JPS621195B2 - - Google Patents

Info

Publication number
JPS621195B2
JPS621195B2 JP53154654A JP15465478A JPS621195B2 JP S621195 B2 JPS621195 B2 JP S621195B2 JP 53154654 A JP53154654 A JP 53154654A JP 15465478 A JP15465478 A JP 15465478A JP S621195 B2 JPS621195 B2 JP S621195B2
Authority
JP
Japan
Prior art keywords
cooler
frost
temperature
damper device
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53154654A
Other languages
Japanese (ja)
Other versions
JPS5582279A (en
Inventor
Akio Mitani
Koji Kashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP15465478A priority Critical patent/JPS5582279A/en
Publication of JPS5582279A publication Critical patent/JPS5582279A/en
Publication of JPS621195B2 publication Critical patent/JPS621195B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は冷凍室を備えた冷蔵庫に係り、特に冷
凍室内の着霜を一個所に集中させるようにした冷
蔵庫に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigerator equipped with a freezer compartment, and more particularly to a refrigerator in which frost formation in the freezer compartment is concentrated in one place.

最近、冷凍室を備えた冷蔵庫が普及している。
このような冷蔵庫のうち、特に、冷却器を略矩形
箱状に形成し、その内部をそのまゝ冷凍室として
利用した、いわゆる直冷式と呼称されているもの
にあつては、一般に、冷凍室の内面ほぼ全域より
ほぼ一様に冷却するようにしている。
Recently, refrigerators equipped with a freezer compartment have become popular.
Among such refrigerators, in particular, so-called direct cooling type refrigerators, in which the cooler is formed into a substantially rectangular box shape and the inside thereof is used as a freezing chamber, generally The interior surface of the room is cooled almost uniformly over almost the entire area.

しかしながら、上記のように構成されたものに
あつては、運転中に冷凍室の内面ほぼ全域に着霜
が生じ、この霜の断熱的作用によつて冷凍効率が
低下するばかりか、収容物の表面にも着霜が生じ
るなどの問題があつた。
However, in the case configured as described above, frost forms on almost the entire inner surface of the freezer compartment during operation, and not only does the refrigeration efficiency decrease due to the adiabatic effect of this frost, but also the There were also problems such as frost formation on the surface.

そこで、このような不具合を解消するために最
近、冷凍室内を冷凍物収容部と非収容部とに仕切
る仕切壁と、冷凍物収容部と非収容部とを連通さ
せる空気流路と、冷凍物収容部内に収容された冷
凍物を直接的に冷却する第1の冷却器と、非収容
部内に設けられ前記第1の冷却器より低温に保持
される第2の冷却器とを備えた冷蔵庫が出現して
いる。すなわち、この冷蔵庫は、第2の冷却器の
温度を第1の冷却器のそれより十分低くすること
によつて第1の冷却器の表面や冷凍物の表面に付
着した霜を昇華させて蒸気化させ、この蒸気を非
収容部内に配置された第2の冷却器の表面に導
き、この表面に霜として付着させるようにしてい
る。したがつて、このように構成された冷蔵庫で
は、冷凍物収容部の壁面や冷凍物の表面に厚い霜
が付着するのを防止できるので、冷凍効率の低下
を防止することができる。
Therefore, in order to solve this problem, we have recently developed a partition wall that divides the freezer compartment into a frozen storage area and a non-accommodation area, an air flow path that communicates the frozen storage area and the non-accommodation area, and a A refrigerator includes a first cooler that directly cools frozen items stored in a storage section, and a second cooler that is provided in a non-accommodation section and is maintained at a lower temperature than the first cooler. It is appearing. In other words, this refrigerator makes the temperature of the second cooler sufficiently lower than that of the first cooler, thereby sublimating the frost adhering to the surface of the first cooler or the surface of the frozen object, and converting it into steam. This vapor is guided to the surface of the second cooler disposed in the non-accommodating part, and is deposited as frost on this surface. Therefore, in the refrigerator configured in this manner, it is possible to prevent thick frost from adhering to the wall surface of the frozen object storage section or the surface of the frozen object, and therefore it is possible to prevent a decrease in refrigeration efficiency.

しかしながら、上記のように構成された冷蔵庫
にあつても次のような問題があつた。すなわち、
第2の冷却器の表面に付着した霜を除去するため
に第2の冷却器の表面をヒータで加熱すると、第
2の冷却器の表面の霜が溶けるとともに非収容部
内の温度が上昇し、また湿度も高くなる。このと
き、冷凍物収容部内はまだ低温状態下にあるの
で、この冷凍物収容部と非収容部との間の温度差
で前述した空気流路を介して対流が起こる。非収
容部から冷凍物収容部内に流れ込む空気は前述の
ように湿度が高い。このように湿度の高い空気が
低温の冷凍物収容部へ流れ込むと、非収容部と冷
凍物収容部との間の境界部分や冷凍物収容部の壁
面に氷着が発生し、結局、完全な除霜を行なうこ
とができないとともに氷着層によつて冷却性能が
阻害される問題があつた。
However, even with the refrigerator configured as described above, there are the following problems. That is,
When the surface of the second cooler is heated with a heater to remove frost adhering to the surface of the second cooler, the frost on the surface of the second cooler melts and the temperature inside the non-accommodating part increases, Humidity also increases. At this time, since the inside of the frozen object storage section is still at a low temperature, convection occurs through the air flow path described above due to the temperature difference between the frozen object storage section and the non-accommodated section. The air flowing from the non-accommodating section into the frozen material accommodating section has high humidity as described above. When humid air flows into the low-temperature frozen storage area, ice builds up on the boundary between the non-accommodating area and the frozen storage area and on the walls of the frozen storage area, eventually resulting in complete ice formation. There were problems in that defrosting could not be performed and cooling performance was inhibited by the ice layer.

本発明は、このような事情に鑑みてなされたも
ので、その目的とするところは、冷凍室内におけ
る着霜を一個所に集中させることができ、しかも
収容物を収容したまゝの状態で上記収容物を温度
上昇させることなく、しかも冷凍物収容部内に着
氷させることなく自動的に除霜でき、もつて冷凍
効率の向上化と除霜の影響除去とを図れる冷凍室
を備えた冷蔵庫を提供することにある。
The present invention was made in view of the above circumstances, and its purpose is to be able to concentrate frost formation in one place in the freezer compartment, and to remove the above-mentioned conditions while the stored items are still stored. To provide a refrigerator equipped with a freezing compartment that can automatically defrost stored items without raising the temperature of the stored items and without causing ice to form inside the frozen storage compartment, thereby improving refrigeration efficiency and eliminating the effects of defrosting. It is about providing.

以下、本発明の詳細を図示の実施例によつて説
明する。
Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図は本発明に係る冷蔵庫を縦方向に切断し
て示す図である。
FIG. 1 is a longitudinally cut view of the refrigerator according to the present invention.

同図において、図中は、冷蔵庫本体であり、
この冷蔵庫本体は、一側面を開放し、縦長に形
成された断熱機能を有する筐体2と、この筐体2
の上記開放面を選択的に閉じる開閉自在な断熱性
の扉体3とで構成されている。そして、冷蔵庫本
内には、内部を上下方向に2つに仕切る形に
断熱機能を有した仕切壁4が設けてあり、この仕
切壁4によつて下側に形成された部屋を冷蔵室5
とし、また上側に形成された部屋を冷凍室6とし
ている。なお、前記扉体3は冷蔵室5の一側面側
を選択的に閉じる下部扉7と、冷凍室6の一側面
側を選択的に閉じる上部扉8とで構成されてい
る。
In the figure, 1 in the figure is the refrigerator main body,
This refrigerator main body 1 includes a casing 2 with one side open and a vertically long insulation function, and a casing 2 that has a heat insulation function.
and a heat insulating door body 3 that can be opened and closed to selectively close the open surface of the door body. A partition wall 4 having a heat insulating function is provided inside the refrigerator main body 1 to partition the inside into two vertically. 5
In addition, the room formed on the upper side is used as a freezing chamber 6. The door body 3 includes a lower door 7 that selectively closes one side of the refrigerator compartment 5 and an upper door 8 that selectively closes one side of the freezer compartment 6.

しかして、前記冷蔵室5内には、食品等の収容
物を載置する棚9が複数段設けてあり、また、そ
の上壁内面近傍には冷却器(=蒸発器)10が傾
斜状態に設けてある。冷却器10の低位置側に
は、この低位置部分を包む形に露受皿11が設け
てあり、この受皿11に集められた水滴は、筐体
2の壁を貫通して設けられたパイプ12を介して
筐体2の外側面に沿つて設けられたパイプ13内
に案内され、上記パイプ13内を流下するように
なつている。なお、パイプ13内を流下した水滴
は筐体2の下方に設けられた蒸発皿14内に導か
れ、この皿14から大気中へ蒸発する。
In the refrigerator compartment 5, there are a plurality of shelves 9 on which stored items such as food are placed, and a cooler (=evaporator) 10 is arranged in an inclined state near the inner surface of the upper wall thereof. It is provided. A condensation tray 11 is provided on the lower side of the cooler 10 to cover this lower portion, and the water droplets collected on this tray 11 are transferred to a pipe 12 provided through the wall of the housing 2. The liquid is guided into a pipe 13 provided along the outer surface of the casing 2 through the pipe 13, and flows down the pipe 13. Note that the water droplets flowing down inside the pipe 13 are guided into an evaporation tray 14 provided below the housing 2, and evaporate from this tray 14 into the atmosphere.

一方、前記冷凍室6を形成する壁の上、下壁お
よび側壁には、これらの壁に密着する形に第1の
冷却器(第1の蒸発器)15が取り付けてある。
また、上記冷凍室6内には、この冷凍室6内を扉
側からみて前後に区分する形に仕切壁16が設け
てあり、この仕切壁16によつて区分された扉側
の空間を食品等を収容する収容部17とし、反対
側の空間を非収容部18としている。なお、非収
容部18の容積は収容部17のそれの数十分の1
に設定されている。上記非収容部18の内部に
は、非収容部18を形成する壁とは離間して第2
の冷却器(第2の蒸発器)19が傾斜状態に設け
てある。上記第2の冷却器19はパイプを蛇行さ
せて形成されたもので、第2図に示すようにパイ
プ20に沿つてシーズヒータ21が付設されてい
る。また、第2の冷却器19の低位置側には、こ
の低位置部を包む形に露受皿22が設けてあり、
この露受皿22に集められた水滴は筐体2の壁を
貫通して設けられたパイプ23を介して前記パイ
プ13に導かれる。
On the other hand, a first cooler (first evaporator) 15 is attached to the upper, lower, and side walls of the wall forming the freezer compartment 6 so as to be in close contact with these walls.
In addition, a partition wall 16 is provided in the freezer compartment 6 to divide the interior of the freezer compartment 6 into front and back sections when viewed from the door side, and the space on the door side divided by the partition wall 16 is used for food storage. The space on the opposite side is defined as a non-accommodating area 18. Note that the volume of the non-accommodating part 18 is several tenths of that of the accommodating part 17.
is set to . Inside the non-accommodating portion 18, there is a second wall spaced apart from the wall forming the non-accommodating portion 18.
A cooler (second evaporator) 19 is provided in an inclined state. The second cooler 19 is formed by meandering a pipe, and a sheathed heater 21 is attached along the pipe 20, as shown in FIG. Further, on the lower side of the second cooler 19, a dew pan 22 is provided to wrap around this lower position.
The water droplets collected on the dew pan 22 are guided to the pipe 13 through a pipe 23 provided through the wall of the housing 2.

前記仕切壁16の上部と下部とには、収容部1
7と非収容部18とを連通させる空気流路24,
25が設けてあり、上記流路24の近傍には、こ
の流路24を選択的に閉じるダンパ装置26が設
けてある。ダンパ装置26は具体的には第4図に
示すように構成されている。すなわち、冷凍室1
7の上壁内面に可撓性の部材27を介して磁性材
製のダンパ板28を流路24の下端部より下方に
達する位置まで吊り下げるとともに上記ダンパ板
28に対向させて鉄心29を配置し、この鉄心に
コイル30を装着したものとなつている。なお、
図中31は、筐体2の背面に取り付けられた凝縮
器を示し、また32は圧縮機を示している。
The upper and lower parts of the partition wall 16 are provided with storage portions 1.
7 and the non-accommodating part 18, an air flow path 24,
25, and a damper device 26 for selectively closing the flow path 24 is provided near the flow path 24. The damper device 26 is specifically constructed as shown in FIG. That is, freezer compartment 1
A damper plate 28 made of a magnetic material is suspended from the inner surface of the upper wall of 7 via a flexible member 27 to a position reaching below the lower end of the flow path 24, and an iron core 29 is placed opposite the damper plate 28. A coil 30 is attached to this iron core. In addition,
In the figure, 31 indicates a condenser attached to the back surface of the housing 2, and 32 indicates a compressor.

しかして、上記圧縮機32、凝縮器31、第
1、第2の冷却器15,19および冷却器10
は、第3図に示すように接続されて冷凍回路を形
成している。すなわち、冷媒としてフレオンを使
用し、このフレオンを圧縮機32で圧縮し、上記
圧縮フレオンを凝縮器31〜第1のキヤピラリー
チユーブ33〜冷却器10〜第1の冷却器15〜
第2のキヤピラリーチユーブ34〜第2の冷却器
19のルートに流し、再び圧縮機32で圧縮する
ようにしている。そして、上記圧縮機32の運転
停止、シーズヒータ21の付勢およびダンパ装置
26のコイル30の付勢は次のような制御回路に
よつて行なつている。すなわち、第3図に示すよ
うに、冷却器10によつて冷却される冷蔵室5内
にサーミスタ等の温度検出器41を設け、この温
度検出器41の出力を基にして冷蔵室5内の温度
が所定値以上のときモータ制御回路42を作動さ
せて圧縮機32を運転するようにしている。ま
た、前記第2の冷却器19の近傍に、たとえばサ
ーミスタ等の着霜量検出器43を設け、この検出
器43の出力に基いて着霜量が所定値を越えたと
きスイツチ回路44を作動させて、前記シーズヒ
ータ21とコイル30とを一定時間付勢するよう
にしている。
Therefore, the compressor 32, the condenser 31, the first and second coolers 15, 19, and the cooler 10
are connected as shown in FIG. 3 to form a refrigeration circuit. That is, Freon is used as a refrigerant, this Freon is compressed by a compressor 32, and the compressed Freon is passed through a condenser 31 to a first capillary reach tube 33 to a cooler 10 to a first cooler 15.
It flows into the route from the second capillary reach tube 34 to the second cooler 19, and is compressed again by the compressor 32. The operation of the compressor 32 is stopped, the sheathed heater 21 is energized, and the coil 30 of the damper device 26 is energized by the following control circuit. That is, as shown in FIG. 3, a temperature detector 41 such as a thermistor is provided in the refrigerator compartment 5 cooled by the cooler 10, and the temperature in the refrigerator compartment 5 is determined based on the output of this temperature detector 41. When the temperature is above a predetermined value, the motor control circuit 42 is activated to operate the compressor 32. Further, a frost amount detector 43 such as a thermistor is provided near the second cooler 19, and a switch circuit 44 is activated based on the output of this detector 43 when the amount of frost exceeds a predetermined value. Then, the sheathed heater 21 and coil 30 are energized for a certain period of time.

次に上記のように構成された本発明冷蔵庫の作
用を説明する。
Next, the operation of the refrigerator of the present invention constructed as described above will be explained.

まず、電源を投入すると、この時点では冷蔵室
5内の温度が高いので、直ちにモータ制御回路4
2が動作し、この結果、圧縮機32が運転を開始
する。圧縮機32が運転状態になると、冷媒であ
るフレオン、たとえばフレオンR−12は、上記
圧縮機32でたとえば10Kg/cm2程度に加圧された
後、凝縮器31に流入し、この凝縮器31で液化
される。液化したフレオンR−12は第1のキヤ
ピラリチユーブ33によつて、たとえば1.2Kg/
cm2程度に減圧されて、冷却器10および第1の冷
却器15に流入し、これら冷却器10,15を通
して冷蔵室5内および冷凍室6内の熱を奪つて蒸
発する。なお、このときの各冷却器10,15の
表面温度は、たとえば−25℃程度となる。また、
この冷却によつて冷蔵室5内の温度は+3℃程度
に、冷凍室6内の温度は−20℃程度になるように
各冷却器10,15の冷却面積等が予め設定され
ている。
First, when the power is turned on, the temperature inside the refrigerator compartment 5 is high at this point, so the motor control circuit 4 immediately
2 operates, and as a result, the compressor 32 starts operating. When the compressor 32 is in operation, the refrigerant Freon, for example Freon R-12, is pressurized to about 10 kg/cm 2 by the compressor 32 and then flows into the condenser 31. is liquefied. The liquefied Freon R-12 is transferred to the first capillary tube 33 at a rate of, for example, 1.2 kg/
The pressure is reduced to about cm 2 and the air flows into the cooler 10 and the first cooler 15, and through these coolers 10 and 15, it absorbs the heat in the refrigerator compartment 5 and the freezing compartment 6 and evaporates. Note that the surface temperature of each cooler 10, 15 at this time is, for example, about -25°C. Also,
The cooling area of each of the coolers 10 and 15 is set in advance so that the temperature in the refrigerator compartment 5 becomes about +3°C and the temperature in the freezer compartment 6 becomes about -20°C by this cooling.

しかして、第1の冷却器15内を通流した残り
の液化フレオンR−12は、第2のキヤピラリチ
ユーブ34でさらに1.0Kg/cm2程度に減圧されて
第2の冷却器19に流入する。フレオンは圧力が
低い程低温で蒸発する特性を有しているで、第2
の冷却器19に流入した液化フレオンR−12
は、ここでも蒸発し、この結果、第2の冷却器1
9の表面温度は、第1の冷却器15のそれより低
い、たとえば−30℃程度となる。そして、第2の
冷却器19を通流した冷媒は、再び圧縮機32に
戻されて前述した一連のサイクルを繰り返えす。
The remaining liquefied Freon R-12 that has passed through the first cooler 15 is further reduced in pressure to about 1.0 kg/cm 2 in the second capillary tube 34 and flows into the second cooler 19. do. Freon has the characteristic that the lower the pressure, the lower the temperature it evaporates.
Liquefied Freon R-12 flowing into the cooler 19 of
is also evaporated here, and as a result, the second cooler 1
The surface temperature of the cooling device 9 is lower than that of the first cooler 15, for example, about -30°C. The refrigerant that has passed through the second cooler 19 is then returned to the compressor 32 and repeats the above-described series of cycles.

ところで、上述の如きサイクルで運転される
と、冷蔵室5内および冷凍室6内は徐々に冷却さ
れる。この場合、冷凍室6内の温度が0℃以下に
なると、内壁や収容物の表面に霜が付着する。し
かし、前述の如く、第1の冷却器15の表面温度
より、第2の冷却器19の表面温度の方が低温と
なるように設定されているので、内壁や収容部の
表面に付着した霜は徐々に昇華して蒸気化し、こ
の蒸気は、収容部17と非収容部18との温度の
違いに基づく対流に乗つて流路24から非収容部
18へ移動し第2の冷却器19の表面に霜となつ
て付着する。したがつて冷凍室6内において着霜
が生じる部分は第2の冷却器19の表面だけとな
る。
By the way, when operated in the above-described cycle, the inside of the refrigerator compartment 5 and the inside of the freezer compartment 6 are gradually cooled. In this case, when the temperature inside the freezer compartment 6 becomes 0° C. or lower, frost will adhere to the inner walls and the surfaces of the stored items. However, as mentioned above, since the surface temperature of the second cooler 19 is set to be lower than the surface temperature of the first cooler 15, frost that adheres to the inner wall or the surface of the housing part gradually sublimates and vaporizes, and this vapor moves from the flow path 24 to the non-accommodating area 18 by riding on convection due to the difference in temperature between the accommodating area 17 and the non-accommodating area 18, and enters the second cooler 19. It forms frost on the surface. Therefore, the only part of the freezer compartment 6 where frost is formed is the surface of the second cooler 19.

しかして、第2の冷却器19の表面着霜量が
徐々に増加し、所定値を越えると、着霜量検出器
43の出力によつてスイツチ回路44が作動し、
シーズヒータ21とコイル30とを一定時間付勢
する。シーズヒータ21が付勢されると第2の冷
却器19が加熱され、この加熱によつて表面に付
着している霜が溶け、水滴となつて露受皿22に
落下する。つまり、除霜が行なわれる。そして露
受皿22に集められた水はパイプ23を介して外
部へ排出される。一方、コイル30が付勢される
と、ダンパ板28が第4図bに示すように鉄心2
9に吸引され、この吸引によつて同図に示すよう
に流路24が閉塞される。したがつて、シーズヒ
ータ21の付勢による温度上昇で、非収容部18
内の湿度が上昇しても、この湿度の高い空気が対
流で収容部17へ流れ込むのを阻止できることに
なり、結局、収容部17の壁面等に着氷が生じな
い状態で除霜できる。そして、一定時間が経過す
るとシーズヒータ21とコイル30との付勢が解
除され、再び第2の冷却器19は第1の冷却器1
5より低温に冷却される。なお、圧縮機32は、
冷蔵室5内の温度が所定値より高いとき運転され
る。
When the amount of frost on the surface of the second cooler 19 gradually increases and exceeds a predetermined value, the switch circuit 44 is activated by the output of the frost amount detector 43.
The sheathed heater 21 and coil 30 are energized for a certain period of time. When the sheathed heater 21 is energized, the second cooler 19 is heated, and this heating melts the frost adhering to the surface, which becomes water droplets and falls onto the dew pan 22. In other words, defrosting is performed. The water collected in the dew pan 22 is discharged to the outside via the pipe 23. On the other hand, when the coil 30 is energized, the damper plate 28 moves toward the core 2 as shown in FIG. 4b.
9, and this suction closes the flow path 24 as shown in the figure. Therefore, due to the temperature increase due to the energization of the sheathed heater 21, the non-accommodating portion 18
Even if the humidity inside rises, this high-humidity air can be prevented from flowing into the housing section 17 by convection, and as a result, defrosting can be achieved without ice forming on the walls of the housing section 17. Then, after a certain period of time has elapsed, the energization of the sheathed heater 21 and the coil 30 is released, and the second cooler 19 becomes the first cooler 1 again.
Cooled to a temperature lower than 5. Note that the compressor 32 is
It is operated when the temperature inside the refrigerator compartment 5 is higher than a predetermined value.

このように、冷凍室6内を、食物等を収容する
収容部17と、これに連通した非収容部18とに
仕切り、上記非収容部18内に他より低温に冷却
される第2の冷却器19を配置して着霜を上記第
2の冷却器19に集中させ、さらに第2の冷却器
19を加熱して除霜するときには、収容部17と
非収容部18との間の空気流路24をダンパ装置
26で閉じ、非収容部18で発生した、湿度の高
い空気が収容部17に流れ込まないようにしてい
る。
In this way, the inside of the freezer compartment 6 is partitioned into the storage section 17 that stores food, etc., and the non-accommodation section 18 that communicates with this, and the second cooling section that is cooled to a lower temperature than the other sections is inside the non-accommodation section 18. When arranging the container 19 to concentrate frost formation on the second cooler 19 and further heating the second cooler 19 to defrost, the air flow between the accommodation section 17 and the non-accommodation section 18 is The passage 24 is closed by a damper device 26 to prevent the highly humid air generated in the non-accommodating part 18 from flowing into the accommodating part 17.

したがつて、着霜を1個所に集中させたことに
よる効果は勿論のこと、特に除霜時にダンパ装置
26の作用で収容部17内の温度が乱されたり、
収容部17内の表面が着氷で乱されるのを防止で
き、結局、収容物を収容したまゝで、しかも収容
物に悪影響を与えることなく、また除霜後の再起
動時における冷凍効率を低下させる虞れのない状
態で除霜でき、非常に使い易いものが得られる。
Therefore, not only is the effect of concentrating frost formation in one place, but also the temperature inside the housing section 17 is disturbed by the action of the damper device 26 especially during defrosting.
It is possible to prevent the surface inside the storage section 17 from being disturbed by ice formation, and as a result, the stored items can be kept stored without any negative impact on the stored items, and the refrigeration efficiency when restarting after defrosting can be improved. It is possible to defrost without the risk of deteriorating the temperature, and it is very easy to use.

なお、上述した実施例では除霜時に流路24だ
けを閉じるようにしているが、流路25も閉じる
ようにしてもよい。また、ダンパ装置は上述した
実施例のものに限らず、たとえば第5図aに示す
ように構成してもよい。すなわち、ダンパ板28
として可撓性に富んだものを用いるとともに上記
ダンパ板28の後方にバイメタル51とヒータ5
2とを配置して構成する。そして、除霜時にヒー
タ52を付勢する。このようにすると、バイメタ
ル51が彎曲し、この彎曲によつて第5図bに示
すようにダンパ板28が押圧力を受けて変位し、
この変位によつて流路24が閉塞される。そして
ヒータ52の付勢を解除するとバイメタル51が
元の状態に復帰し、これによつて流路24が再び
開くことになる。したがつて、前記実施例と同様
に機能させることができる。そして、この実施例
の場合にはヒータ52で発生した熱を除霜用とし
ても利用できるので付設されるシーズヒータの容
量を少なくできる利点がある。
In addition, in the embodiment described above, only the flow path 24 is closed during defrosting, but the flow path 25 may also be closed. Further, the damper device is not limited to that of the above-described embodiment, but may be configured as shown in FIG. 5a, for example. That is, the damper plate 28
A bimetal 51 and a heater 5 are used behind the damper plate 28.
It is configured by arranging and 2. Then, the heater 52 is energized during defrosting. In this way, the bimetal 51 is curved, and due to this curve, the damper plate 28 is displaced by the pressing force as shown in FIG. 5b.
This displacement closes the flow path 24. When the energization of the heater 52 is released, the bimetal 51 returns to its original state, thereby opening the flow path 24 again. Therefore, it can function in the same way as the previous embodiment. In this embodiment, the heat generated by the heater 52 can also be used for defrosting, so there is an advantage that the capacity of the attached sheathed heater can be reduced.

以上詳述したように本発明によれば、冷凍効率
の向上化と除霜時に起こり易い幣害発生の防止化
とを同時に図れる冷蔵庫を提供できる。
As described in detail above, according to the present invention, it is possible to provide a refrigerator that can simultaneously improve refrigeration efficiency and prevent damage to the refrigerator that is likely to occur during defrosting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る冷蔵庫の縦断
面図、第2図は同実施例における第2の冷却器を
1部取り出して示す斜視図、第3図は同実施例に
おける冷凍回路および制御回路の構成説明図、第
4図aは同実施例におけるダンパ装置の構成説明
図、同図bはダンパ装置の動作状態を示す図、第
5図aは本発明の他の実施例におけるダンパ装置
の構成説明図、同図bは同ダンパ装置の動作状態
を示す図である。 ……冷蔵庫本体、5……冷蔵室、6……冷凍
室、10……冷却器、16……仕切壁、17……
収容部、18……非収容部、15……第1の冷却
器、19……第2の冷却器、24,25……空気
流路、26,26a……ダンパ装置。
FIG. 1 is a longitudinal sectional view of a refrigerator according to an embodiment of the present invention, FIG. 2 is a perspective view showing a part of the second cooler in the same embodiment, and FIG. 3 is a refrigeration circuit in the same embodiment. FIG. 4a is a diagram illustrating the configuration of the damper device in the same embodiment, FIG. 4b is a diagram showing the operating state of the damper device, and FIG. FIG. 1B is an explanatory diagram of the structure of the damper device, and FIG. 1B is a diagram showing the operating state of the damper device. 1 ... Refrigerator body, 5... Refrigerator compartment, 6... Freezer compartment, 10... Cooler, 16... Partition wall, 17...
Accommodating part, 18... Non-accommodating part, 15... First cooler, 19... Second cooler, 24, 25... Air flow path, 26, 26a... Damper device.

Claims (1)

【特許請求の範囲】 1 冷蔵庫本体と、この冷蔵庫本体内に形成され
た冷凍物収容部と非収容部とを連通させる空気流
路と、この空気流路を選択的に閉じるダンパ装置
と、前記冷凍物収容部内に収容された冷凍物を直
接的に冷却する第1の冷却器と、前記非収容部内
に設けられた第2の冷却器と、この第2の冷却器
と前記第1の冷却器とに冷媒を通流させるととも
に上記第1の冷却器の温度より上記第2の冷却器
の温度を低温に保持する冷凍回路と、前記第2の
冷却器に付着した霜を加熱除去する手段と、この
手段が動作しているとき前記ダンパ装置を閉じる
手段とを具備してなることを特徴とする冷蔵庫。 2 冷蔵庫本体と、この冷蔵庫本体内に形成され
た冷凍物収容部と非収容部とを連通させる空気流
路と、この空気流路を選択的に閉じるダンパ装置
と、前記冷凍物収容部内に収容された冷凍物を直
接的に冷却する第1の冷却器と、前記非収容部内
に設けられた第2の冷却器と、この第2の冷却器
と前記第1の冷却器とに冷媒を通流させるととも
に上記第1の冷却器の温度より上記第2の冷却器
の温度を低温に保持する冷凍回路と、前記第2の
冷却器の着霜量を検出る着霜量検出器と、この着
霜量検出器が一定の着霜量を検出したとき前記第
2の冷却器を加熱して除霜する手段と、この手段
が動作しているとき前記ダンパ装置を閉じる手段
とを具備してなることを特徴とする冷蔵庫。
[Scope of Claims] 1. A refrigerator main body, an air flow path that communicates a frozen object storage section and a non-storage section formed in the refrigerator main body, and a damper device that selectively closes this air flow path; a first cooler that directly cools the frozen object stored in the frozen object storage section; a second cooler provided in the non-accommodated section; this second cooler and the first cooling device; a refrigeration circuit that allows a refrigerant to flow through the second cooler and maintains the temperature of the second cooler at a lower temperature than the first cooler; and a means for heating and removing frost attached to the second cooler. and means for closing the damper device when the means is in operation. 2. A refrigerator main body, an air flow path that communicates a frozen product accommodating section and a non-accommodating section formed in the refrigerator main body, a damper device that selectively closes this air flow path, and a damper device that is housed in the frozen product accommodating section. A first cooler that directly cools the frozen object, a second cooler provided in the non-accommodating part, and a refrigerant flowing between the second cooler and the first cooler. a refrigeration circuit that causes the flow to flow and maintains the temperature of the second cooler at a lower temperature than the temperature of the first cooler; a frost amount detector that detects the amount of frost on the second cooler; A means for defrosting the second cooler by heating the second cooler when the frost amount detector detects a certain amount of frost, and a means for closing the damper device when the means is in operation. A refrigerator characterized by:
JP15465478A 1978-12-15 1978-12-15 Cold storage Granted JPS5582279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15465478A JPS5582279A (en) 1978-12-15 1978-12-15 Cold storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15465478A JPS5582279A (en) 1978-12-15 1978-12-15 Cold storage

Publications (2)

Publication Number Publication Date
JPS5582279A JPS5582279A (en) 1980-06-20
JPS621195B2 true JPS621195B2 (en) 1987-01-12

Family

ID=15588952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15465478A Granted JPS5582279A (en) 1978-12-15 1978-12-15 Cold storage

Country Status (1)

Country Link
JP (1) JPS5582279A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219684A (en) * 1983-05-27 1984-12-11 日新興業株式会社 Method and device for defrosting unit cooler system cooler

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5096963A (en) * 1973-12-27 1975-08-01
JPS5243473U (en) * 1975-09-23 1977-03-28

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5096963A (en) * 1973-12-27 1975-08-01
JPS5243473U (en) * 1975-09-23 1977-03-28

Also Published As

Publication number Publication date
JPS5582279A (en) 1980-06-20

Similar Documents

Publication Publication Date Title
US5941085A (en) Refrigerator having an apparatus for defrosting
SK91796A3 (en) Defrosting apparatus for refrigerators and method for controlling the same
US5551250A (en) Freezer evaporator defrost system
US2487182A (en) Two-temperature refrigerator having means for defrosting
KR20160149070A (en) Refrigerator including ice maker and defrost water collecting method thereof
US2788641A (en) Freezing unit
JP6709363B2 (en) refrigerator
US2807149A (en) Cycle defrost type refrigerators
US2484588A (en) Refrigerating apparatus having a freezing chamber and a storage chamber
US3107501A (en) Defrosting control for refrigerating apparatus
US2741095A (en) Refrigeratior having multiple section evaporator
JPS621194B2 (en)
US2962870A (en) Defrosting system and apparatus
JPS621195B2 (en)
US2672020A (en) Two-temperature refrigerating apparatus
US2698521A (en) Refrigerating apparatus, incluiding defrosting means
US2190995A (en) Refrigerating apparatus
US2720759A (en) Refrigerating apparatus
JP2573082Y2 (en) Late-night electric power type refrigerator
JPH07190597A (en) Defrosting device in freezer type refrigerator
US2672025A (en) Two-temperature refrigerating apparatus
US2672021A (en) Defrosting refrigerating apparatus
KR100220754B1 (en) Defrost apparatus of evaporator for a refrigerator
JP2000065463A (en) Freezing refrigerator
JPS6146373Y2 (en)