JPS62119992A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS62119992A
JPS62119992A JP25940385A JP25940385A JPS62119992A JP S62119992 A JPS62119992 A JP S62119992A JP 25940385 A JP25940385 A JP 25940385A JP 25940385 A JP25940385 A JP 25940385A JP S62119992 A JPS62119992 A JP S62119992A
Authority
JP
Japan
Prior art keywords
semiconductor laser
medium
anisotropic medium
media
structurally anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25940385A
Other languages
Japanese (ja)
Inventor
Shinichi Wakana
伸一 若菜
Yasuo Furukawa
古川 泰男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP25940385A priority Critical patent/JPS62119992A/en
Publication of JPS62119992A publication Critical patent/JPS62119992A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1082Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region with a special facet structure, e.g. structured, non planar, oblique

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a required polarization mode by a small apparatus which is easy to assemble by a method wherein a structural anisotropic medium, composed of alternately laminated media with different specific inductive capacities, is provided at the emitting end surface or in the waveguide region of a semiconductor laser. CONSTITUTION:A structural anisotropic medium 7 is formed by arranging medium 1 and medium 2 which have specific inductive capacities different from each other alternately at the emitting end surface of or inside a semiconductor laser (LD). The boundary surfaces 8 between the media 1 and 2 are inclined to have an angle of 45 deg. relative to the junction surface of the LD. With this constitution, the laser oscillation is induced by using the boundary surface between the LD and the medium 7 as a reflective surface of a resonator and the output light is oscillated with a polarization mode which is determined by the thickness T of the medium 7, the widths t1 and t2 of the media 1 and 2. Therefore, by selecting those parameters, a required polarization mode can be obtained and an optical system can be assembled easily in a small size. Moreover, by providing the media 7 on both ends of the LD, clockwise or counterclockwise circular polarization can be obtained.

Description

【発明の詳細な説明】 〔概要〕 半導体レーザの光路中に、誘電率の異なる媒質を交互に
積層してなる構造異方性媒質を配設し、レーザ光を構造
異方性媒質を通して出力させることで、偏光機能を半導
体レーザと一体化可能とする。
[Detailed Description of the Invention] [Summary] A structurally anisotropic medium made by alternately laminating media with different dielectric constants is provided in the optical path of a semiconductor laser, and laser light is output through the structurally anisotropic medium. This makes it possible to integrate the polarization function with the semiconductor laser.

゛ 〔産業上の利用分野〕 半導体レーザは通常TE偏光のみで発振するが、出力光
をホモダイン、ヘテロダイン計測に利用する場合は、出
力光が円偏光もしくはTE、 TMの2偏光であった方
が有利な場合が多い。本発明は、このような用途に対応
して、出力光として円偏光やTE偏光、TM偏光などを
取り出せる半導体し〜ザに関する。
゛ [Industrial Application Field] Semiconductor lasers usually oscillate only with TE polarization, but when using the output light for homodyne or heterodyne measurements, it is better if the output light is circularly polarized light or dual polarized light of TE and TM. Often advantageous. The present invention relates to a semiconductor laser capable of extracting circularly polarized light, TE polarized light, TM polarized light, etc. as output light in response to such uses.

〔従来の技術〕[Conventional technology]

半導体レーザはTE偏光しか発生しないため、第6図(
イ)のように半導体レーザLDの前方に174波長板3
を置いて、円偏光としたり、(ロ)のように半導体レー
ザLDの前方に172波長板4を置いて、TM偏光とし
たりすることが行なわれている。
Since semiconductor lasers only generate TE polarized light, the
174 wavelength plate 3 in front of the semiconductor laser LD as shown in b).
As shown in (b), a 172 wavelength plate 4 is placed in front of the semiconductor laser LD to generate TM polarized light.

この1/4波長板3や1/2波長板4は、水晶その他の
複屈折性物質を研磨して作られる。
The 1/4 wavelength plate 3 and the 1/2 wavelength plate 4 are made by polishing crystal or other birefringent material.

実際の波長板の配置は、第7図のようになる。The actual arrangement of the wave plates is as shown in FIG.

すなわち半導体レーザLDの前方に、レンズ51、波長
板3または4、レンズ52、受光用光ファイバ6などの
順に配列される。このように波長板を使用する偏光面制
御手段では、空間に波長板3.4を配置しなければなら
ないので、大きなスペースを要する欠点があり、また光
学系の位置合わせが困難である、波長板の厚み、角度の
誤差が大きくなる、などの問題がある。
That is, in front of the semiconductor laser LD, a lens 51, a wavelength plate 3 or 4, a lens 52, a light receiving optical fiber 6, etc. are arranged in this order. In this polarization plane control means using a wave plate, the wave plate 3.4 must be placed in a space, so there is a drawback that it requires a large space, and it is difficult to align the optical system. There are problems such as increased thickness and angle errors.

このような問題を解消できる小型の素子として、特開昭
59−104609号公報において、構造異方性媒質を
用いることが提案されている。第8図は構造異方性媒質
の原理を説明する斜視図である。1は誘電率が61の媒
質、2は誘電率が82の媒質であり、このように誘電率
が異なる2種類の媒質1と2が交互に配設されている。
As a small device capable of solving these problems, Japanese Patent Application Laid-Open No. 104609/1983 proposes the use of a structurally anisotropic medium. FIG. 8 is a perspective view illustrating the principle of a structurally anisotropic medium. 1 is a medium with a dielectric constant of 61, and 2 is a medium with a dielectric constant of 82. In this way, two types of media 1 and 2 having different dielectric constants are arranged alternately.

t、は媒質1の厚さ、tzは媒質2の厚さであり、それ
ぞれ光波長λより充分小さい。
t is the thickness of medium 1, and tz is the thickness of medium 2, which are each sufficiently smaller than the optical wavelength λ.

いま光7が、Xまたはy方向に伝搬する時、Xy面内の
実効誘電率は εI−CttGt +tzEz)/ (tt (−tz
)ま・た、z軸方向の実効誘電率は EL −Ctt +f、z)εt’;−z/(亡fビz
 + tzF”t)となって、 Qtt −EL−fttzcGt −Qz>7CttE
z + b9t)(ft+ f−z)となり、光の直交
偏波成分間に伝搬ずれを生ずることになる。
Now, when the light 7 propagates in the X or y direction, the effective permittivity in the Xy plane is εI-CttGt +tzEz)/(tt (-tz
) Also, the effective permittivity in the z-axis direction is EL -Ctt +f, z)εt';-z/(de f
+ tzF"t), and Qtt -EL-fttzcGt -Qz>7CttE
z + b9t) (ft + f-z), resulting in a propagation shift between the orthogonal polarization components of the light.

これは、複屈折物質内を光が通過する時と同じ効果であ
る。したがってこの構造異方性媒質を、第7図において
、レンズ51と光フアイバ6間に配置することで、偏光
面制御を行なうことができる。
This is the same effect as when light passes through a birefringent material. Therefore, by placing this structurally anisotropic medium between the lens 51 and the optical fiber 6 in FIG. 7, the plane of polarization can be controlled.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところがこのように偏光面制御素子を小型化できても、
空間配置したのでは、装置全体としての小型化の効果は
小さく、また偏光面制御素子の位置や姿勢の調整が困難
なため、装置全体の組立てが依然として複雑になる。そ
こで本発明は、この構造異方性媒質を半導体レーザに直
接膜は得るようにすることで、光学系の組立てを容易に
し、かつ装置の設置スペースを減少可能とすることにあ
る。
However, even if the polarization plane control element can be miniaturized in this way,
If they are arranged in space, the effect of reducing the size of the device as a whole is small, and since it is difficult to adjust the position and orientation of the polarization plane control element, the assembly of the entire device remains complicated. Accordingly, the present invention aims to facilitate the assembly of an optical system and reduce the installation space of the device by directly forming a film of this structurally anisotropic medium on a semiconductor laser.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明による半導体レーザ装置の基本原理を説
明する斜視図である。LDは半導体レーザであり、その
光路中に、構造異方性媒質7が配置されている。構造異
方性媒質7は、誘電率の異なる媒質lと2が交互に配置
された構成になっている。隣接する各媒質1.2間の境
界面8は、半導体レーザLDの接合面9に対し45度の
角度をなすように形成されている。
FIG. 1 is a perspective view illustrating the basic principle of a semiconductor laser device according to the present invention. LD is a semiconductor laser, and a structurally anisotropic medium 7 is placed in its optical path. The structurally anisotropic medium 7 has a structure in which media 1 and 2 having different dielectric constants are alternately arranged. The boundary surface 8 between adjacent media 1.2 is formed at an angle of 45 degrees with respect to the junction surface 9 of the semiconductor laser LD.

構造異方性媒質7は、半導体レーザLDの出射端面でな
く、半導体レーザLDの内部の導波領域中に配置しても
よい。
The structurally anisotropic medium 7 may be arranged not at the emission end facet of the semiconductor laser LD but in the waveguide region inside the semiconductor laser LD.

〔作用〕[Effect]

本発明の場合、半導体レーザLDは、構造異方性媒質7
との境界面を共振器の反射面として発振し、。構造異方
性媒質7からの出力光10は媒質1.2の厚さT及びε
〃−ε工 によつて定まる偏光モードで発振・する。す
なわち、 (ε〃−ε、L)・T=(2m+1)    ならば出
力光は円偏光λ くε〃−εよ)・T= 2 rn−4ならば出力光は直
線偏光説なる。
In the case of the present invention, the semiconductor laser LD includes a structurally anisotropic medium 7
oscillates with the boundary surface as the reflection surface of the resonator. The output light 10 from the structurally anisotropic medium 7 is
It oscillates in the polarization mode determined by −ε. That is, if (ε〃-ε,L)・T=(2m+1), then the output light is circularly polarized λ (ε〃−ε)・T=2rn−4, then the output light is linearly polarized.

したがって半導体レーザを製造する際に、予め媒質1.
2の厚さTおよび各媒質1.2の膜厚t1、tzを選択
することで、所望の偏光モードを得ることができる。
Therefore, when manufacturing a semiconductor laser, the medium 1.
By selecting the thickness T of 2 and the film thicknesses t1 and tz of each medium 1.2, a desired polarization mode can be obtained.

〔実施例〕〔Example〕

次に本発明による半導体レーザ装置が実際上どのように
具体化されるかを実施例で説明する。第2図は本発明の
第1実施例を示す斜視図、第3図は同実施例の半導体レ
ーザ装置の製造方法を示す図である。第2図においては
、構造異方性媒質7は、半導体レーザLDの端面に形成
されている。このような半導体レーザ装置を製造するに
は、第3図(イ)のように、構造異方性媒質7の厚さT
に相当する段差11を、半導体レーザLDの出射端画工
2、に形成し、該出射端面12上に(ロ)のように第1
の媒質1を蒸着などで積層し、段差部11を埋める。
Next, examples will be used to explain how the semiconductor laser device according to the present invention is actually implemented. FIG. 2 is a perspective view showing a first embodiment of the present invention, and FIG. 3 is a diagram showing a method of manufacturing a semiconductor laser device of the same embodiment. In FIG. 2, the structurally anisotropic medium 7 is formed on the end face of the semiconductor laser LD. In order to manufacture such a semiconductor laser device, the thickness T of the structurally anisotropic medium 7 must be adjusted as shown in FIG.
A step 11 corresponding to the above is formed on the output end surface 2 of the semiconductor laser LD, and a first step is formed on the output end surface 12 as shown in (b).
The medium 1 is laminated by vapor deposition or the like to fill the stepped portion 11.

そして(ハ)のように、媒質1に、接合面9と45度の
方向に、一定間隔に複数の溝13・・・をエツチングな
どの手法で形成する。溝13・・・の間隔は、第2図に
おける第1の媒質1の幅とし、溝13・・・の幅は、第
2の媒質2の幅と等しい、そして次に溝13・・・中に
第2の媒質2を蒸着して、(ニ)の構造とした後、端面
を研磨仕上げすることで、第2図のような構造異方性媒
質7が得られる。
Then, as shown in (c), a plurality of grooves 13 are formed in the medium 1 at regular intervals in a direction 45 degrees from the bonding surface 9 by a method such as etching. The intervals between the grooves 13... are equal to the width of the first medium 1 in FIG. 2, the width of the grooves 13... is equal to the width of the second medium 2, and then A structurally anisotropic medium 7 as shown in FIG. 2 is obtained by depositing the second medium 2 on the substrate to obtain the structure (d), and then polishing the end face.

例えば、磁気レンズを用い偏向・収束させたイオン化蒸
着法などのように指向性に優れた蒸着法を使用し、第2
図(イ)に示す矢印al方向すなわち段差面11に対し
垂直方向がら、蒸着することもできる。このときは、第
1の媒質1と第2の媒質を交互に蒸着する必要がある。
For example, by using a vapor deposition method with excellent directivity, such as an ionization vapor deposition method that uses a magnetic lens to deflect and focus, the second
It is also possible to perform the vapor deposition in the direction of the arrow al shown in FIG. At this time, it is necessary to deposit the first medium 1 and the second medium alternately.

第4図は本発明の第2の実施例を示す平面図であり、半
導体レーザ内部に構造異方性媒質が設けられている。こ
の場合は、エツチング等によって、構造異方性媒質7を
埋め込むための溝を掘った後、第3図(イ)で説明した
矢印a、力方向ら、媒質1と2を交互に蒸着することで
作成される。この方法は、指向性に優れた蒸着法で行な
われる。
FIG. 4 is a plan view showing a second embodiment of the present invention, in which a structurally anisotropic medium is provided inside a semiconductor laser. In this case, after digging a groove in which to embed the structurally anisotropic medium 7 by etching or the like, media 1 and 2 are alternately deposited in the force direction indicated by the arrow a shown in FIG. 3(a). Created with. This method is performed using a vapor deposition method with excellent directivity.

この装置では、予め形成される溝の幅で、構造°異方性
媒t7の幅Tが決まるため、媒賞厚t2、t2を制御す
ることで、εl−εヱ を変化させて、所用の偏光モー
ドが得られる。なお構造異方性媒質7が配置された出射
端面14がらは偏光された光が得られるが、構造異方性
媒1t7を有しない出射端面15からは、偏光を受けな
いTEモードのレーザ光が出射する。
In this device, the width T of the structurally anisotropic medium t7 is determined by the width of the groove formed in advance, so by controlling the medium thicknesses t2 and t2, εl−εヱ can be changed to obtain the desired value. Polarization mode is obtained. Note that polarized light is obtained from the output end face 14 where the structurally anisotropic medium 7 is disposed, but from the output end face 15 that does not have the structurally anisotropic medium 1t7, TE mode laser light that does not receive polarization is obtained. Emits light.

このように半導体レーザLDの端部の出射端面14より
手前位置に構造異方性媒質7を設けることにより、出射
端面を利用する必要がない。そのため、半導体レーザ素
子のへき開作業による出射端面形成の前に、−斉に構造
異方性媒質を作り込めるため、作業効率が優れ、かつへ
き開による出射端面の面精度を維持できる。
By providing the structurally anisotropic medium 7 at a position in front of the emission end face 14 at the end of the semiconductor laser LD in this manner, there is no need to utilize the emission end face. Therefore, the structurally anisotropic medium can be formed all at once before the output end face is formed by cleaving the semiconductor laser device, so that work efficiency is excellent and the surface precision of the output end face can be maintained by cleaving.

第5図は本発明の第3の実施例であり、第4図のような
出射端面の内側の構造異方性媒質が、71.72のよう
に両端側に配設されている。この場合、両側の構造異方
性媒171と72を、その伝搬すれが1/4波長分とな
るように設け、且つ端面14.15の反射率をコーティ
ングにより増加させ、レーザの共振が両端面で起こるよ
うにすれば、レーザ出力光は、左右回りの2つの円偏光
となる。
FIG. 5 shows a third embodiment of the present invention, in which the structurally anisotropic medium inside the output end face as shown in FIG. 4 is arranged on both end sides as 71 and 72. In this case, the structurally anisotropic media 171 and 72 on both sides are provided so that the propagation difference between them is 1/4 wavelength, and the reflectance of the end faces 14.15 is increased by coating, so that the resonance of the laser is If this occurs, the laser output light will become two circularly polarized lights in the left and right directions.

なお半導体レーザLDの外寸は、100μm程度であり
、接合面における導波領域は5μm程度と小さいため、
構造異方性媒質7.71.72も、この接合面をカバー
できる程度の小さな領域に設ければ足りる。
Note that the external dimensions of the semiconductor laser LD are approximately 100 μm, and the waveguide region at the junction surface is as small as approximately 5 μm.
It is sufficient that the structurally anisotropic medium 7, 71, 72 is also provided in a small area that can cover this joint surface.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、半導体レーザLDの端部
において、出射端面もしくは出射端面の手前位置の導波
領域に構造異方性媒質を積層構造で設けた構成になって
いる。そのため、半導体レーザの出射光の偏光面を制御
する為の構造異方性媒質が、半導体レーザLDと一体化
されるので、波長板の位置調整などのような面倒な作業
を要せず、光学系の組立てが簡単になる。また構造異方
性媒質が・一体化されることで、第7図の対物レンズ5
2が不必要となるため、装置が小型化される。
As described above, according to the present invention, at the end of the semiconductor laser LD, the structurally anisotropic medium is provided in a layered structure in the waveguide region at the output end face or in front of the output end face. Therefore, since the structural anisotropic medium for controlling the polarization plane of the emitted light from the semiconductor laser is integrated with the semiconductor laser LD, there is no need for troublesome work such as adjusting the position of the wave plate, and optical Assembling the system becomes easier. Also, by integrating the structurally anisotropic medium, the objective lens 5 in FIG.
2 is unnecessary, so the device can be made smaller.

【図面の簡単な説明】[Brief explanation of drawings]

゛第1図は本発明による半導体レーザ装置の基本原理を
説明する斜視図、第2図は本発明の第1実施例を示す斜
視図、第3図は同実施例の装置の製造方法を示す図、第
4図は本発明の第2の実施例を示す平面図、第5図は本
発明の第3の実施例を示す平面図、第6図は従来の波長
板による偏光方法を示す側面図、第7図は波長板の配置
を示す側面図、第8図は構造異方性媒質の作用を示す斜
視図である。 図において、1.2は媒質、LDは半導体レーザ、7は
構造異方性媒質、8は誘電率の異なる媒質の境界面、9
は接合面、10は出力光をそれぞれ示す。 特許出願人     富士通株式会社 代理人 弁理士   青 柳   稔 第1図 1Ett支&例 第2図 LD 第3良施例 第5図 第6図 第7図 第8図
゛ Fig. 1 is a perspective view explaining the basic principle of a semiconductor laser device according to the present invention, Fig. 2 is a perspective view showing a first embodiment of the invention, and Fig. 3 shows a method for manufacturing the device of the same embodiment. 4 is a plan view showing a second embodiment of the present invention, FIG. 5 is a plan view showing a third embodiment of the present invention, and FIG. 6 is a side view showing a polarization method using a conventional wave plate. FIG. 7 is a side view showing the arrangement of the wave plate, and FIG. 8 is a perspective view showing the action of the structurally anisotropic medium. In the figure, 1.2 is a medium, LD is a semiconductor laser, 7 is a structurally anisotropic medium, 8 is an interface between media with different dielectric constants, and 9
10 indicates the bonding surface, and 10 indicates the output light. Patent Applicant: Fujitsu Limited Agent, Patent Attorney Minoru Aoyagi Figure 1 1 Ett Branch & Examples Figure 2 LD 3 Good Examples Figure 5 Figure 6 Figure 7 Figure 8

Claims (4)

【特許請求の範囲】[Claims] (1)、半導体レーザ(LD)の出射端面または出射端
面近傍の光路中に、半導体レーザの接合面(9)に対し
、隣接媒質間の境界面(8)が45度の角度をなすよう
に、誘電率の異なる媒質(1)、(2)を交互に積層し
た構造異方性媒質(7)を設け、半導体レーザの出射光
の偏光面制御手段としたことを特徴とする半導体レーザ
装置。
(1) In the optical path at or near the output end face of the semiconductor laser (LD), the boundary face (8) between adjacent media forms an angle of 45 degrees with respect to the junction face (9) of the semiconductor laser. A semiconductor laser device characterized in that a structurally anisotropic medium (7) in which media (1) and (2) having different dielectric constants are alternately laminated is provided as means for controlling the polarization plane of light emitted from a semiconductor laser.
(2)、前記の構造異方性媒質(7)を、半導体レーザ
の出射端面に設けたことを特徴とする特許請求の範囲第
(1)項記載の半導体レーザ装置。
(2) A semiconductor laser device according to claim (1), characterized in that the structurally anisotropic medium (7) is provided on the emission end face of the semiconductor laser.
(3)、前記の構造異方性媒質(7)を、出射端面より
手前の半導体レーザ内の導波領域中に配設したことを特
徴とする半導体レーザ装置。
(3) A semiconductor laser device characterized in that the structurally anisotropic medium (7) is disposed in a waveguide region within the semiconductor laser in front of the emission end facet.
(4)、前記の構造異方性媒質が半導体レーザの両側に
形成され、且つその厚みが1/4波長分の位相ずれを生
ずる厚さであり、発振出力光が右、左回りの円偏光とな
る構成としたことを特徴とする特許請求の範囲第(3)
項記載の半導体レーザ装置。
(4) The above-mentioned structurally anisotropic medium is formed on both sides of the semiconductor laser, and has a thickness that causes a phase shift of 1/4 wavelength, so that the oscillation output light is circularly polarized in the right and left directions. Claim No. (3) is characterized in that the structure is as follows.
The semiconductor laser device described in .
JP25940385A 1985-11-19 1985-11-19 Semiconductor laser device Pending JPS62119992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25940385A JPS62119992A (en) 1985-11-19 1985-11-19 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25940385A JPS62119992A (en) 1985-11-19 1985-11-19 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS62119992A true JPS62119992A (en) 1987-06-01

Family

ID=17333638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25940385A Pending JPS62119992A (en) 1985-11-19 1985-11-19 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS62119992A (en)

Similar Documents

Publication Publication Date Title
US4674827A (en) Slab-type optical device
EP0325251B1 (en) Laser light source for generating beam collimated in at least one direction
JP5867509B2 (en) Optical semiconductor device
US6661818B1 (en) Etalon, a wavelength monitor/locker using the etalon and associated methods
JP4945140B2 (en) Wavelength tunable optical filter and external resonator type semiconductor laser device using the same
US7515804B2 (en) Optical waveguide device
JPS62119992A (en) Semiconductor laser device
JP2835874B2 (en) Ring laser gyro device
JPH08255947A (en) Semiconductor laser and fabrication thereof
US7289702B2 (en) Optical waveguide apparatus
WO2006103850A1 (en) Waveguide element and laser generator
JP3541539B2 (en) Surface emitting semiconductor laser
JP2001102684A (en) Single wavelength optical oscillator
GB2259603A (en) Diode pumped solid-state laser
JP4112316B2 (en) Wavelength management module and optical resonator
JPH05129728A (en) Metallic polarizer and semiconductor laser device
JPS6032381A (en) Surface light emitting semiconductor laser device
JPH1090541A (en) Trench type semiconductor polarized wave rotating element
JPS6159554B2 (en)
JPH0329927A (en) Cross polarization type optical frequency shifter
JPH0878782A (en) Light emitting element
JPH11233857A (en) Polarization-preserved self-compensating reflector, laser resonator and laser amplifier
JP2641296B2 (en) Semiconductor laser with optical isolator
JPH0680862B2 (en) Semiconductor laser device
JP2000028851A (en) Optical multiplexing/demultiplexing device