤパシタ型
で、該キャパシタに蓄える電荷の有無でデータ1.0を
記憶し、ワード線電位でオンオフする該トランジスタで
該キャパシタとビット線との接、離を行なう。
Dynamic random access memory (DRAM)
The memory cell is of the so-called one-transistor, one-capacitor type, and stores data 1.0 depending on the presence or absence of charge stored in the capacitor, and connects and disconnects the capacitor with the bit line by means of the transistor, which is turned on and off based on the word line potential.

DRAMも益々高集積化、大容量化され、高集積化はメ
モリセルを小型化することで達成され、このため蓄積キ
ャパシタも小型化する。この蓄積キャパシタの容量はメ
モリセルの出力電圧をセンスアンプが誤動作なく増幅す
るため、ビット線寄生容量と蓄積キャパシタ容量の比か
ら約15:1以内にする必要があり、現実的には集積度
に依らずにほぼ30fF以上必要であった。また、α線
照射によって起されるソフトエラーについても、この影
響を大きく受けないために1ビット当り少(とも200
fC以上の電荷が必要とされ、電源電圧を5Vとして少
なくとも40fF以上の容量が必要になる。
DRAMs are also becoming increasingly highly integrated and have large capacities, and high integration is achieved by making memory cells smaller, which also leads to smaller storage capacitors. In order for the sense amplifier to amplify the output voltage of the memory cell without malfunction, the capacitance of this storage capacitor needs to be within about 15:1 from the ratio of the bit line parasitic capacitance to the storage capacitor capacitance. Approximately 30 fF or more was required regardless of the voltage. In addition, regarding soft errors caused by alpha ray irradiation, in order to not be affected greatly by this, the number of bits per bit is small (2000
A charge of fC or more is required, and when the power supply voltage is 5V, a capacitance of at least 40 fF or more is required.

セル構造上の工夫をしてα線照射に強くしたとしても(
たとえば0MO3のウェルの中にセルを形成する)20
fF以上の容量を確保しないとセンスアンプが誤動作し
やすい。このためキャパシタが小型化するに従いその誘
電体膜は薄くなり、これによって所望の容量を得て来た
。例えば64KDRAMではSiO2を用い、厚さ40
0人程度であったもの力<256にでは200人、IM
では100人程度に薄くなっている。集積度が更に向上
して16M、64Mとなると、メモリセル面積は極端に
小さくなり、上記容量の確保は不可能である。この理由
は、絶縁膜の厚さが、トンネル電流によるリーク電流の
急増を招くほど薄くはできないためである。メモリセル
のキャパシタ構造をトレンチキャパシタの如く溝構造に
して電極面積をかせぐ方法はあるが、トレンチの開口部
と溝の深さとを比べて後者が極端に大である深い溝は現
実的に使えない。これは、深い満面を用いたキャパシタ
はキャパシタ間のパンチスルーがあるので集積度が上げ
られないこと、また電界が集中しやすく絶縁耐圧が低い
こと、溝の形成プロセスがむずかしく、形状がばらつき
やすく、プロセス安定性が乏しいことが理由である。
Even if the cell structure is improved to make it more resistant to α-ray irradiation (
For example, form a cell in a well of 0MO3) 20
If a capacitance of fF or more is not secured, the sense amplifier is likely to malfunction. For this reason, as capacitors have become smaller, their dielectric films have become thinner, thereby achieving desired capacitance. For example, in a 64K DRAM, SiO2 is used and the thickness is 40K.
IM
Now, the number has decreased to about 100 people. When the degree of integration is further improved to 16M or 64M, the memory cell area becomes extremely small, making it impossible to secure the above capacity. The reason for this is that the thickness of the insulating film cannot be made so thin as to cause a sudden increase in leakage current due to tunnel current. There is a way to increase the electrode area by making the capacitor structure of a memory cell into a groove structure like a trench capacitor, but when comparing the opening of the trench with the depth of the groove, the latter is extremely large, so deep grooves cannot be practically used. . This is because capacitors using deep, full surfaces cannot increase the degree of integration due to punch-through between capacitors, the electric field tends to concentrate and the dielectric strength is low, the process of forming the grooves is difficult, and the shape tends to vary. This is due to poor process stability.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

一方、これ以外の方法として高誘電率膜を用いる考えも
ある。Ta 205では通常用いられるSiO2の6倍
程度の誘電率、T i O2では25倍以上もあり、容
量増大、容量を一定とすれば膜厚低下阻止に有効である
。ところが、誘電率の大きい材料はリーク電流が大きい
という関係にあり、実質的に使用可能なリーク電流に抑
えるべく絶縁膜厚を増やすと結局蓄積電荷量が減って高
誘電率膜の意味がなくなってしまう。
On the other hand, there is also an idea of using a high dielectric constant film as a method other than this. Ta 205 has a dielectric constant about 6 times that of commonly used SiO2, and T i O2 has a dielectric constant of more than 25 times, which is effective in increasing the capacitance and preventing the film thickness from decreasing if the capacitance is kept constant. However, materials with high dielectric constants have a relationship with high leakage current, and if the thickness of the insulating film is increased in order to suppress the leakage current to a practically usable level, the amount of accumulated charge will eventually decrease and the high dielectric constant film will no longer have any meaning. Put it away.

第2図は比誘電率と、リーク電流10A/cdのときの
電圧との関係を示したものである。リーク電流10=A
/−という値はDRAMの蓄積キャパシタの誘電膜とし
て使用できる限度であり、これ以上大きなリークがある
と使用に耐えない。
FIG. 2 shows the relationship between the dielectric constant and the voltage when the leakage current is 10 A/cd. Leak current 10=A
A value of /- is the limit that can be used as a dielectric film of a storage capacitor in a DRAM, and if there is a larger leakage than this, it becomes unusable.

このグラフから判る様に電圧×誘電率はほぼ一定であり
、実際にはすべての材料の性能は大差なく、従ってシリ
コンプロセスになじみやすいSiO2゜S i N a
が使いやすいとの結論になってしまう。
As you can see from this graph, the voltage x dielectric constant is almost constant, and in reality the performance of all materials is not much different, so SiO2゜S i Na is easy to adapt to the silicon process.
The conclusion is that it is easy to use.

但し、これらは前述の様に16M、64Mでは実用上無
理な薄さを要求される。
However, as mentioned above, 16M and 64M are required to be thin, which is practically impossible.

しかしながら第2図の関係を常温でのもので、温度を変
えれば変ってくる。本発明はこの点に着目するもので、
蓄積キャパシタの誘電膜に高比誘電率のものを用い、リ
ーク電流に対しては低温で使用することで対処しようと
するものである。
However, the relationship shown in Figure 2 is at room temperature and will change if the temperature is changed. The present invention focuses on this point,
The dielectric film of the storage capacitor is made of a material with a high dielectric constant, and leakage current is counteracted by using the capacitor at low temperatures.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、電荷蓄積キャパシタをメモリセルとするダイ
ナミック型半導体記憶装置において、シリコン窒化物よ
り比誘電率が大きい誘電体膜を前記キャパシタの絶縁膜
に用い、常温より冷却した状態で動作させることを特徴
としたものである。
The present invention provides a dynamic semiconductor memory device in which a charge storage capacitor is used as a memory cell, in which a dielectric film having a relative dielectric constant higher than that of silicon nitride is used as an insulating film of the capacitor, and the device is operated in a state cooled from room temperature. This is a characteristic feature.

〔作用〕[Effect]

本発明ではシリコン酸化物(SiO2)又は窒化物(S
i3Nm)よりリーク電流が多い高比誘電率の膜、具体
的には比誘電率が2倍以上大きい酸化アルミニウムA1
20z又は酸化タンタルTa205等を用い、これを冷
却してリーク電流の少ない状態で使用する。これらの比
誘電率はAl2O3で12、Ta2O!lで25であり
、SiO2の約4に比べて相当に大きい。
In the present invention, silicon oxide (SiO2) or nitride (S
A film with a high dielectric constant that has a higher leakage current than i3Nm), specifically aluminum oxide A1 whose dielectric constant is more than twice as large.
20z or tantalum oxide Ta205, etc., and is used in a state where leakage current is small by cooling it. These dielectric constants are 12 for Al2O3 and Ta2O! 1, which is considerably larger than about 4 for SiO2.

第3図はTa205膜、厚さ300人のリーク電流を常
温(300K)と液体窒素温度(77K)の時で示す。
FIG. 3 shows the leakage current of a Ta205 film with a thickness of 300 at room temperature (300K) and liquid nitrogen temperature (77K).

常温では印加電圧2.5■のとき1O−5A/cd程度
のリーク電流があって実用化を妨げている。ところが7
7にでは1O−9A/cIl!以下に減少しDRAM用
キャパシタとして実用範囲になる。
At room temperature, there is a leakage current of about 10-5 A/cd when the applied voltage is 2.5 cm, which hinders its practical use. However, 7
7 is 1O-9A/cIl! This decreases to below and falls within the practical range as a DRAM capacitor.

従って蓄積キャパシタの誘電膜にTa205を用い、か
−るDRAMを液体窒素で冷却すれば充分実用になる。
Therefore, if Ta205 is used for the dielectric film of the storage capacitor and the DRAM is cooled with liquid nitrogen, it will be sufficiently practical.

メモリセルの小型化で蓄積キャパシタのSiO2誘電膜
厚は50人が必要になったとすると、これはかなり薄(
、製作が容易でない範囲に入ってくる。これに対し、T
a205を使用すれば、これは比誘電率がSiO2の約
6倍あるから膜厚は300人でよく、これは製作容易で
ある。またTa2o5で100人の誘電膜を作ったとす
れば、これに相当する5tO2膜は16〜17人であり
、これではトンネル電流が流れて絶縁体ではなく、抵抗
体になっしまう。従って高比誘電率の材料を、冷却して
リーク電流を抑えて使うということは甚だ有効である。
Assuming that the miniaturization of memory cells requires 50 people to thicken the SiO2 dielectric film of the storage capacitor, this is quite thin (
, it falls into the range where it is not easy to manufacture. On the other hand, T
If A205 is used, the film thickness only needs to be 300 because the dielectric constant is about 6 times that of SiO2, and it is easy to manufacture. Furthermore, if a dielectric film of 100 people is made of Ta2O5, the equivalent 5tO2 film would be 16 to 17 people, and in this case, a tunnel current flows and it becomes a resistor rather than an insulator. Therefore, it is extremely effective to use a material with a high relative permittivity by cooling it to suppress leakage current.

なお冷却して減少させることができるのはリーク電流(
ホッピング電流)であって、トンネル電流ではない。従
って高比誘電率の材料を冷却して使用する場合も、トン
ネル電流が流れる程薄(することはできない。
The only thing that can be reduced by cooling is the leakage current (
hopping current), not tunneling current. Therefore, even when a material with a high dielectric constant is cooled and used, it cannot be made thin enough to allow tunneling current to flow.

低温にすると接合リークも常温より激減することが知ら
れており、従って冷却はDRAMとして好ましい傾向に
ある。
It is known that junction leakage is drastically reduced when the temperature is lowered than at room temperature, and therefore cooling tends to be preferable for DRAMs.

一方、ホットエレクトロン効果に関しては低温において
顕著になることが一般に知られている。
On the other hand, it is generally known that the hot electron effect becomes noticeable at low temperatures.

ホットエレクトロン効果とは高電界部分で加速された電
子が高エネルギーでMOS)ランジスタのゲート酸化膜
中に突入しこれがトラップされたままになることで、こ
れによりMOS  FETのしきい値電圧が変化する。
The hot electron effect is when electrons accelerated in a high electric field enter the gate oxide film of a MOS transistor with high energy and remain trapped, which changes the threshold voltage of the MOS FET. .

このホットエレクトロン効果はnMO5よりも9MO3
FETの方が生じにくいことが知られている。これは9
MO3FETのソース、ドレインの接合形状が比較的な
だらかになるので、局所的電界が生じにくいためである
。nMOS  FBTにおいても、ソース、ドレイン接
合の形状を工夫して高電界を生じにく(したいわゆるL
 D D (Lightly Doped Drain
 )構造が知られている。
This hot electron effect is more pronounced in 9MO3 than nMO5.
It is known that this phenomenon is less likely to occur in FETs. This is 9
This is because the junction shape of the source and drain of the MO3FET is relatively smooth, making it difficult for local electric fields to occur. In nMOS FBTs, the shapes of the source and drain junctions are devised to prevent the generation of high electric fields (so-called L
D D (Lightly Doped Drain
) structure is known.

〔実施例〕〔Example〕

第1図は本発明の実施例としてT a 205膜をキャ
パシタに用いた液体窒素温度領域での動作専用DRAM
セルを示す。セル構造はいわゆるスタックドキャパシタ
型でありメモリセルのトランジスタ上にキャパシタを部
分的に積上げて、できる限りキャパシタ面積を広(して
いる。この図で10はp型シリコン基板、12は該基板
に形成したn型ウェル、14a、14bは該nウェルに
形成したp拡散層、15a、16bは基板上に絶縁膜を
介して形成されたワード線でトランスファゲートトラン
ジスタのゲート電極ともなる。14a。
Figure 1 shows a DRAM dedicated to operation in the liquid nitrogen temperature range using a T a 205 film as a capacitor as an embodiment of the present invention.
Indicates a cell. The cell structure is a so-called stacked capacitor type, in which capacitors are partially stacked on top of the memory cell transistor to increase the capacitor area as much as possible. In this figure, 10 is a p-type silicon substrate, and 12 is a p-type silicon substrate on the substrate. The formed n-type wells, 14a and 14b, are p diffusion layers formed in the n-wells, and 15a and 16b are word lines formed on the substrate with an insulating film interposed therebetween, and also serve as gate electrodes of the transfer gate transistor.14a.

14b及び16aは該トランジスタのソース、ドレイン
、及びゲートである。16bはこの断面図ではゲート間
の部分で、この図の紙面上下方向に若干ずれた位置で他
のメモリセルのトランジスタのゲートになる。キャパシ
タは、拡散領域(ソース)14bにオーミックコンタク
トしたタンタル電極20、その表面を酸化してなる誘電
膜22、その表面に被着形成されたモリブデン電極(セ
ルプレート)24からなる。30は眉間絶縁膜、18は
アルミニウムからなるビット線である。ビット線18と
拡散領域(ドレイン)14aとのコンタクト部分には上
記キャパシタと同時に作られたタンタル電極26が、介
在する。キャパシタ電極20は図示のように中央部で拡
散領域14bにオーム接触し、−例はゲート電極16a
上に乗り上げ、他側はワード線16b上に乗り上げ、誘
電体膜22及びキャパシタ電極24はキャパシタ電極2
0と同様な形状をしている(スタックドキャパシタ型で
ある)が、この構造は’l’a205キャパシタには都
合が良い。というのは、このキャパシタはMOS)ラン
ジスタを形成したあとの工程で作られるため、高温雰囲
気中にさらされることが少いからである。MOSトラン
ジスタの形成にはゲート酸化膜製作工程で少くとも10
00℃の高温を必要とし、メース、ドレインの高濃度不
純物イオン注入後のアニールにも900℃以上が必要と
なるからキャパシタ形成後にトランジスタを作ると、当
然、該キャパシタは上記高温にさらされることになる。
14b and 16a are the source, drain, and gate of the transistor. 16b is a portion between the gates in this cross-sectional view, and becomes the gate of a transistor of another memory cell at a position slightly shifted in the vertical direction of the paper of this figure. The capacitor consists of a tantalum electrode 20 in ohmic contact with the diffusion region (source) 14b, a dielectric film 22 formed by oxidizing the surface of the tantalum electrode 20, and a molybdenum electrode (cell plate) 24 deposited on the surface. 30 is an insulating film between the eyebrows, and 18 is a bit line made of aluminum. A tantalum electrode 26 made at the same time as the capacitor is interposed at the contact portion between the bit line 18 and the diffusion region (drain) 14a. The capacitor electrode 20 is in ohmic contact with the diffusion region 14b at the center as shown, and - for example, with the gate electrode 16a.
The other side rides on the word line 16b, and the dielectric film 22 and the capacitor electrode 24 are connected to the capacitor electrode 2.
0 (stacked capacitor type), but this structure is convenient for 'l'a205 capacitors. This is because this capacitor is manufactured in a process after forming the MOS transistor, so it is rarely exposed to a high-temperature atmosphere. To form a MOS transistor, the gate oxide film fabrication process requires at least 10
00°C is required, and annealing after implanting high-concentration impurity ions into the mace and drain also requires temperatures of 900°C or higher. Therefore, if a transistor is made after forming a capacitor, the capacitor will naturally be exposed to the above-mentioned high temperature. Become.

Ta20sB’Aは600℃以上の雰囲気で結晶構造が
変化し、これに伴ってリーク電流が急増するから高温に
さらされるのは好ましくない。
The crystal structure of Ta20sB'A changes in an atmosphere of 600° C. or higher, and as a result, leakage current increases rapidly, so it is not preferable to expose it to high temperatures.

メモリセルの転送用トランジスタには図示のようにPM
O5を用いている。これは低温におけるホットエレクト
ロン効果を防ぐためである。またメモリセルはCMOS
構造をとってnウェル中に入れている。これはα線照射
によって生じた少数キャリアのキャパシタ部への注入を
防ぐためである。
The transfer transistor of the memory cell has PM as shown in the figure.
O5 is used. This is to prevent hot electron effects at low temperatures. Also, the memory cell is CMOS
The structure is placed in an n-well. This is to prevent minority carriers generated by α-ray irradiation from being injected into the capacitor portion.

このメモリセルの製造方法を次に示す。公知な方法でp
型ウェハ10にn型ウェル12を形成し、pチャネル型
MO3)ランジスタ14a、14b。
A method for manufacturing this memory cell will be described below. p by a known method
An n-type well 12 is formed in a type wafer 10, and p-channel type MO3) transistors 14a and 14b are formed.

16a等を形成する。次にゲート電極の周囲に絶縁膜を
形成し、MO5I−ランジスクのソース、ドレイン電極
14bにキャパシタの電極20を形成する。電極材料は
タンタル(T a )とする。これはスパッタ法で被着
しても良いが、段差部のカバレージの良いCVD法が好
ましい(いわゆるMOCVD法を用いる)。次にタンタ
ル膜をキャパシタ部20及びビット線コンタクト部26
の形状にパターニングし、これらメモリセル部以外のタ
ンタル膜を除去する。次にタンタル膜表面を酸素ガスプ
ラズマ中での陽極酸化法によって300人の厚さに酸化
し、膜22を作る。タンタル膜の陽極酸化時に周辺回路
部分ではタンタルが除去されているのでMOS)ランジ
スタのn十又はp+ソース、ドレイン領域表面も若干陽
極酸化される。しかし−役向にこうして形成される5i
OzはTa205よりも導電率が低いので主としてタン
タル膜部分が選択的に酸化され、ソース、ドレイン上の
酸化膜はあとの工程で容易に除去できる数10〜100
人しか成長しない。この陽極酸化に当ってはウェハをチ
ャンバ内の一対の平行電極の下側電極に置き、タンタル
膜への通電は基板10、nウェル12、拡散領域14b
の経路で行なう。
16a etc. are formed. Next, an insulating film is formed around the gate electrode, and capacitor electrodes 20 are formed on the source and drain electrodes 14b of the MO5I transistor. The electrode material is tantalum (T a ). This may be deposited by sputtering, but CVD is preferred because it provides good coverage of the stepped portion (so-called MOCVD is used). Next, the tantalum film is applied to the capacitor part 20 and the bit line contact part 26.
The tantalum film is patterned in the shape of , and the tantalum film other than those in the memory cell portions is removed. Next, the surface of the tantalum film is oxidized to a thickness of 300 mm by anodic oxidation in oxygen gas plasma to form a film 22. Since tantalum is removed from the peripheral circuit portion during anodization of the tantalum film, the surfaces of the n+ or p+ source and drain regions of the MOS transistor are also slightly anodized. However - the 5i thus formed in the role
Since Oz has a lower conductivity than Ta205, the tantalum film portion is selectively oxidized, and the oxide film on the source and drain is a few tens to hundreds of oxides that can be easily removed in a later process.
Only people grow. During this anodic oxidation, the wafer is placed on the lower electrode of a pair of parallel electrodes in the chamber, and current is applied to the tantalum film through the substrate 10, the n-well 12, and the diffusion region 14b.
This will be done using the following route.

タンタルは熱酸化によっても酸化が可能であるが、陽極
酸化を用いると化成電圧によって膜厚が一意的に決定さ
れるので膜厚の均一性と再現性が良く、またピンホール
等の耐圧劣化が少い。なぜならばピンホールがあればそ
こは導電率が高く、より電流が流れて陽極酸化が進み、
結果的に全面に均一な絶縁膜厚が出来からである。
Tantalum can be oxidized by thermal oxidation, but when anodic oxidation is used, the film thickness is uniquely determined by the formation voltage, so the uniformity and reproducibility of the film thickness is good, and there is no breakdown voltage deterioration due to pinholes etc. Few. This is because if there is a pinhole, the conductivity is high, so more current flows and anodic oxidation progresses.
This results in a uniform insulating film thickness over the entire surface.

次にキャパシタの対向電極板24を形成する。Next, the counter electrode plate 24 of the capacitor is formed.

これはMOCVD法によるモリブデン膜とした。This was a molybdenum film formed by MOCVD.

この様にして形成したトランジスタ及びキャパシタ部 法によるSiO2膜を被着させ(プラズマCVD法は低
温で絶縁膜のデポジションができる)、これにビット線
のコンタクト穴をあけ、公知な方法でアルミニウム層に
よるビット線18の配線を行う。アルミニウム配線層1
8の上は図示しないがプラズマCVD法によると5iz
N4膜でカバーし、チップを保護する。また、電源電圧
は5■とするがセルプレートには2.5Vを供給してキ
ャパシタ膜に加わる電圧の絶対値が2.5vになる様に
してリーク電流を一層おさえ、絶縁破壊の発生の確率を
下げる。
A SiO2 film is deposited on the transistor and capacitor parts formed in this manner (the plasma CVD method can deposit an insulating film at low temperatures), a contact hole for a bit line is made in this, and an aluminum layer is deposited using a known method. The bit lines 18 are wired according to the method. Aluminum wiring layer 1
Although the upper part of 8 is not shown, it is 5iz according to the plasma CVD method.
Cover with N4 film to protect the chip. In addition, although the power supply voltage is 5■, 2.5V is supplied to the cell plate so that the absolute value of the voltage applied to the capacitor film is 2.5V to further suppress leakage current and reduce the probability of dielectric breakdown occurring. lower.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明ではDRAMメモリセルのキ
ャパシタの誘電膜に高比誘電率のものを用い、これは常
温においてはリーク電流があるが、液体窒素温度付近に
冷却することによってこれを実用上全く支障がない値に
低下させる。これによって100人〜300人のkl 
203. Ta 20 s。
As explained above, in the present invention, a dielectric film with a high dielectric constant is used for the capacitor of a DRAM memory cell, and although this has a leakage current at room temperature, this can be effectively reduced by cooling it to around the temperature of liquid nitrogen. Lower it to a value that causes no problems. This will result in 100 to 300 people
203. Ta20s.

Ti0z等の高誘電体膜が利用でき、極微小で十分な容
量を持ち膜厚も実用可能な程度であるキャパシタを実現
できる。’l’a20aを例にとると、比誘電率は約2
5であり200人のTa20aは30人の5i02に相
当する。30人の厚さの絶縁膜は信頼性良く製造するこ
とができないばかりかトンネル電流が顕著に流れてメモ
リキャパシタとしての機能をしない。しかし200人の
厚さならば’l’ a 20 a膜は製造できる。
A high dielectric constant film such as TiOz can be used, and a capacitor that is extremely small, has sufficient capacitance, and has a film thickness that is practical can be realized. Taking 'l'a20a as an example, the dielectric constant is approximately 2
5, and 200 people's Ta20a corresponds to 30 people's 5i02. An insulating film with a thickness of 30 mm cannot be manufactured reliably, and tunnel current flows significantly, so that it does not function as a memory capacitor. However, if the thickness is 200 mm, a 20 a film can be manufactured.

実施例のメモリセルではキャパシタ面積はセル面積の約
50%が得られるから、1ビット当り3゜5μm2の面
積の16M  DRAMでは200人のTa2C)+膜
を用いると蓄積容量20fFが得られる。この値は現在
の認識では蓄積容量とじて十分とは言い難いが、チップ
上へのE CC(ErrorChecking and
 Correcting )回路搭載によって十分に低
いソフトエラー率にすることができる。逆にこの様な高
誘電率膜を使わない躍り70人程度の5to2膜を用い
たのでは蓄積容量は7.4fFしか得られず、ソフトエ
ラー率を1141i)iする以前にセル信号のセンスが
困難になってしまい、16Mの実現は出来ない。
In the memory cell of this embodiment, the capacitor area is about 50% of the cell area, so in a 16M DRAM with an area of 3.5 μm 2 per bit, a storage capacity of 20 fF can be obtained by using 200 Ta2C)+ films. Although this value cannot be said to be sufficient as a storage capacity according to current understanding, it is necessary to perform ECC (Error Checking and
By installing a correcting circuit, the soft error rate can be made sufficiently low. On the other hand, if we use a 5to2 film made of about 70 people without using such a high dielectric constant film, we can only obtain a storage capacity of 7.4 fF, and the cell signal sense will be lost before the soft error rate can be reduced to 1141i)i. This will make it difficult to achieve 16M.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す断面図、第2図は比誘電
率とリーク電流との関係を示す特性図、第3図は温度を
パラメータとした印加電圧とリーク電流との関係を示す
特性図である。 図面で20.22.24はメモリセルのキャパシタ、1
4a、14b、16aは同トランスファゲート用トラン
ジスタである。
Figure 1 is a cross-sectional view showing an embodiment of the present invention, Figure 2 is a characteristic diagram showing the relationship between dielectric constant and leakage current, and Figure 3 is a graph showing the relationship between applied voltage and leakage current with temperature as a parameter. FIG. In the drawing, 20.22.24 are memory cell capacitors, 1
4a, 14b, and 16a are transistors for the same transfer gate.

Claims (1)

【特許請求の範囲】 電荷蓄積キャパシタをメモリセルとするダイナミック型
半導体記憶装置において、 シリコン窒化物より比誘電率が大きい誘電体膜を前記キ
ャパシタの絶縁膜に用い、常温より冷却した状態で動作
させることを特徴としたダイナミック型半導体記憶装置
[Claims] In a dynamic semiconductor memory device in which a charge storage capacitor is used as a memory cell, a dielectric film having a dielectric constant higher than that of silicon nitride is used as an insulating film of the capacitor, and the device is operated in a state cooled from room temperature. A dynamic semiconductor memory device characterized by:
JP60260927A 1985-11-20 1985-11-20 Semiconductor memory Pending JPS62120072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60260927A JPS62120072A (en) 1985-11-20 1985-11-20 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60260927A JPS62120072A (en) 1985-11-20 1985-11-20 Semiconductor memory

Publications (1)

Publication Number Publication Date
JPS62120072A true JPS62120072A (en) 1987-06-01

Family

ID=17354696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60260927A Pending JPS62120072A (en) 1985-11-20 1985-11-20 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPS62120072A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480061A (en) * 1987-09-19 1989-03-24 Hitachi Ltd Semiconductor integrated circuit device and manufacture thereof
US5047817A (en) * 1988-06-10 1991-09-10 Mitsubishi Denki Kabushiki Kasiha Stacked capacitor for semiconductor memory device
WO1992012539A1 (en) * 1991-01-01 1992-07-23 Tadahiro Ohmi Semiconductor memory of dynamic type
WO1992012537A1 (en) * 1991-01-01 1992-07-23 Tadahiro Ohmi Method for manufacturing memory cell of dram
US5180683A (en) * 1988-06-10 1993-01-19 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing stacked capacitor type semiconductor memory device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480061A (en) * 1987-09-19 1989-03-24 Hitachi Ltd Semiconductor integrated circuit device and manufacture thereof
US5047817A (en) * 1988-06-10 1991-09-10 Mitsubishi Denki Kabushiki Kasiha Stacked capacitor for semiconductor memory device
US5180683A (en) * 1988-06-10 1993-01-19 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing stacked capacitor type semiconductor memory device
US5278437A (en) * 1988-06-10 1994-01-11 Mitsubishi Denki Kabushiki Kaisha Stacked capacitor type semiconductor memory device and manufacturing method thereof
WO1992012539A1 (en) * 1991-01-01 1992-07-23 Tadahiro Ohmi Semiconductor memory of dynamic type
WO1992012537A1 (en) * 1991-01-01 1992-07-23 Tadahiro Ohmi Method for manufacturing memory cell of dram
US5494840A (en) * 1991-01-01 1996-02-27 Ohmi; Tadahiro Method for manufacturing DRAM memory cells having a thin metal oxide film on a thin metal film

Similar Documents

Publication Publication Date Title
EP2113943B1 (en) Thin film memory, array, and operation method and manufacture method therefor
US5017981A (en) Semiconductor memory and method for fabricating the same
US5189503A (en) High dielectric capacitor having low current leakage
US4371403A (en) Method of providing gettering sites through electrode windows
Shinriki et al. Promising storage capacitor structures with thin Ta/sub 2/O/sub 5/film for low-power high-density DRAMs
US4355374A (en) Semiconductor memory device
US4646118A (en) Semiconductor memory device
JPS6050065B2 (en) memory cell
JPH0376584B2 (en)
JPH06151772A (en) Sram provided with double vertical channel and its manufacture
US6451662B1 (en) Method of forming low-leakage on-chip capacitor
JPS6349906B2 (en)
JPH04282865A (en) Thin film transistor, manufacture thereof and semiconductor storage device
US6627939B2 (en) Semiconductor device provided with a capacitor having a high-permittivity insulator film
JPS60189964A (en) Semiconductor memory
JP2941039B2 (en) Method for manufacturing semiconductor memory device
JPS62120072A (en) Semiconductor memory
JPS60239053A (en) Semiconductor ram device
JPS6322069B2 (en)
JPH01143350A (en) Semiconductor memory
US6821861B1 (en) Method for fabricating an electrode arrangement for charge storage
JPH0414862A (en) Semiconductor device
JPH02129956A (en) Manufacture of semiconductor memory device
JPS62219659A (en) Mos type semiconductor memory
JPS61140171A (en) Semiconductor memory device