JPS62119917A - Formation of single crystal of silicon carbide - Google Patents

Formation of single crystal of silicon carbide

Info

Publication number
JPS62119917A
JPS62119917A JP60260188A JP26018885A JPS62119917A JP S62119917 A JPS62119917 A JP S62119917A JP 60260188 A JP60260188 A JP 60260188A JP 26018885 A JP26018885 A JP 26018885A JP S62119917 A JPS62119917 A JP S62119917A
Authority
JP
Japan
Prior art keywords
substrate
single crystal
molecular beam
mask
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60260188A
Other languages
Japanese (ja)
Inventor
Shoichiro Matsumoto
昭一郎 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60260188A priority Critical patent/JPS62119917A/en
Publication of JPS62119917A publication Critical patent/JPS62119917A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To simplify the operation and process steps by providing a heat shielding mask to form the regions of different growth temperature on a substrate of SiC single crystal and to grow SiC single crystals of different crystal structure in the respective regions at the same time. CONSTITUTION:A heater 17 as a heating means is arranged on the opposite side to the molecular beam incident side from a molecular beam source 16 of an SiC single crystal substrate 15. Between this heater 17 and the substrate 5, a heat-shielding mask 19 for adjusting a substrate temperature provided with a light transmitting part 18 arranged in its center is arranged. The substrate 15 is heated by the heater 17 through the mask 19 to form a high temperature region 15a of the growth temperature of 6H-type SiC in the central part of the substrate 15. Simultaneously, a low temperature region 15b of the growth temperature of 3C-type SiC is formed around the region 15a. Under such condition, the substrate 15 is irradiated with molecular beams from the molecular beam source 16 to grow 6H-type and 3C-type SiC single crystals in the regions 15a and 15b, respectively. Thus, there is no need of exchanging mechanical masks for each growth of SiC single crystals of different crystal structure and both the operation and process steps can be simplified.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、炭化ケイ素単結晶基板上の異なる領域に複
数の異なる結晶@造の炭化ケイ素単結晶を選択的に分子
線エピタキシヤ火成長させる炭化ケイ素単結晶の形成方
法に関する。
Detailed Description of the Invention [Industrial Application Field] This invention is a method of carbonization in which silicon carbide single crystals of a plurality of different crystals are selectively grown by molecular beam epitaxy in different regions on a silicon carbide single crystal substrate. This invention relates to a method for forming silicon single crystals.

〔従来の技術〕[Conventional technology]

一般に、分子線エピタキシャル成長(以下MBEという
)法により半導体基板上に所定パターンの半導体結晶を
選択成長させる手法として、高僑清「分子線エピタキシ
ー技術」(株式会社工業調査会) 頁82.83に記載
されてい乙ように、メカニカルマスクを用いる手法がよ
く知られている。
In general, a method of selectively growing semiconductor crystals in a predetermined pattern on a semiconductor substrate by molecular beam epitaxial growth (hereinafter referred to as MBE) is described in "Molecular Beam Epitaxy Technology" (Kogyo Kenkyukai Co., Ltd.), pages 82 and 83, by Sei Takashi. As previously mentioned, a method using a mechanical mask is well known.

これは、たとえば第4図に示すように、分子線源(1)
と半導体基板(2)との間に、所定形状の透孔(3)が
形成されたメカニカルマスクとしての分子線カットマス
ク(4)が配設され、分子線源(1)からの分子線がマ
スク(4)の透孔(3)のみを通過して透孔(3)に対
応する領域にのみ半導体結晶をエピタキシャル成長させ
るものである。
For example, as shown in Figure 4, this is a molecular beam source (1).
A molecular beam cut mask (4) serving as a mechanical mask in which a through hole (3) of a predetermined shape is formed is disposed between the semiconductor substrate (2) and the molecular beam source (1). The semiconductor crystal is epitaxially grown only in the region corresponding to the hole (3) by passing only through the hole (3) of the mask (4).

そして前記した手法により、炭化ケイ素(SiC)単結
晶基板上の異なる領域に複数の異な乙結晶構造のSiC
単結晶を選択的にエピタキシャル成長させる場合、たと
えば6H型および3C型の2種類の結晶構造の5iCO
)pn接合を形成するとすると、第5図(a) 、 (
b)にそれぞれ示すように、中央部に透孔(5)を有す
る第1マスク(6)および両端部に透孔(7)を有する
第2マスク(8)を準備し、@6図(a)に示すように
6H型SiC単結晶基板(9)上に6H型SiC単結晶
からなるバッファ層αQを形成し、その後第1マスク(
6)を分子線源と基板(9)との間に配設し、基板(9
)を加熱手段により6H型SiC単結晶の成長温度であ
るTICに加熱し、第1マスク(6)を介して分子線源
からの分子線を基板(9)に照射し、同図(b)に示す
ように、バッファ層00の中央部に6H型のSiC単結
晶からなるn層αυをエピタキシャル成長させる。
Then, by the method described above, a plurality of SiCs with different crystal structures are formed in different regions on a silicon carbide (SiC) single crystal substrate.
When selectively epitaxially growing single crystals, for example, 5iCO with two types of crystal structures, 6H type and 3C type, is used.
) Assuming that a pn junction is formed, Fig. 5(a), (
As shown in Figure b), a first mask (6) having a through hole (5) in the center and a second mask (8) having through holes (7) at both ends were prepared. ), a buffer layer αQ made of 6H type SiC single crystal is formed on a 6H type SiC single crystal substrate (9), and then a first mask (
6) is placed between the molecular beam source and the substrate (9), and the substrate (9) is placed between the molecular beam source and the substrate (9).
) is heated by a heating means to TIC, which is the growth temperature of a 6H type SiC single crystal, and a molecular beam from a molecular beam source is irradiated onto the substrate (9) through the first mask (6), as shown in FIG. As shown in FIG. 2, an n-layer αυ made of 6H type SiC single crystal is epitaxially grown in the center of the buffer layer 00.

つぎに、第2マスク(8)を分子線源と基板(9]との
間に配設し、基板(9)を加熱手段により3C型SiC
単結晶の成長温度であるT2 (<TI ) Cに加熱
し、第2マスク(8)を介して分子線源からの分子線を
基板(9)に照射し、@6図(C)に示すように、バッ
ファ層OQの両端部に3C型SiC単結晶からなるn層
(2)をエピタキシャル成長させる。
Next, a second mask (8) is placed between the molecular beam source and the substrate (9), and the substrate (9) is heated using heating means to heat the 3C type SiC.
The substrate (9) is heated to T2 (<TI) C, which is the growth temperature of a single crystal, and the molecular beam from the molecular beam source is irradiated to the substrate (9) through the second mask (8), as shown in Figure 6 (C). As shown, n-layers (2) made of 3C type SiC single crystal are epitaxially grown on both ends of the buffer layer OQ.

さらに、3C型SiCのn層(2)を形成したのち、前
記した6H型SiCのn層αηの成長時と同様に基板温
度をTl cとし、第1マスク(6)を介した分子線の
照射により、@6図(d)に示すように、n層01)上
に6H型SiC単結晶からなる9層α3をエピタキシャ
ル成長させて6H型SiCのpn接合を形成し、その後
前記した3C型SiCのn層(2)の成長時と同様に基
板温度を72 Cとし、@2マスク(8)を介しり分子
線の照射により、同図(e)に示すように、両n層(ロ
)上にそれぞれ3C型SiC単結晶からなる9層へ4を
エピタキシャル成長させて3C型SiCのpn接合を形
成する。
Furthermore, after forming the n-layer (2) of 3C type SiC, the substrate temperature was set to Tl c in the same manner as in the growth of the n-layer αη of 6H type SiC, and the molecular beam was irradiated through the first mask (6). By irradiation, as shown in Figure @6 (d), nine layers α3 made of 6H type SiC single crystal are epitaxially grown on the n layer 01) to form a pn junction of 6H type SiC, and then the above-mentioned 3C type SiC As in the case of growing the n-layer (2), the substrate temperature was set to 72 C, and both n-layers (b) were grown by irradiation with molecular beams through the @2 mask (8), as shown in Figure (e). 4 is epitaxially grown on nine layers each made of 3C type SiC single crystal to form a 3C type SiC pn junction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、前記したSiC単結晶の形成方法の場、合、
次の3つの問題点があり、第1に各SiC単結晶層αυ
〜α4のエピタキシャル成長を別個に行なうため、4回
の成長工程が必要となり、工程数が多く、長時間を要し
、第2に2枚のマスク(6) 、 (8)が必要になり
、各層αυ〜グ局の成長ごとにマスク(6)。
However, in the case of the method for forming the SiC single crystal described above,
There are the following three problems. First, each SiC single crystal layer αυ
~α4 epitaxial growth is performed separately, so four growth steps are required, which requires a large number of steps and a long time.Secondly, two masks (6) and (8) are required, and each layer Mask (6) for each growth of αυ~g stations.

(8)を交互にセットしなければならず、非常に手間が
かかり、しかもマスク(6) 、 (8)の位置合わせ
を検視の困難な真空室内で行なうため、マスクの位置合
わせを精変よく汚なうことができず、成長する結晶表面
の平坦性および品質の低下を招き、@3に2枚のマスク
(6) 、 (8)の保持、駆動用に、かなり大がかり
なマニピュレータが必要になり、このような大型のマニ
ピュレータを真空室内に収納しなljればならないため
、真空室内の汚染や真空度の低下の原因となり、成長す
る結晶の品質に悪影響を及ぼす虞れがある。
(8) must be set alternately, which is very time-consuming.Moreover, since the alignment of masks (6) and (8) is done in a vacuum chamber, which makes autopsy difficult, it is necessary to carefully align the masks. It cannot be contaminated, resulting in a decrease in the flatness and quality of the growing crystal surface, and requires a fairly large manipulator to hold and drive the two masks (6) and (8) at @3. Therefore, such a large manipulator must be housed in the vacuum chamber, which may cause contamination within the vacuum chamber and a decrease in the degree of vacuum, which may adversely affect the quality of the grown crystal.

そこで、この発明は、マスク交換等の操作を省き、工程
の簡略化および所用時間の短縮化を図り、しかも真空室
内の汚染や真空度の低下を防止し、平坦性および品質の
優れたSiC単結晶を形成できるようにすることを技術
的課題とする。
Therefore, this invention eliminates operations such as mask replacement, simplifies the process and shortens the required time, prevents contamination in the vacuum chamber and decreases in the degree of vacuum, and provides a SiC monolayer with excellent flatness and quality. The technical challenge is to be able to form crystals.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、前記の諸点に留意してなされたものであり
、炭化ケイ素単結晶基板上の異なる領域に分子線エピタ
キシャル成長法により複数の異なる結晶構造の炭化ケイ
素単結晶を選択的に形成する炭化ケイ素単結晶の形成方
法において、前記基板の分子線入射側と反対側に前記基
板の温度調整用防熱マスクを配設し、前記防熱マスクを
介し加熱手段により前記基板を加熱して前記基板に異な
る成長温度領域を形成し、前記各領域にそれぞれ異なる
結晶構造の炭化ケイ素単結晶を成長させることを特徴と
する炭化ケイ素単結晶の形成方法である。
The present invention has been made with the above-mentioned points in mind, and provides a silicon carbide single crystal that selectively forms a plurality of silicon carbide single crystals with different crystal structures in different regions on a silicon carbide single crystal substrate by molecular beam epitaxial growth. In the method for forming a single crystal, a thermal mask for temperature adjustment of the substrate is disposed on the opposite side of the molecular beam incident side of the substrate, and the substrate is heated by a heating means through the thermal mask to cause different growths on the substrate. This method of forming a silicon carbide single crystal is characterized in that temperature regions are formed and silicon carbide single crystals having different crystal structures are grown in each region.

〔1用〕 したがって、この発明では、炭化ケイ素単結晶基板の分
子線入射側と反対側に基板温度調整用の防熱マスクが配
設され、加熱手段により防熱マスクを介して基板が加熱
され、基板に異なる成長温度領域が形成され、基板の各
領域の温度に応じた結晶構造の炭化ケイ素単結晶がエピ
タキシャル成長する。
[For 1] Therefore, in this invention, a heat shield mask for substrate temperature adjustment is provided on the side opposite to the molecular beam incident side of the silicon carbide single crystal substrate, and the substrate is heated by the heating means through the heat shield mask, and the substrate is heated by the heating means through the heat shield mask. Different growth temperature regions are formed, and a silicon carbide single crystal having a crystal structure corresponding to the temperature of each region of the substrate is epitaxially grown.

このとき、従来のメカニカルマスクを使用する場合のよ
うに、結晶構造の異なる炭化ケイ素単結晶を成長させる
ごとにマスクを交換する必要がなく、操作、工程が大幅
に簡略化され、しかも複数のマスクの交換機能を有する
マニピュレータも不要となり、真空室内の汚染、真空度
の低下が防止される。
At this time, unlike when using conventional mechanical masks, there is no need to change the mask each time silicon carbide single crystals with different crystal structures are grown, which greatly simplifies the operation and process. This eliminates the need for a manipulator that has a replacement function, and prevents contamination within the vacuum chamber and a decrease in the degree of vacuum.

〔実施例〕〔Example〕

つぎに、この発明を、その1実施例を示した第1図ない
し第3図とともに詳細に説明する。
Next, the present invention will be explained in detail with reference to FIGS. 1 to 3 showing one embodiment thereof.

いま、第1図に示すように、たとえば6H型のSiC単
結晶基板αQの分子線源0Iによる分子線入射側と反対
側に加熱手段としてのヒータQ7)を配設し、ヒータα
ηと基板Qi19との間に、高融点金属からなり中央部
に四角形の透孔(至)が透設された基板温度調整用防熱
マスク0燵を配設し、マスク負傷を介しヒータαηによ
り基板0日を加熱し、基板α0の中央部。
Now, as shown in FIG. 1, a heater Q7) as a heating means is disposed on the side opposite to the molecular beam incidence side by the molecular beam source 0I of a 6H type SiC single crystal substrate αQ, for example.
Between η and the substrate Qi19, a heat shield mask made of a high-melting point metal and having a rectangular through hole in the center is placed for controlling the substrate temperature, and the substrate is heated by the heater αη through the mask damage. Heat the center part of the substrate α0 on day 0.

すなわち第1図中の斜線部分に6H型SiCの成長温度
である1450〜1550 C(7)高温領域(15a
、)を形成するとともに、基板Q9の高温領域(15a
)の周囲に30型SiCの成長温度である950〜12
50 Cの低温領域(15b)を形成し、基板αQに分
子線源αQによる分子線を照射して両領域(15a)、
(15b)にそれぞれ6H型および3C型のSiC単結
晶を成長させる。
That is, the shaded area in FIG. 1 shows a high temperature region (15a
, ), and a high temperature region (15a
) is the growth temperature of 30 type SiC, 950~12
A low temperature region (15b) of 50 C is formed, and the substrate αQ is irradiated with a molecular beam from a molecular beam source αQ to form both regions (15a),
6H type and 3C type SiC single crystals are grown on (15b), respectively.

このとき、基板0υとマスク負傷との間の距離を一定に
保持して基板/IFJに前記した温度の領域(15a)
、(15b)を形成するために、第2図に示すようなホ
ルダ翰により基板Qυおよびマスク09を支持するよう
にし、次にこのホルダ(1)の構成について説明する。
At this time, the distance between the substrate 0υ and the mask injury is kept constant, and the substrate/IFJ is placed in the temperature range (15a) described above.
, (15b), the substrate Qυ and the mask 09 are supported by a holder holder as shown in FIG. 2. Next, the structure of this holder (1) will be explained.

第2図において、Qυは一端の開口(21a)の内側に
基板aυの装着用段部(21b)が形成されるとともに
他端の内周にめねじ(2IC)が形成された第1円筒体
、(支)は周縁部が段部(21b)に当接して装着され
た基板αQを押える押えリング、(ホ)はリング器を@
1円筒体Q])に固定する固定用ボルト、(ハ)は内側
中央部に一体にマスク負傷の装着用段部(24a)を有
する鍔部(24b)が形成され一端の外周にめねじ(2
1c)されたマスクQ情を押える押えリング、翰は固定
用ボルトであり、リング(至)を@22円筒(ハ)の鍔
部■に固定するようになってい乙゛。
In FIG. 2, Qυ is a first cylindrical body that has a stepped part (21b) for mounting the board aυ formed inside an opening (21a) at one end, and a female thread (2IC) formed on the inner periphery of the other end. , (support) is a holding ring that presses down the mounted board αQ with its peripheral edge in contact with the stepped portion (21b), and (e) is a ring device @
The fixing bolt (c) is fixed to the cylindrical body Q]), and the flange part (24b) having a stepped part (24a) for attaching a mask injury is formed integrally in the center part of the inside, and has a female thread (24b) on the outer periphery of one end. 2
1c) The retaining ring that holds down the mask Q, and the fin are fixing bolts, and are designed to fix the ring (to) to the flange of the cylinder (c) @22.

ツキニ、高温、低温領域(15a)、(15b) ニ6
 H型、 3C型のSiC単結晶をそれぞれ成長させて
pn接合発光ダイオードを形成する手順について詳述す
ると、まず第3図(a)に示すように、基板αe上に6
H型SiC単結晶からなるバッファ層(財)を形成し、
その後前記したように基板αQに高温、低温領域(15
a)、(15b)を形成シテNH3カスヲトーハントと
する分子線を照射し、同図(b)に示すように、バッフ
ァ層(ロ)を介し両領域(15a)、(15b)上にそ
れぞれ6H型SiC単結晶からなるn層(至)および3
C型SiC単結晶からなるn層翰を同時にエピタキシャ
ル成長させる。
Tsukini, high temperature, low temperature area (15a), (15b) D6
To explain in detail the procedure for forming a pn junction light emitting diode by growing H-type and 3C-type SiC single crystals, first, as shown in FIG.
Forming a buffer layer (goods) made of H-type SiC single crystal,
Thereafter, as described above, the substrate αQ is exposed to high temperature and low temperature regions (15
A) and (15b) are formed by irradiating with a molecular beam that hunts NH3 gas, and as shown in the same figure (b), 6H type is formed on both regions (15a) and (15b) through the buffer layer (b), respectively. N layer (to) and 3 made of SiC single crystal
At the same time, an n-layer film made of C-type SiC single crystal is epitaxially grown.

ここで高温領域(15a)と低温領域(15b)との境
界部分には温度勾配が生じるため、高温領域05a)の
周辺部に相当する@3図中)中の黒塗り部分には6H型
と3C型の両5iCOn形単結晶が混在することになり
、以下これをn形混在層という。
Here, since there is a temperature gradient at the boundary between the high temperature area (15a) and the low temperature area (15b), the black area in Figure 3) corresponding to the peripheral area of the high temperature area 05a) has a 6H type. Both the 3C type and 5iCON type single crystals coexist, and this is hereinafter referred to as an n-type mixed layer.

さらにn層(至)、翰の成長後、Atをドーパントとす
る分子線の照射により、第3図(C)に示すように、n
層(至)、翰上にそれぞれ6H型SiC単結晶からなる
p層(至)および3C型SiC単結晶からなる9層01
)を同時にエピタキシャル成長させ、6H型5iC(7
)pn接合(至)および3C型SiCのpn接合(至)
を形成する。
Furthermore, after the growth of the n layer (to) and the layer, by irradiation with a molecular beam containing At as a dopant, as shown in FIG.
Layer (to), p layer (to) consisting of 6H type SiC single crystal and 9 layers 01 consisting of 3C type SiC single crystal on the top layer, respectively.
) was epitaxially grown at the same time, and 6H type 5iC (7
) pn junction (to) and 3C type SiC pn junction (to)
form.

このとき、前記n形混在層上には同様の理由によりp形
混在層が形成されることになる。
At this time, a p-type mixed layer is formed on the n-type mixed layer for the same reason.

そして、第3図(d)に示すように、Arをキャリアガ
スとする02.Ct2の混合ガスによる気相エツチング
によりn形およびp形混在層を選択的に除去したのち、
基板/I6の下面およびp層(7)、0])上の必要部
分にそれぞれ下部電極−,上部電極(ト)を形成し、同
図(e)に示すように、基板αQごと所定個所にて切断
し、複数個の6H型SiCのpn接合発光ダイオード(
至)および3C型5iCQ)pn接合発光ダイオード(
ロ)を作製する。
Then, as shown in FIG. 3(d), 02. After selectively removing the n-type and p-type mixed layer by vapor phase etching with Ct2 mixed gas,
A lower electrode and an upper electrode (g) are respectively formed on the lower surface of the substrate/I6 and on the p-layer (7), 0]), and as shown in FIG. and cut it into multiple 6H type SiC pn junction light emitting diodes (
) and 3C type 5iCQ) pn junction light emitting diode (
b)).

ここで、使用した防熱マスクO9は厚さ50μmのタン
グステン製のものであり、ホルダ(1)による基板06
とマスクQすとの間の距離は8mmとした。
Here, the heat shield O9 used was made of tungsten and had a thickness of 50 μm, and the substrate 09 was attached to the holder (1).
The distance between the mask and the mask Q was 8 mm.

ところで、このようにして作製した発光ダイオード(ト
)、(ロ)に4V 、 20mAの直流電力を与えて発
光させたところ、6H型SiCの発光ダイオード(ト)
は青色ないしは青白色に発光し、3C型SiCの発光ダ
イオード(ロ)は赤色ないし橙色に発光した。
By the way, when the light emitting diodes (G) and (B) produced in this way were given a DC power of 4V and 20 mA to emit light, the 6H type SiC light emitting diode (G)
emitted blue or bluish-white light, and the 3C type SiC light emitting diode (b) emitted red or orange light.

なお、前記実施例では基板0Qに形成する異なる成長温
度領域は2種類の温度領域とした場合について説明した
が、3種類以上であってもよ<、3種類以上の結晶構造
のSiC単結晶を成長させるようにしてもよいことは勿
論である。
In the above embodiment, the case where two different growth temperature regions are formed on the substrate 0Q is explained, but it is also possible to have three or more kinds of growth temperature regions. Of course, it may be allowed to grow.

また、ホルダ(イ)の円筒体Qυ、6!4の口径を適宜
変更することにより、多様な大きさのSiC単結晶基板
上へのSiC単結晶の成長を行なえることは!うまでも
ない。
Also, by appropriately changing the diameter of the cylindrical body Qυ, 6!4 of the holder (A), SiC single crystals can be grown on SiC single crystal substrates of various sizes! It's no good.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の炭化ケイ素単結晶の形成方法
によると、防熱マスクa1によりSiC単結晶基板a9
に異なる成長温度領域を形成して各領域にそれぞれ結晶
構造の異なる炭化ケイ素単結晶を同時に成長させるため
、従来のように、結晶構造の異なる炭化ケイ素単結晶を
成長させるごとにメカニカルマスクを交換する必要がな
く、操作、工程とも大幅に簡略化することができ、所用
時間を短縮することができるとともに、従来のような大
がかりなマニピュレータが不要となり、真空室内の汚染
や真空度の低下を防止することができ、平坦性および品
質の優れた炭化ケイ素単結晶を成長させることが可能と
なり、その効果は極めて大きい。
As described above, according to the method for forming a silicon carbide single crystal of the present invention, the SiC single crystal substrate a9 is
In order to simultaneously grow silicon carbide single crystals with different crystal structures in each region by forming different growth temperature regions, the mechanical mask is replaced each time silicon carbide single crystals with different crystal structures are grown, as in the conventional method. This eliminates the need for large-scale manipulators, which greatly simplifies the operation and process, shortens the required time, and eliminates the need for large-scale manipulators, which prevents contamination within the vacuum chamber and a decrease in the degree of vacuum. This makes it possible to grow silicon carbide single crystals with excellent flatness and quality, and the effect is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

@1図ないし第3図はこの発明の炭化ケイ素単結晶の形
成方法の1実施例を示し、第1図は形成時の斜視図、@
2図(a) 、 (b)はそれぞれ基板、防熱マスクの
支持用ホルダの分離時および組立時の断面図、第3図(
a)〜(e)はそれぞれ形成工程の断面図、@4図以下
の図面は従来の炭化ケイ素単結晶の形成方法を示し、第
4図は形成時の斜視図、第5図(a) 、 (b)は形
成の際に使用する分子線カットマスクの平面図、第6図
(a)〜(e)はそれぞれ形成工程の断面図である。 α9・・・基板、(15a)、(15b)・・・高温、
低温領域、αQ・・・分子線源、′Jη・・・ヒータ、
α1・・・防熱マスク、(至)、@・・・n層、(7)
、0◇・・・p層。
@Figures 1 to 3 show one embodiment of the method for forming a silicon carbide single crystal of the present invention, and Figure 1 is a perspective view during formation, @
Figures 2 (a) and (b) are cross-sectional views of the substrate and the thermal mask support holder when separated and assembled, respectively, and Figure 3 (
a) to (e) are cross-sectional views of the formation process, respectively, @4 The following drawings show the conventional method of forming silicon carbide single crystals, and Fig. 4 is a perspective view during formation, Fig. 5 (a), 6(b) is a plan view of a molecular beam cut mask used in the formation, and FIGS. 6(a) to 6(e) are sectional views of the forming steps, respectively. α9...Substrate, (15a), (15b)...High temperature,
Low temperature region, αQ... molecular beam source, 'Jη... heater,
α1...Heat mask, (to), @...n layer, (7)
, 0◇...p layer.

Claims (1)

【特許請求の範囲】[Claims] (1)炭化ケイ素単結晶基板上の異なる領域に分子線エ
ピタキシャル成長法により複数の異なる結晶構造の炭化
ケイ素単結晶を選択的に形成する炭化ケイ素単結晶の形
成方法において、前記基板の分子線入射側と反対側に前
記基板の温度調整用防熱マスクを配設し、前記防熱マス
クを介し加熱手段により前記基板を加熱して前記基板に
異なる成長温度領域を形成し、前記各領域にそれぞれ異
なる結晶構造の炭化ケイ素単結晶を成長させることを特
徴とする炭化ケイ素単結晶の形成方法。
(1) In a method for forming a silicon carbide single crystal in which a plurality of silicon carbide single crystals with different crystal structures are selectively formed in different regions on a silicon carbide single crystal substrate by a molecular beam epitaxial growth method, the molecular beam incident side of the substrate A heat shield mask for temperature adjustment of the substrate is disposed on the opposite side of the substrate, and the substrate is heated by a heating means through the heat shield mask to form different growth temperature regions on the substrate, and each region has a different crystal structure. A method for forming a silicon carbide single crystal, comprising growing a silicon carbide single crystal.
JP60260188A 1985-11-20 1985-11-20 Formation of single crystal of silicon carbide Pending JPS62119917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60260188A JPS62119917A (en) 1985-11-20 1985-11-20 Formation of single crystal of silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60260188A JPS62119917A (en) 1985-11-20 1985-11-20 Formation of single crystal of silicon carbide

Publications (1)

Publication Number Publication Date
JPS62119917A true JPS62119917A (en) 1987-06-01

Family

ID=17344549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60260188A Pending JPS62119917A (en) 1985-11-20 1985-11-20 Formation of single crystal of silicon carbide

Country Status (1)

Country Link
JP (1) JPS62119917A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7544249B2 (en) * 2002-07-11 2009-06-09 Mitsui Engineering Co. Ltd. Large-diameter SiC wafer and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7544249B2 (en) * 2002-07-11 2009-06-09 Mitsui Engineering Co. Ltd. Large-diameter SiC wafer and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4561916A (en) Method of growth of compound semiconductor
RU2160329C1 (en) Sic single crystal and method of its production
DE60020737T2 (en) SIC-EINKRISTALL AND MANUFACTURING METHOD THEREFOR
US5319220A (en) Silicon carbide semiconductor device
JP4026312B2 (en) Silicon carbide semiconductor Schottky diode and method for manufacturing the same
JP3254559B2 (en) Single crystal SiC and method for producing the same
US20210246571A1 (en) Large area group iii nitride crystals and substrates, methods of making, and methods of use
JPS62119917A (en) Formation of single crystal of silicon carbide
JP2008091615A (en) Processed treatment substrate, its manufacturing method, and its processing method
US4968491A (en) Apparatus for performing epitaxial growth of ZNSE crystal from melt thereof
JP3254557B2 (en) Single crystal SiC and method for producing the same
US4120743A (en) Crossed grain growth
US4280131A (en) Pleochroic light emitting diode and method of fabricating the same
JP3923228B2 (en) Substrate holding mechanism and compound semiconductor manufacturing method using the same
KR20220006604A (en) A method for depositing an epitaxial layer on the front surface of a semiconductor wafer, and a device for performing the method
JPS6218076A (en) Semiconductor light emission device
JP7151688B2 (en) Silicon carbide epitaxial substrate manufacturing method and semiconductor device manufacturing method
JPS62214616A (en) Organo metallic vapor phase epitaxy equipment
JP3157866B2 (en) Substrate holder for molecular beam crystal growth and molecular beam crystal growth method
JPS5931972B2 (en) Liquid phase epitaxial growth method
JPS5893229A (en) Preparation of semiconductor grapho epitaxy element
JP2023514321A (en) Selective area growth with improved selectivity for nanowires
JPS61198713A (en) Manufacture of semiconductor device
JPS63503425A (en) monolithic channel mask
JPH01296678A (en) Manufacture of semiconductor heterojunction