JPS6211989B2 - - Google Patents

Info

Publication number
JPS6211989B2
JPS6211989B2 JP54051105A JP5110579A JPS6211989B2 JP S6211989 B2 JPS6211989 B2 JP S6211989B2 JP 54051105 A JP54051105 A JP 54051105A JP 5110579 A JP5110579 A JP 5110579A JP S6211989 B2 JPS6211989 B2 JP S6211989B2
Authority
JP
Japan
Prior art keywords
resinoid
dressing
abrasive grains
binder
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54051105A
Other languages
Japanese (ja)
Other versions
JPS55144961A (en
Inventor
Hiroto Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP5110579A priority Critical patent/JPS55144961A/en
Publication of JPS55144961A publication Critical patent/JPS55144961A/en
Publication of JPS6211989B2 publication Critical patent/JPS6211989B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はレジノイド砥石のドレツシング方法
に関するものである。 熱硬化性合成樹脂を砥粒の結合剤とするレジノ
イド砥石は、研削作業を始める前に砥石外面を所
定形状にするためツルーイング(形直し)される
が、ツルーイングされたレジノイド砥石は第2図
に示すようにレジノイド砥石13外面の砥粒11
〜11が結合剤12の内部に埋没され、突出部分
が少ない状態のものとなり、研削に適した切れ刃
として作用しにくくなつている。しかし、ツルー
イングしたレジノイド砥石は通常は外面部の砥粒
が埋没した突出部分が少ないままの状態で研削に
使用され、使用しているうちに砥粒が突出し研削
性は高まるが、使用初期において研削性の悪い欠
点がある。そして、砥粒が埋没されたツルーイン
グ後のレジノイド砥石は、必要に応じ、砥粒を突
出させるためのドレツシング(目直し)をする場
合もあるが、従来の処理操作は面倒であり、砥粒
の突出量が調節しにくく、砥粒の種類によつては
砥粒が容易に突出しない欠点がある。 また、一般にレジノイド砥石には弾性があるた
め、被研削材の加工精度が低くなる欠点があつ
た。このため加工精度を良くするには気孔率の少
ない硬度の大きい研削砥石を使用する必要がある
が、従来のドレツシング方法はこのような気孔率
の小さい研削砥石への適用は困難であつた。また
レジノイド砥石は結合剤が有機質であるためドレ
ツシング中の発熱により結合剤が炭化され砥粒の
保持力が低下する欠点もあつた。 一方、レジノイド砥石はビトリフアイド砥石の
ように無機質の結合剤を用いた砥石に較べ、研削
時における被削材の当りがソフトであり、耐衝撃
性が大きい優れた利点があり、上記した欠点を有
するにもかかわらず最近の需要は増大している。
そこで、本発明者はレジノイド砥石の高い需要性
に鑑み、上記した欠点を除去しようと考え、研究
の結果、良好な成果を得て本発明を完成した。す
なわち、本発明の目的はツルーイングの際に結合
剤内に埋没した砥粒を容易に突出させ得る、レジ
ノイド砥石のドレツシング方法を提供し、レジノ
イド砥石の研削性を高めようとしたものである。
また本発明の他の目的は使用して目づまりした、
ツルーイングしないレジノイド砥石のドレツシン
グを効率良く行ない得るドレツシン方法を提供す
ることにある。 本発明は、砥粒を有機質結合剤にて結合せしめ
てなる柔軟性研磨材料を用いて、レジノイド砥石
の外面部をドレツシングする方法である。このド
レツシング用の砥粒は、アルミナ、炭化ケイ素な
ど、通常レジノイド砥石に用いられる砥粒が採用
できる。ドレツシング用の砥粒の大きさはドレツ
シングしたいレジノイド砥石の砥粒と同じか、あ
るいは2〜3グレード大きいものが適する。ドレ
ツシング用の砥粒の大きさは前記した場合より小
さすぎても、大きすぎてもドレツシングの効率が
悪くなる。前記有機質結合剤は発泡ポリウレタ
ン、PVA樹脂などの軟質の合成樹脂、ゴム、セ
ラツクなどのものが使用できる。そして、柔軟性
研磨材料の有機質結合剤と砥粒の比率は有機質結
合剤の種類、砥粒の種類及び粒度などにより一定
しないが、その一例を示せば、酸化アルミニウム
砥粒(WA、80メツシユのもの)70〜80重量部に
対し、PVA樹脂30〜20重量部を混合し、これを
焼成することにより形成される。柔軟性基材の形
状は円盤・直方体など立体状のものに限らずべル
ト状、円形、方形などの平面状のものであつても
よい。前記柔軟性研磨材料は次の構成のものが使
用できる。すなわち、たとえば、(イ)ドレツシング
用の研削砥石などのように砥粒が三次元的に分布
し、ゴム、セラツク、合成繊維、発泡ポリウレタ
ンなどの有機質結合剤により結合固定支持させた
柔軟性の結合研磨材料、(ロ)研磨布紙、研磨ベルト
などのように、砥粒が柔軟性基材上に二次元的に
分布し、接着された塗装研磨材料、あるいは(ハ)
布、皮革などを基材としたバフなどの柔軟性材料
を用いることができる。前記柔軟性基材は紙、
布、皮革、ゴムなどの柔軟性を有する材質が適す
る。しかして前記柔軟性研磨材料は、所定量のド
レツシング用の砥粒を有機質結合剤により所定の
大きさの柔軟性基材に接着せしめることにより形
成される。なお、これらを用いる場合にはドレツ
シングしたいレジノイド砥石の砥粒とその大さが
同等あるいは数グレード大きいものを選択して使
用される。 しかして、ツルーイングしたレジノイド砥石の
外面部に、柔軟性研磨材料の研削面を当接させ
て、レジノイド砥石の外面部を研削してドレツシ
ングすることにより、レジノイド砥石の砥粒は損
傷させず、砥粒間の結合剤(熱硬化性合成樹脂)
のみを有効にコントロールして除去することがで
きる。かくして第1図に示すように外面部の砥粒
1〜1が結合剤2面より外方へ鋭く突出したレジ
ノイド砥石3が得られる。このレジノイド砥石3
は研削初期においても高精度の研削性を発揮す
る。 そして、本発明は柔軟性研磨材料により、レジ
ノイド砥石の外面部をドレツシングして、レジノ
イド砥石外面部の砥粒を突出せしめる方法である
から、ツルーイングしたレジノイド砥石に限ら
ず、研削使用済の目づまりした、ツルーイングし
ないレジノイド砥石に対しても簡便に適用でき、
外面部の砥粒を鋭く突出させることができる。 また、レジノイド砥石の研削用のものは通常、
約30〜40%微小気孔を結合剤中に含有する、高い
気孔率を有するものが使用されるのであるが、一
般にソレノイド砥石には弾性があるため被削材の
加工精度が低くなる欠点があつたが、この加工精
度を良くするには気孔率の少ない硬度の大きい研
削砥石を使用する必要がある。従来のドレツシン
グ方法ではこのような気孔率の小さい研削砥石へ
の適用は困難であつた。本発明によれば気孔率が
約10%以下(10〜0%)のものであつても容易に
ドレツシングできるので、従来使用されなかつた
低気孔率のレジノイド砥石を精密研削に使用する
ことができる。 また、レジノイド砥石は研削時における、砥石
と被削材との接触により発熱するが、この際に有
機質である結合剤が炭化され砥粒の保持力が低下
する。そこで、結合剤中にAl、Cu、Niなどの熱
伝導性の高い金属粉、あるいは炭素粉を混入せし
めることにより摩擦熱を放散させ炭化を防化し研
削性及び耐久性を高めることができる。すなわ
ち、結合剤中に、熱伝導性の高い金属粉、あるい
は炭素粉を、結合剤に対し約5〜40容量%の範囲
内にて適宜に混入せしめることができる。前記金
属粉あるいは炭素粉は砥石の研削性に悪影響を与
えないため砥石の砥粒よりも小径の100ミクロン
以下のものを用いる。熱伝導性の高い金属粉、あ
るいは炭素粉を混入せしめたレジノイド砥石は研
削時に砥粒切れ刃付近に熱が蓄積せず、結合剤の
炭化がされにくく、砥粒の保持性が低下しない。
他方、このレジノイド砥石にて研削される被削材
は研削やけ、割れなどの熱損傷が少ない利点があ
る。 次に本発明の実験例を説明する。 実験例 1 研削砥石の表示規格においてGA80X7Bのレジ
ノイド砥石、すなわち、アルミナ砥粒(GA)の
80メツシユのものをフエノール樹脂にて結合させ
た円形の砥石(外径405mm、厚さ25mm、中心穴径
152.4mm)A1、B1を二枚用意する。そして、砥石
A1及びB1はいずれも砥粒率が49%、気孔率が5
%であり、ダイヤモンド工具にて同様にツルーイ
ングをなした。次いで砥石B1には砥石B1の砥粒
と同じ大きさのアルミナ砥粒(WA80)をPVA樹
脂にて結合させ結合部分が柔軟性を有する研削砥
石にてドレツシングし、砥粒を突出させた。次い
で前記砥石A1あるいはB1を用いて外径90mm厚さ
10mmの円形の高速度鋼(硬度HRCにて62のも
の)を砥石周速2500m/min.、切込速度0.5mm/
min.の条件で研削した。研削時における砥石軸
抵抗を消費電力で表わした研削抵抗、及び研削後
の高速度鋼の真円度を測定した結果は次の第1表
の通りである。
The present invention relates to a dressing method for a resinoid grindstone. Resinoid grinding wheels, which use thermosetting synthetic resin as the binder for the abrasive grains, are trued (reshaped) to give the outer surface of the grinding wheel a predetermined shape before starting the grinding process. As shown, abrasive grains 11 on the outer surface of resinoid grinding wheel 13
- 11 are buried inside the binder 12 and have few protruding parts, making it difficult to act as a cutting edge suitable for grinding. However, trued resinoid grinding wheels are usually used for grinding with few protruding parts where the abrasive grains are buried on the outer surface, and as the abrasive grains protrude while being used, the grinding performance improves, but in the initial stage of use It has a bad flaw. After truing, the resinoid grinding wheel with embedded abrasive grains may be dressed (retouched) to make the abrasive grains protrude as necessary, but conventional processing operations are troublesome, and the abrasive grains are It is difficult to adjust the amount of protrusion, and depending on the type of abrasive grains, the abrasive grains may not easily protrude. Additionally, since resinoid grindstones generally have elasticity, they have the disadvantage of lowering the machining accuracy of the material to be ground. Therefore, in order to improve machining accuracy, it is necessary to use a grinding wheel with low porosity and high hardness, but it has been difficult to apply conventional dressing methods to such a grinding wheel with low porosity. Furthermore, since the binder of the resinoid grindstone is organic, the binder is carbonized by the heat generated during dressing, resulting in a reduction in the holding power of the abrasive grains. On the other hand, resinoid whetstones have the advantage of being softer against the workpiece during grinding and have greater impact resistance, compared to whetstones that use an inorganic binder such as vitrified whetstones, but do not have the above-mentioned drawbacks. Despite this, demand has been increasing recently.
Therefore, in view of the high demand for resinoid grindstones, the present inventors tried to eliminate the above-mentioned drawbacks, and as a result of research, they obtained good results and completed the present invention. That is, an object of the present invention is to provide a dressing method for a resinoid grindstone that allows abrasive grains buried in a binder to easily protrude during truing, thereby improving the grindability of the resinoid grindstone.
Another object of the present invention is to use
To provide a dressing method capable of efficiently dressing a resinoid grindstone without truing. The present invention is a method for dressing the outer surface of a resinoid grindstone using a flexible abrasive material formed by bonding abrasive grains with an organic binder. As the abrasive grains for dressing, abrasive grains normally used for resinoid grindstones, such as alumina and silicon carbide, can be used. The size of the abrasive grains for dressing is suitably the same as the abrasive grains of the resinoid abrasive wheel to be dressed, or 2 to 3 grades larger. If the size of the abrasive grains for dressing is too small or too large, the efficiency of dressing will deteriorate. As the organic binder, materials such as foamed polyurethane, soft synthetic resin such as PVA resin, rubber, and shellac can be used. The ratio of organic binder to abrasive grains in flexible abrasive materials varies depending on the type of organic binder, the type of abrasive grains, and the grain size. It is formed by mixing 70-80 parts by weight of PVA resin with 30-20 parts by weight of PVA resin and firing the mixture. The shape of the flexible base material is not limited to a three-dimensional shape such as a disk or a rectangular parallelepiped, but may also be a flat shape such as a belt shape, circle, or rectangle. The flexible abrasive material having the following configuration can be used. That is, for example, (a) a flexible bond in which abrasive grains are distributed three-dimensionally, such as in a grinding wheel for dressing, and bonded and supported by an organic binder such as rubber, ceramic, synthetic fiber, or foamed polyurethane. abrasive materials, (b) coated abrasive materials in which abrasive grains are two-dimensionally distributed and bonded to a flexible substrate, such as coated abrasive paper, abrasive belts, or (c)
A flexible material such as a buff made of cloth, leather, etc. can be used. The flexible base material is paper,
Flexible materials such as cloth, leather, and rubber are suitable. The flexible abrasive material is formed by adhering a predetermined amount of dressing abrasive grains to a flexible base material of a predetermined size using an organic binder. In addition, when using these, a resinoid grindstone whose size of abrasive grains is equal to or several grades larger than that of the resinoid grindstone to be used for dressing is selected and used. By bringing the grinding surface of the flexible abrasive material into contact with the outer surface of the resinoid grinding wheel that has been trued, and then grinding and dressing the outer surface of the resinoid grinding wheel, the abrasive grains of the resinoid grinding wheel are not damaged and the abrasive Intergranular binder (thermosetting synthetic resin)
can be effectively controlled and removed. In this way, as shown in FIG. 1, a resinoid grindstone 3 is obtained in which the abrasive grains 1 to 1 on the outer surface sharply protrude outward from the bonding agent 2 surface. This resinoid whetstone 3
exhibits high precision grinding performance even in the early stages of grinding. Since the present invention is a method of dressing the outer surface of a resinoid grinding wheel with a flexible abrasive material to make the abrasive grains on the outer surface of the resinoid grinding wheel protrude, it is not limited to true-dressed resinoid grinding wheels. It can be easily applied to resinoid grinding wheels that do not have truing.
The abrasive grains on the outer surface can be made to protrude sharply. In addition, resinoid grinding wheels for grinding are usually
A high porosity grinding wheel containing about 30 to 40% micropores in the binder is used, but because solenoid grinding wheels generally have elasticity, they have the disadvantage of lowering the machining accuracy of the workpiece. However, in order to improve the machining accuracy, it is necessary to use a grinding wheel with low porosity and high hardness. It has been difficult to apply conventional dressing methods to grinding wheels with such low porosity. According to the present invention, even those with a porosity of about 10% or less (10 to 0%) can be easily dressed, so a resinoid grindstone with a low porosity, which has not been used in the past, can be used for precision grinding. . Furthermore, the resinoid grindstone generates heat due to contact between the grindstone and the workpiece during grinding, but at this time, the organic binder is carbonized and the holding power of the abrasive grains is reduced. Therefore, by mixing highly thermally conductive metal powder such as Al, Cu, or Ni, or carbon powder into the binder, it is possible to dissipate frictional heat, prevent carbonization, and improve grindability and durability. That is, metal powder or carbon powder having high thermal conductivity can be appropriately mixed into the binder in an amount of about 5 to 40% by volume based on the binder. The metal powder or carbon powder used has a diameter of 100 microns or less, which is smaller than the abrasive grains of the whetstone, since it does not adversely affect the grindability of the whetstone. Resinoid grindstones mixed with highly thermally conductive metal powder or carbon powder do not accumulate heat near the abrasive cutting edge during grinding, are less likely to carbonize the binder, and do not reduce abrasive retention.
On the other hand, the workpiece that is ground with this resinoid grindstone has the advantage of being less susceptible to thermal damage such as grinding burns and cracks. Next, an experimental example of the present invention will be explained. Experimental example 1 According to the display standard for grinding wheels, the resinoid grinding wheel of GA80X7B, that is, the alumina abrasive grain (GA)
A circular whetstone made of 80 mesh bonded with phenolic resin (outer diameter 405 mm, thickness 25 mm, center hole diameter
152.4mm) Prepare two sheets of A1 and B1. And the whetstone
Both A1 and B1 have an abrasive grain rate of 49% and a porosity of 5.
%, and truing was similarly performed using a diamond tool. Next, alumina abrasive grains (WA80) of the same size as the abrasive grains of whetstone B1 were bonded to whetstone B1 using PVA resin, and the bonded portion was dressed with a grinding wheel having flexibility to make the abrasive grains protrude. Next, use the grindstone A1 or B1 to grind to an outer diameter of 90 mm thickness.
A 10mm circular high-speed steel (hardness H R C 62) was cut at a grinding wheel circumferential speed of 2500m/min. and a cutting speed of 0.5mm/min.
Grinding was carried out under conditions of min. The results of measuring the grinding resistance, which represents the grindstone shaft resistance during grinding in terms of power consumption, and the roundness of the high-speed steel after grinding are shown in Table 1 below.

【表】 第1表より本発明方法により処理された砥石に
相当する、砥石B1が、従来処理法による砥石A1
に較べ、砥石の切れ味及び仕上げ精度が優れてい
ることがわかる。 実験例 2 下記の第2表に示す規格、砥粒率、及び気孔率
を有するレジノイド砥石A2、B2を用意し、両砥
石A2、B2にはいずれもダイヤモンド工具にてツ
ルーイングを行なつた。そして砥石B2には砥石
B2の砥粒と同じ大きさのアルミナ砥粒をPVA樹
脂にて結合させ結合部分が柔軟性の研削砥石にて
ドレツシングし、砥粒を突出させた。
[Table] From Table 1, whetstone B1, which corresponds to the whetstone treated by the method of the present invention, is whetstone A1, which is treated by the conventional treatment method.
It can be seen that the sharpness and finishing accuracy of the whetstone are superior compared to the above. Experimental Example 2 Resinoid grinding wheels A2 and B2 having the specifications, abrasive grain ratio, and porosity shown in Table 2 below were prepared, and truing was performed on both grinding wheels A2 and B2 using a diamond tool. And the whetstone B2 is a whetstone.
Alumina abrasive grains of the same size as the B2 abrasive grains were bonded with PVA resin, and the bonded portion was dressed with a flexible grinding wheel to make the abrasive grains protrude.

【表】 なお、砥石A2及びB2の大きさはいずれも外径
405mm厚さ25mm、中心穴径152.4mmである。次い
で、外径50mm厚さ20mmの軸受鋼(硬度HRC62の
もの)を、前記砥石A2あるいはB2を用いて砥石
周速2500m/min.、切込速度2mm/min.スパー
クアウト2sec.の条件にてそれぞれ研削した。軸
受鋼の切残し量は砥石B2の方が少く、設定寸法
に近く、仕上げ精度が高かつた。
[Table] The sizes of grinding wheels A2 and B2 are both the outer diameter.
It is 405mm thick, 25mm thick, and has a center hole diameter of 152.4mm. Next, a bearing steel (hardness H R C62) with an outer diameter of 50 mm and a thickness of 20 mm was prepared using the grinding wheel A2 or B2 under conditions of a grinding wheel circumferential speed of 2500 m/min, a cutting speed of 2 mm/min, and a spark out of 2 sec. Each was ground. The amount of uncut portion of the bearing steel was smaller with grinding wheel B2, which was closer to the set dimensions, and the finishing accuracy was higher.

【表】 実験例 3 下記の第4表に示す規格、砥粒率及び気孔率を
有するレジノイド砥石A3、B3を用意し、両砥石
A3、B3にはいずれもダイヤモンド工具にてツル
ーイングを行なつた。砥石B3は結合剤内に100〜
200メツシユのAl粉を結合剤の20%量混入せしめ
たものであり、36メツシユのアルミナ砥粒を
PVA樹脂にて結合させ結合部分が柔軟性の研削
砥石にてドレツシングし、砥粒を突出させた。
[Table] Experimental Example 3 Prepare resinoid grinding wheels A3 and B3 having the specifications, abrasive grain ratio, and porosity shown in Table 4 below, and
Both A3 and B3 were trued using a diamond tool. Grinding wheel B3 has 100~ in the binder.
200 mesh Al powder is mixed in at 20% of the binder, and 36 mesh alumina abrasive grains are mixed in.
They were bonded using PVA resin and the bonded portion was dressed with a flexible grinding wheel to make the abrasive grains protrude.

【表】 なお、砥粒A3及びB3は前記実施例2の場合と
同じ大きさのものを用いた。しかして、外径50mm
厚さ20mmの円形の鋳鉄(硬度HRC30)を前記砥
石A3あるいはB3を用いて、砥石周速2500m/
min.切込速度6mm/min.の条件にてそれぞれ研
削した。この研削結果は第5表に示すようであつ
た。
[Table] Note that the abrasive grains A3 and B3 were of the same size as in Example 2 above. However, the outer diameter is 50mm
A circular cast iron (hardness H R C30) with a thickness of 20 mm was ground using the grinding wheel A3 or B3 at a circumferential speed of 2500 m/s.
Grinding was performed at a cutting speed of 6 mm/min. The results of this grinding were as shown in Table 5.

【表】 なお表中における研削比は
(加工物の研削体積)/(砥石の
損耗体積)である。
第5表よりわかるように、砥石B3は砥石A3に
較べ研削比が高く、砥石の耐用性が大きい。ま
た、砥石B3は鋳鉄に研削やけを生じない利点が
ある。
[Table] The grinding ratio in the table is (grinding volume of workpiece)/(wearing volume of grindstone).
As can be seen from Table 5, grindstone B3 has a higher grinding ratio than grindstone A3, and has greater durability. Additionally, grindstone B3 has the advantage of not causing grinding burn on cast iron.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法により処理した場合の、レ
ジノイド砥石の外面部の砥粒状態を示す説明図、
第2図はツルーイングのみを行なつた場合のレジ
ノイド砥石の外面部の砥粒状態を示す説明図であ
る。 1,11……砥粒、2,12……結合剤、3,
13……レジノイド砥石。
FIG. 1 is an explanatory diagram showing the state of abrasive grains on the outer surface of a resinoid grindstone when treated by the method of the present invention;
FIG. 2 is an explanatory diagram showing the state of the abrasive grains on the outer surface of the resinoid grindstone when only truing is performed. 1,11...abrasive grain, 2,12...binder, 3,
13...Resinoid whetstone.

Claims (1)

【特許請求の範囲】 1 アルミナ等の砥粒を熱硬化合成樹脂にて結合
したレジノイド砥石をドレツシングするに際し、 砥粒の大きさがドレツシングするレジノイド砥
石の砥粒に対してほぼ同等あるいは数グレード大
きい、ドレツシング用の砥粒を合成樹脂等の有機
質結合剤にて結合せしめてなる柔軟性研磨材料に
より、前記レジノイド砥石の研削面部を研削する
ことを特徴としたレジノイド砥石のドレツシング
方法。 2 前記レジノイド砥石が、その結合剤である熱
硬化性合成樹脂内に、砥石に対し約10(容量)%
以下の量において微小気孔を含有するものである
特許請求の範囲第1項記載のレジノイド砥石のド
レツシング方法。 3 前記レジノイド砥石が、その結合剤である熱
硬化性合成樹脂内に、結合剤約5〜40(容量)%
量のAlなどの熱伝導性の高い金属粉を混入せし
めてなるものである特許請求の範囲第1項記載の
レジノイド砥石のドレツシング方法。 4 前記レジノイド砥石が、その結合剤である熱
硬化性合成樹脂内に、結合剤約5〜40(容量)%
量のC粉を混入せしめてなるものである特許請求
の範囲第1項記載のレジノイド砥石のドレツシン
グ方法。
[Claims] 1. When dressing a resinoid grindstone in which abrasive grains such as alumina are bonded with a thermosetting synthetic resin, the size of the abrasive grains is approximately equal to or several grades larger than that of the dressing resinoid grindstone. A method for dressing a resinoid grindstone, characterized in that the grinding surface portion of the resinoid grindstone is ground with a flexible abrasive material made by bonding abrasive grains for dressing with an organic binder such as a synthetic resin. 2 The resinoid grinding wheel contains about 10% (by volume) of the grinding wheel in its binder, which is a thermosetting synthetic resin.
The method for dressing a resinoid grindstone according to claim 1, wherein the resinoid grindstone contains micropores in the following amounts: 3 The resinoid grinding wheel contains about 5 to 40% (by volume) of the binder in the thermosetting synthetic resin that is the binder.
2. A method for dressing a resinoid grindstone according to claim 1, wherein the resinoid grindstone is mixed with a quantity of a highly thermally conductive metal powder such as Al. 4 The resinoid grinding wheel contains about 5 to 40% (by volume) of the binder in the thermosetting synthetic resin that is the binder.
A dressing method for a resinoid grindstone according to claim 1, wherein a certain amount of C powder is mixed therein.
JP5110579A 1979-04-23 1979-04-23 Dressing method of resinoid grind stone Granted JPS55144961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5110579A JPS55144961A (en) 1979-04-23 1979-04-23 Dressing method of resinoid grind stone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5110579A JPS55144961A (en) 1979-04-23 1979-04-23 Dressing method of resinoid grind stone

Publications (2)

Publication Number Publication Date
JPS55144961A JPS55144961A (en) 1980-11-12
JPS6211989B2 true JPS6211989B2 (en) 1987-03-16

Family

ID=12877519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5110579A Granted JPS55144961A (en) 1979-04-23 1979-04-23 Dressing method of resinoid grind stone

Country Status (1)

Country Link
JP (1) JPS55144961A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007202743A (en) * 2006-02-01 2007-08-16 Manii Kk Dental grindstone with shaft and method of manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641102B2 (en) * 1986-10-14 1994-06-01 三菱マテリアル株式会社 Whetstone dressing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529896U (en) * 1975-07-10 1977-01-24

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007202743A (en) * 2006-02-01 2007-08-16 Manii Kk Dental grindstone with shaft and method of manufacturing the same

Also Published As

Publication number Publication date
JPS55144961A (en) 1980-11-12

Similar Documents

Publication Publication Date Title
JP4965071B2 (en) Abrasive tools for grinding electronic components
JP2017170554A (en) Vitrified grindstone for low pressure lapping for lapping machine and polishing method using the same
US4226055A (en) Dressing and conditioning resin-bonded diamond grinding wheel
JP3719780B2 (en) Truing method for superabrasive wheels
JPS6211989B2 (en)
JPS62292367A (en) Elastic grain abrasive sheet covered with diamond
JP2001300856A (en) Super abrasive grain tool
JP3209437B2 (en) Manufacturing method of resin bonded super abrasive wheel
JPH0379273A (en) Resin bonded super abrasive grain grindstone
JP2975033B2 (en) Vitrified super abrasive whetstone
JPS61257772A (en) Grinding wheel truing method
JP2000158347A (en) Super-abrasive grain grinding wheel using heat-treated abrasive grains and manufacture thereof
JP3952721B2 (en) Vitrified Bond Super Abrasive Wheel
JP2001038635A (en) Resinoid bonded grinding wheel
JPH04250983A (en) Composite grinding stone for grinding
JPH03213272A (en) Vitrified super-abrasive grinding wheel
JPS5830111B2 (en) forming dresser
JPH05123950A (en) Rolling roller grinding method
JPH04322972A (en) Binder material for diamond abrasive grain
JPH0487775A (en) Resin bond superabrasive grain grinding wheel
JPS6341709B2 (en)
JP2003071723A (en) Vitrified grinding wheel
JPS61146472A (en) Dressing tool
JPS61226266A (en) Grinding method in grinding machine
JPS5856767A (en) Correction method for super grinding wheel and device for the same