JPH07190597A - Defrosting device in freezer type refrigerator - Google Patents

Defrosting device in freezer type refrigerator

Info

Publication number
JPH07190597A
JPH07190597A JP32907793A JP32907793A JPH07190597A JP H07190597 A JPH07190597 A JP H07190597A JP 32907793 A JP32907793 A JP 32907793A JP 32907793 A JP32907793 A JP 32907793A JP H07190597 A JPH07190597 A JP H07190597A
Authority
JP
Japan
Prior art keywords
valve
cooler
opening
refrigerant
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32907793A
Other languages
Japanese (ja)
Inventor
Masatoshi Inatani
正敏 稲谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP32907793A priority Critical patent/JPH07190597A/en
Publication of JPH07190597A publication Critical patent/JPH07190597A/en
Pending legal-status Critical Current

Links

Landscapes

  • Defrosting Systems (AREA)

Abstract

PURPOSE:To prevent defrosting performance from being decreased by a method wherein an operation of a compressor is stopped when a cooling device is defrosted, a defrosting heater is electrically energized and at the same time a first opening or closing valve and a second opening or closing valve are concurrently closed to cause an inside area of the cooling device to be defrosted while being separated. CONSTITUTION:A compressor 23 stops its operation when a temperature within a freezer type refrigerator is cooled down to its predetermined temperature. At this time, since a discharged pressure from the compressor 23 is eliminated, a pressure within an auxiliary container 36 is reduced and an inner pressure of a first bellows 35 is also decreased. Due to this fact, a slide valve within a changing-over valve 32 is pushed by a force of a spring member 34 to close an opening at an expansion valve 25 with a first opening or closing valve 28 and an opening at a suction pipe 26 with a second opening or closing valve 30. A third opening or closing valve 41 is moved to cause a refrigerant flowing-in pipe 27 and a refrigerant discharging port 29 to be short circuited and connected from each other, resulting in that an inner side of the pipe of the cooling device 6 is separated from it. Then, the refrigerant within the pipe of the cooling device 6 is left at it is. In this way, the separation of the cooling device 6 enables the flowing-in of the refrigerant to be prohibited and a useless increase in temperature of the cooling device 6 is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷凍冷蔵庫の冷却器に
付着する霜を効率的に除去する除霜装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defrosting device for efficiently removing frost adhering to a refrigerator of a refrigerator / freezer.

【0002】[0002]

【従来の技術】従来より家庭用の冷凍冷蔵庫は扉の開閉
の度に比較的高温で絶対湿度の高い庫外の空気を取り込
むため、庫内でもっとも低温である蒸発器表面に結露し
霜となって成長することにより蒸発器表面と冷凍冷蔵庫
の庫内空気との熱交換を妨げ伝熱効率を低下させる課題
があった。そこで解決策としてはその蒸発器の近傍に除
霜ヒーターを取り付け、霜の堆積の度に除霜ヒーターに
電気を通し、その熱により除霜する方法が一般に多く実
用化されている。
2. Description of the Related Art Conventionally, a refrigerator for household use takes in outside air having a relatively high temperature and a high absolute humidity each time the door is opened and closed. However, there is a problem that the heat transfer efficiency is lowered by hindering the heat exchange between the evaporator surface and the air in the freezer / refrigerator. Therefore, as a solution, a method in which a defrost heater is attached in the vicinity of the evaporator, electricity is passed through the defrost heater each time frost is accumulated, and the heat is used to defrost is generally put into practical use.

【0003】また、昨今はこの除霜ヒーターを冷凍冷蔵
庫の庫内に収納した野菜、肉、魚等の食品から出るいや
な臭いを除去する臭気吸着体を熱により再生するヒータ
ーとして兼用することが多くなってきている。例えば特
開平2−97882号公報に記載される脱臭装置付き冷
凍冷蔵庫がある。
In recent years, this defrost heater can also be used as a heater for regenerating by heat, an odor adsorbent that removes unpleasant odors from foods such as vegetables, meat and fish stored in a refrigerator-freezer. It is getting more and more. For example, there is a freezer-refrigerator with a deodorizing device described in JP-A-2-97882.

【0004】以下、図9から図13を参照しながら、前
述した従来の除霜ヒーターを脱臭装置に応用した冷凍冷
蔵庫について説明する。
A freezer-refrigerator in which the above-described conventional defrost heater is applied to a deodorizing device will be described below with reference to FIGS. 9 to 13.

【0005】1は冷凍冷蔵庫本体で冷凍室2と冷蔵室3
と、冷凍室2の扉4と冷蔵室3の扉5とから構成されて
いる。6は冷凍室2背部の冷却器室7に配設された冷却
器であり、ファン8で冷却器6により冷却された空気の
一部を供給口9から冷凍室2内に供給し、さらに冷凍室
2内の空気リターンダクト10を介して冷却器室7内に
戻る冷却循環が繰り返されることで冷凍室2が冷却され
る。
Reference numeral 1 is a freezer-refrigerator body, and a freezer compartment 2 and a refrigerator compartment 3 are provided.
And a door 4 of the freezer compartment 2 and a door 5 of the refrigerator compartment 3. Reference numeral 6 denotes a cooler arranged in the cooler room 7 at the back of the freezer compartment 2 and supplies a part of the air cooled by the cooler 6 by the fan 8 into the freezer compartment 2 from the supply port 9 to further freeze the air. The freezing chamber 2 is cooled by repeating the cooling circulation returning to the inside of the cooler chamber 7 via the air return duct 10 in the chamber 2.

【0006】また冷却器6により冷却された空気の一部
は供給ダクト11を介して冷蔵室3内に供給され、冷蔵
室3内の空気がリターンダクト12を介して冷却器室7
内に戻される冷却循環を繰り返すことで冷蔵室が冷却さ
れる。
A part of the air cooled by the cooler 6 is supplied into the refrigerating compartment 3 via the supply duct 11, and the air in the refrigerating compartment 3 is supplied via the return duct 12 to the cooler compartment 7.
The refrigerating chamber is cooled by repeating the cooling circulation returned to the inside.

【0007】13は冷却器室7の下部で冷却器6の下方
に配設される除霜ヒーターで、例えばガラス管ヒーター
からなり、冷却器6の除霜時にのみ通電され、それ以外
は断電される通断電制御がなされる。また、14は除霜
ヒーター13の上方近傍に脱臭のために配設された吸着
体であり、活性炭等の吸着剤と白金やニッケル等の熱分
解触媒を固形板上に形成している。
Reference numeral 13 denotes a defrost heater which is disposed below the cooler 6 in the lower part of the cooler chamber 7. The defrost heater 13 is made of, for example, a glass tube heater and is energized only when the cooler 6 is defrosted. ON / OFF control is performed. Further, 14 is an adsorbent arranged near the upper part of the defrosting heater 13 for deodorization, and an adsorbent such as activated carbon and a thermal decomposition catalyst such as platinum or nickel are formed on the solid plate.

【0008】15はこの吸着体14の上面側に配置され
た屋根部材であり、これは例えば耐熱性及び耐水性を有
するアルミニウム等の金属板からなり、図10及び図1
1にも示すように下側が開放した浅底容器状をなし、前
記吸着体14の前記除霜ヒーター13側とは反対側、す
なわち上面を覆うようになっている。
Reference numeral 15 denotes a roof member arranged on the upper surface side of the adsorbent 14, which is made of a metal plate such as aluminum having heat resistance and water resistance.
As shown in FIG. 1, the container has a shallow container shape with an open lower side, and covers the side of the adsorbent 14 opposite to the defrost heater 13 side, that is, the upper surface.

【0009】16はこの屋根部材15と吸着体14との
間に設けられた断熱材で有り、例えばガラス繊維の紡織
により薄板上に形成されたものである。前記吸着体14
はその上面全体に断熱材16を挟んだ状態で屋根部材1
5に接着剤等により取り付けられ、これらは図11に示
すように除霜ヒーター13をその両端で冷却器室7の壁
面に支持している支持部材17に屋根部材15の長手方
向両端部を支持させる事により、除霜ヒーター13上方
に取り付けられている。
Reference numeral 16 is a heat insulating material provided between the roof member 15 and the adsorbent 14, and is formed on a thin plate by spinning of glass fibers, for example. The adsorbent 14
The roof member 1 with the heat insulating material 16 sandwiched over the entire upper surface thereof.
5, the defrosting heater 13 is supported on both ends of the roof member 15 in the longitudinal direction by a supporting member 17 supporting the defrosting heater 13 on the wall surface of the cooler chamber 7 as shown in FIG. By doing so, it is attached above the defrost heater 13.

【0010】18は前記冷却器6の上部近傍に取り付け
られた霜取り終了を検知するバイメタルサーモである。
Reference numeral 18 is a bimetal thermometer mounted near the upper part of the cooler 6 for detecting the end of defrosting.

【0011】以上のように構成された冷凍冷蔵庫の除霜
装置についてその動作を説明する。冷却運転時には、フ
ァン8の送風作用により、庫内の空気が冷却器室7、冷
凍室2、及びリターンダクト10を介して循環されると
共に、冷却器室7、供給ダクト11、冷蔵室3及びリタ
ーンダクト12を介して循環される。
The operation of the defroster for a refrigerator-freezer constructed as above will be described. During the cooling operation, the air in the refrigerator is circulated through the cooler chamber 7, the freezing chamber 2 and the return duct 10 by the blowing action of the fan 8, and the cooler chamber 7, the supply duct 11, the refrigerating chamber 3 and It is circulated through the return duct 12.

【0012】この際、冷却器室7内を通る空気は図12
に示す空気流19となって吸着体14と接触し、その空
気に含まれた臭気成分が吸着体14に吸着される。
At this time, the air passing through the inside of the cooler chamber 7 is as shown in FIG.
The air flow 19 shown in FIG. 2 comes into contact with the adsorbent 14, and the odorous component contained in the air is adsorbed by the adsorbent 14.

【0013】また冷凍室2の扉4及び冷蔵室3の扉5の
開閉によって進入した庫外の空気に含まれる湿気は最も
低温である冷却器6の外表面に結露し霜となって冷却器
6に付着する。
Moisture contained in the outside air that has entered by opening and closing the door 4 of the freezer compartment 2 and the door 5 of the refrigerating compartment 3 is condensed on the outer surface of the cooler 6 having the lowest temperature to form frost, and thus the cooler. Attach to 6.

【0014】付着し堆積した霜は冷却器6と冷却器室7
を流れる空気との熱交換を妨げるため、通常は一定間隔
を経た時、除霜ヒーター13に通電し除霜運転が行われ
る。
The frost that has adhered and accumulated has a cooler 6 and a cooler chamber 7.
In order to prevent heat exchange with the air flowing through, the defrost heater 13 is normally energized to perform the defrost operation after a certain interval.

【0015】除霜運転が開始されると、冷却器6の冷却
運転及びファン8の運転が停止される一方、除霜ヒータ
ー13に通電される事で除霜ヒーター13が熱せられ図
13に示す直線的な放射伝熱20と対流伝熱21とが発
生する。
When the defrosting operation is started, the cooling operation of the cooler 6 and the operation of the fan 8 are stopped, while the defrosting heater 13 is energized to heat the defrosting heater 13 as shown in FIG. Linear radiative heat transfer 20 and convective heat transfer 21 are generated.

【0016】この内の対流伝熱21により、冷却器6が
加熱されて除霜が行われ、これと共に直線的な放射伝熱
20により吸着体14が加熱される。
The convective heat transfer 21 therein heats the cooler 6 for defrosting, and at the same time, the linear radiant heat transfer 20 heats the adsorbent 14.

【0017】この放射伝熱により高温となった吸着体1
4は吸着していた臭気成分を開放すると同時に、含有す
る白金やニッケル等の触媒により臭気成分を熱分解して
除去する事になり、吸着機能が再生される。
The adsorbent 1 having a high temperature due to this radiation heat transfer
In No. 4, the adsorbed odor component is released, and at the same time, the contained odor component is thermally decomposed and removed by the catalyst such as platinum or nickel contained therein, and the adsorption function is regenerated.

【0018】このとき屋根部材15は、除霜ヒーター1
3からの熱を下方に封じ込めて吸着体14への加熱を効
率よく行う役割を果たすと共に、吸着体14及び除霜ヒ
ーター13に上方からの除霜水が直接落下するのを防止
している。
At this time, the roof member 15 is the defrost heater 1
The heat from 3 is confined downward to efficiently heat the adsorbent 14 and also prevents defrost water from directly falling onto the adsorbent 14 and the defrost heater 13.

【0019】断熱材16は吸着体14の熱が、金属製で
熱伝導性の良い屋根部材15から放熱されるのを抑え、
また、前記屋根部材15への除霜水が落下し屋根部材1
5が急冷される事による吸着体14のヒートショックを
防止している。
The heat insulating material 16 suppresses the heat of the adsorbent 14 from being radiated from the roof member 15 made of metal and having good heat conductivity,
In addition, defrosting water drops on the roof member 15 and the roof member 1
The heat shock of the adsorbent 14 due to the rapid cooling of 5 is prevented.

【0020】[0020]

【発明が解決しようとする課題】しかしながら、上記の
ような構成では、除霜ヒーター13と冷却器6の間の空
間に介在物として、屋根部材15と断熱部材16と吸着
体14が存在する事から、除霜ヒーター13から発生さ
せる直線的な放射伝熱20が遮断されて対流伝熱21の
みで冷却器6に付着した霜の除霜を行っている。
However, in the above configuration, the roof member 15, the heat insulating member 16 and the adsorbent 14 are present as inclusions in the space between the defrost heater 13 and the cooler 6. Therefore, the linear radiant heat transfer 20 generated from the defrost heater 13 is cut off, and only the convective heat transfer 21 removes the frost adhering to the cooler 6.

【0021】そのため、特に冷却器6の上部にまで熱が
届き難く、伝熱効率が悪くなりバイメタルサーモ18が
霜取り終了を検知するまでの除霜時間が長くなり電力量
が大きくなるばかりか、冷蔵庫内の温度上昇が大きくな
り、食品の保存に影響を与えるなどの欠点を有してい
る。
Therefore, in particular, it is difficult for heat to reach the upper part of the cooler 6, the heat transfer efficiency is deteriorated, the defrosting time until the bimetal thermostat 18 detects the completion of defrosting becomes longer, and the amount of electric power becomes large. The temperature rises significantly, which has the drawback of affecting the preservation of foods.

【0022】本発明は上記従来の問題点を解消するもの
であり、除霜ヒーターの冷却器への伝熱効率をあげ、冷
蔵庫の除霜性能の低下を防止する冷凍冷蔵庫の除霜装置
を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and provides a defrosting device for a freezer-refrigerator that improves the heat transfer efficiency to the cooler of the defrosting heater and prevents the defrosting performance of the refrigerator from decreasing. The purpose is to

【0023】[0023]

【課題を解決するための手段】この目的を達成するため
に本発明の除霜装置は、冷媒がコンプレッサーから吐出
され凝縮器と膨張弁と冷却器と吸入管を経て前記コンプ
レッサーに戻る冷凍サイクルで前記冷却器への冷媒流入
口に第一開閉弁と冷媒排出口に第二開閉弁とを持ち、冷
却器の下部には電気抵抗体を内蔵する除霜ヒーターが設
置され、前記冷却器の除霜時にはコンプレッサーの運転
を止め除霜ヒーターに通電すると共に前記第一開閉弁と
第二開閉弁とを同時に閉じ冷却器内を隔離状態にて除霜
する構成としている。
In order to achieve this object, the defrosting device of the present invention is a refrigeration cycle in which refrigerant is discharged from a compressor and returned to the compressor through a condenser, an expansion valve, a cooler, and a suction pipe. A defrosting heater having a first opening / closing valve at the refrigerant inlet and a second opening / closing valve at the refrigerant outlet to the cooler, and a defrost heater incorporating an electric resistor is installed at the bottom of the cooler to remove the defroster of the cooler. During frost, the operation of the compressor is stopped, the defrost heater is energized, and the first on-off valve and the second on-off valve are simultaneously closed to defrost the interior of the cooler.

【0024】また、冷却器の冷媒流入口と冷媒排出口と
を連結可能とする第三開閉弁を持ち、前記冷却器の除霜
時にはコンプレッサーの運転を止め除霜ヒーターに通電
すると共に前記第一開閉弁と第二開閉弁とを同時に閉
じ、第三開閉弁を開放にした状態にし、冷却器内を隔離
状態にて除霜する構成とする。
Further, it has a third opening / closing valve which can connect the refrigerant inlet and the refrigerant outlet of the cooler, and when defrosting the cooler, stops the operation of the compressor and energizes the defrost heater and The on-off valve and the second on-off valve are closed at the same time, and the third on-off valve is opened to defrost the inside of the cooler in an isolated state.

【0025】また、所定位置において膨張弁と冷却器へ
の冷媒流入口、および吸入管と冷却器からの冷媒排出口
とを連結し、駆動機構によりスライドしたとき膨張弁側
開口部を第一開閉弁で、吸入管側開口部を第二開閉弁で
閉鎖すると共に冷却器の冷媒流入口と冷媒排出口とを短
絡連結する第三の開閉弁とを一体で有するスライド弁と
駆動部からなる切り替え弁を冷却器に設けた構成として
いる。
Further, at a predetermined position, the expansion valve and the refrigerant inlet to the cooler are connected to each other, and the suction pipe and the refrigerant outlet from the cooler are connected to each other. With the valve, the opening portion on the suction pipe side is closed with the second opening / closing valve, and the third opening / closing valve integrally connecting the refrigerant inlet port and the refrigerant outlet port of the cooler is short-circuited, and the switching is performed by the slide unit and the drive unit. The valve is provided in the cooler.

【0026】さらに、スライド弁の駆動機構としてスラ
イド弁の一方に内圧により伸縮する第一ベローズと、そ
の第一ベローズの反対側にスプリング部材とを有し、前
記第一ベローズとコンプレッサー吐出側に内蔵した第二
ベローズと連結管で構成された駆動部の中に非凝縮性ガ
スを注入しコンプレッサー運転時と停止時の圧力変化を
利用してスライド弁を駆動させる駆動機構を持つ切り替
え弁を取り付けた構成としている。
Further, as a slide valve drive mechanism, one side of the slide valve has a first bellows that expands and contracts due to internal pressure, and a spring member is provided on the opposite side of the first bellows, and is built in the first bellows and the discharge side of the compressor. A switching valve having a drive mechanism that drives a slide valve by injecting a non-condensable gas into the drive unit composed of the second bellows and the connecting pipe and utilizing the pressure change at the time of compressor operation and at the time of stop was installed. It is configured.

【0027】[0027]

【作用】この構成によって、冷却器内に封じ込められた
液体冷媒が下部に位置する除霜ヒーターにより熱せら
れ、冷却器管内の下層部にて蒸発し上層部に移動する。
上層部においては冷却器の外表面に付着している霜によ
り冷やされ、気体の冷媒が凝縮し液体となり、その自重
にて下層部に移動する。
With this structure, the liquid refrigerant contained in the cooler is heated by the defrosting heater located in the lower part, evaporates in the lower layer in the cooler tube and moves to the upper layer.
In the upper layer portion, it is cooled by frost adhering to the outer surface of the cooler, the gaseous refrigerant condenses into a liquid, and moves to the lower layer portion by its own weight.

【0028】これを繰り返す事により下層部と上層部と
の効率的な熱交換が冷却器内部にて行われるため、冷却
器の上層部の外表面に付着した霜も除霜ヒーターの熱で
加熱され融解し、非常にすばやく効率よく除霜できる事
となる。特に冷却器の冷媒流入口と排出口とを短絡連結
する事により冷媒管がループ状となり気体冷媒と液体冷
媒との移動がより円滑に行われ、3つの開閉弁を一体化
する事により部品点数が少なくコンパクトにでき、一度
の操作で目的とする動作を確実に容易にすることができ
る。また、コンプレッサーの運転時と停止時の圧力変化
を利用する事により確実にスライド弁の駆動を行うと共
に電気量の比較的少ない省電力の除霜装置となる。
By repeating this, efficient heat exchange between the lower layer portion and the upper layer portion is performed inside the cooler, so that the frost attached to the outer surface of the upper layer portion of the cooler is also heated by the heat of the defrost heater. It melts and defrosts very quickly and efficiently. In particular, by short-circuiting the refrigerant inlet and outlet of the cooler, the refrigerant pipe becomes a loop and the gas refrigerant and liquid refrigerant move more smoothly, and the number of parts is increased by integrating the three on-off valves. It is possible to make the target operation surely easy with a single operation. Further, by utilizing the pressure change when the compressor is operating and when it is stopped, the slide valve can be reliably driven and the power saving defrosting device can generate a relatively small amount of electricity.

【0029】[0029]

【実施例】以下本発明の実施例について、図1から図8
に従い説明する。尚、冷却器及び除霜ヒーター、脱臭用
吸着体等の冷凍冷蔵庫への取付構造は従来例と同じであ
り、図面とその詳細な説明を省略する。
EXAMPLES Examples of the present invention will be described below with reference to FIGS.
Follow the explanation below. The cooling device, the defrosting heater, the deodorizing adsorbent, and the like are attached to the freezer-refrigerator in the same structure as in the conventional example, and therefore the drawings and detailed description thereof are omitted.

【0030】まず、22は冷媒がコンプレッサー23か
ら吐出され凝縮器24と膨張弁25と冷却器6と吸入管
26を経てコンプレッサー23に戻る冷凍サイクルシス
テムである。
Reference numeral 22 is a refrigeration cycle system in which the refrigerant is discharged from the compressor 23 and returns to the compressor 23 via the condenser 24, the expansion valve 25, the cooler 6 and the suction pipe 26.

【0031】前記冷却器6の冷媒流入口27には第一開
閉弁28と、冷媒排出口29には第二開閉弁30とが配
設されてある。
A first opening / closing valve 28 is provided at the refrigerant inlet 27 of the cooler 6, and a second opening / closing valve 30 is provided at the refrigerant outlet 29.

【0032】冷却器6の下部には従来例と同じく電気抵
抗体を内蔵する除霜ヒーター13を設置し、冷却器6の
除霜時にのみ通電され、それ以外は断電されるように制
御機器31により通断電制御される。また、従来例と同
じく除霜ヒーター13の上方近傍には活性炭等の吸着剤
と白金やニッケル等の熱分解触媒を固形板上に形成した
吸着体14が脱臭のために配設されてある。この吸着体
14の上面側には屋根部材15が配置され、耐熱性及び
耐水性を有するアルミニウム等の金属板からなる。この
屋根部材15は図10及び図11にも示すように下側が
開放した浅底容器状をなし、前記吸着体14の前記除霜
ヒーター13側とは反対側、すなわち上面を覆うように
なっている。
A defrosting heater 13 having an electric resistor built therein is installed under the cooler 6 as in the conventional example, so that the defrosting heater 13 is energized only when the defroster is defrosted, and the rest is cut off. The on / off control is performed by 31. Further, as in the conventional example, an adsorbent 14 having an adsorbent such as activated carbon and a thermal decomposition catalyst such as platinum or nickel formed on a solid plate is disposed near the upper portion of the defrost heater 13 for deodorization. A roof member 15 is arranged on the upper surface side of the adsorbent 14 and is made of a metal plate such as aluminum having heat resistance and water resistance. As shown in FIGS. 10 and 11, the roof member 15 has a shallow container shape with an open lower side, and covers the side of the adsorbent 14 opposite to the defrost heater 13 side, that is, the upper surface. There is.

【0033】従来例同様に、屋根部材15と吸着体14
との間にはガラス繊維の紡織により薄板上に形成された
断熱材16が設けられてあり、前記吸着体14と屋根部
材15とは断熱材16を挟んだ状態で接着剤等により取
り付けられ、これらは図11に示すように除霜ヒーター
13をその両端で冷却器室7の壁面に支持している支持
部材17に屋根部材15の長手方向両端部を支持させる
事により、除霜ヒーター13上方に取り付けられてい
る。
Similar to the conventional example, the roof member 15 and the adsorbent 14
A heat insulating material 16 formed on a thin plate by the weaving of glass fibers is provided between and, and the adsorbent 14 and the roof member 15 are attached with an adhesive or the like with the heat insulating material 16 sandwiched therebetween. As shown in FIG. 11, the supporting members 17 supporting the defrosting heater 13 on the wall surface of the cooler chamber 7 at both ends thereof support both ends of the roof member 15 in the longitudinal direction, so that the defrosting heater 13 is above the defrosting heater 13. Is attached to.

【0034】18は前記冷却器6の上部近傍に取り付け
られた霜取り終了を検知するバイメタルサーモである。
Reference numeral 18 denotes a bimetal thermometer mounted near the upper portion of the cooler 6 for detecting the completion of defrosting.

【0035】32は前記第一開閉弁28と第二開閉弁3
0とを一体に成形したスライド弁33を内部に収納する
切り替え弁であり、スライド弁33の移動方向の片側に
はスプリング部材34が配設され、もう一方には内圧に
より伸縮する第一ベローズ35が設置されている。
32 is the first on-off valve 28 and the second on-off valve 3
Is a switching valve that accommodates a slide valve 33 integrally formed with 0, a spring member 34 is disposed on one side in the moving direction of the slide valve 33, and a first bellows 35 that expands and contracts due to internal pressure is provided on the other side. Is installed.

【0036】前記第一ベローズ35はコンプレッサー2
3の吐出側39の冷凍サイクルシステム22内にある補
助容器36に内蔵した第二ベローズ37と連結管38で
連結され駆動部40を構成しており内部には非凝縮性ガ
スが充填されている。
The first bellows 35 is the compressor 2
The second bellows 37 contained in the auxiliary container 36 in the refrigeration cycle system 22 on the discharge side 39 of 3 is connected by the connecting pipe 38 to form the drive unit 40, and the inside is filled with the non-condensable gas. .

【0037】すなわちスライド弁33はスプリング34
とコンプレッサー23の運転と停止時に生ずる圧力差で
伸縮する第一ベローズ35とにより駆動する駆動機構を
備えた切り替え弁32の構成となっている。
That is, the slide valve 33 has a spring 34.
The switching valve 32 is provided with a drive mechanism that is driven by the first bellows 35 that expands and contracts due to a pressure difference generated when the compressor 23 is operated and stopped.

【0038】スライド弁33にはコンプレッサー23の
運転時に冷却器6の冷媒流入口27と冷媒排出口29と
を区切り、停止時にはスライド弁33の駆動により前記
冷媒流入口27と冷媒排出口29とを連動させる第三開
閉弁41も一体で設けられてある。
The slide valve 33 separates the refrigerant inlet 27 and the refrigerant outlet 29 of the cooler 6 when the compressor 23 is in operation, and when the compressor 23 is stopped, the slide valve 33 is driven to connect the refrigerant inlet 27 and the refrigerant outlet 29. The third on-off valve 41 to be interlocked is also provided integrally.

【0039】以上のように構成された冷凍冷蔵庫の除霜
装置について、以下その動作を説明する。
The operation of the defroster for a freezer-refrigerator constructed as above will be described below.

【0040】まず、コンプレッサー23が稼働すると冷
凍サイクルシステム22内に充填されたフロン等の冷媒
が圧縮され吐出口39より吐出される。吐出された冷媒
は高圧で100℃以上の高温の気体であるが、凝縮器2
4内で外気温にて40〜50℃に冷やされ液体に変わ
る。
First, when the compressor 23 operates, the refrigerant such as CFC filled in the refrigeration cycle system 22 is compressed and discharged from the discharge port 39. The discharged refrigerant is a high-pressure gas with a high temperature of 100 ° C. or higher, but the condenser 2
It is cooled to 40 to 50 ° C at ambient temperature in 4 and becomes liquid.

【0041】流量を絞った細管のキャピラリーで構成さ
れた膨張弁25を液体の冷媒が通過すると急激に圧力が
低下し液体が気化をはじめ、冷却器6内では外部より気
化熱を奪い冷却室7を冷却する。
When the liquid refrigerant passes through the expansion valve 25 which is composed of a capillary with a narrowed flow rate, the pressure suddenly drops and the liquid begins to vaporize. In the cooler 6, heat of vaporization is taken from the outside to cool the cooling chamber 7. To cool.

【0042】気化した冷媒は冷却器6の排出口29から
吸入管26を通過しコンプレッサー23に戻る。
The vaporized refrigerant passes from the discharge port 29 of the cooler 6 through the suction pipe 26 and returns to the compressor 23.

【0043】上記冷凍サイクルの冷媒循環時には、切り
替え弁32のスライド弁33がコンプレッサー23の運
転で吐出側39から吐き出される圧縮冷媒により補助容
器36内が高圧となり第二ベローズ37を圧縮させ、そ
の力が第一ベローズ35と連結管38と第二ベローズ3
7との中に充填された非凝縮性ガスに圧力が加わり、第
一ベローズ35を膨らませスライド弁33を反対側から
押すスプリング部材34の力に勝りコンプレッサー運転
時の所定位置に押しやる。(図2参照) この所定位置では膨張弁25と冷却器6の冷媒流入口2
7と、冷却器6の冷媒排出口と吸入管とが連動された状
態であり、上記に示した様に冷媒が冷凍サイクルシステ
ム内を円滑に循環できる。
During the refrigerant circulation in the refrigeration cycle, the slide valve 33 of the switching valve 32 causes the compressed refrigerant discharged from the discharge side 39 by the operation of the compressor 23 to increase the pressure in the auxiliary container 36 to compress the second bellows 37, and its force is exerted. Is the first bellows 35, the connecting pipe 38, and the second bellows 3.
Pressure is applied to the non-condensable gas filled in 7 and 7 to inflate the first bellows 35 and overcome the force of the spring member 34 pushing the slide valve 33 from the opposite side to push it to a predetermined position during compressor operation. (See FIG. 2) At this predetermined position, the expansion valve 25 and the refrigerant inlet 2 of the cooler 6
7, the refrigerant outlet of the cooler 6 and the suction pipe are interlocked, and as described above, the refrigerant can smoothly circulate in the refrigeration cycle system.

【0044】冷却器6で冷却器室7が冷却されるとファ
ン8で冷却された空気の一部を供給口9から冷凍室2内
に供給し、さらに冷凍室2内の空気リターンダクト10
を介して冷却器室7内に戻る冷却循環が繰り返されるこ
とで冷凍室2が冷却される。
When the cooler chamber 7 is cooled by the cooler 6, a part of the air cooled by the fan 8 is supplied into the freezing chamber 2 through the supply port 9, and the air return duct 10 in the freezing chamber 2 is further supplied.
The freezing chamber 2 is cooled by repeating the cooling circulation returning to the inside of the cooler chamber 7 via.

【0045】また冷却器6により冷却された空気の一部
は供給ダクト11を介して冷蔵室3内に供給され、冷蔵
室3内の空気がリターンダクト12を介して冷却器室7
内に戻される冷却循環を繰り返すことで冷蔵室3が冷却
される。
A part of the air cooled by the cooler 6 is supplied into the refrigerating chamber 3 via the supply duct 11, and the air in the refrigerating chamber 3 is supplied via the return duct 12 to the cooler chamber 7.
The refrigerating chamber 3 is cooled by repeating the cooling circulation returned to the inside.

【0046】冷凍室2と冷蔵室3が十分冷却されるまで
コンプレッサー23は運転を続けるが、庫内温度が所定
温度に冷やされると停止する。この時、コンプレッサー
23からの冷媒の吐出圧力がなくなるため、補助容器3
6内の圧力が低下し第一ベローズ35の内圧も下がる。
そのため切り替え弁32内のスライド弁33は、図3で
示すようにスプリング部材34の力に押され膨張弁25
側開口部を第一開閉弁28で、吸入管26側開口部を第
二開閉弁30で閉鎖し、第三開閉弁41が移動し冷媒流
入管27と冷媒排出口29とを短絡連結するようにな
り、冷却器6管内はループ状に隔離状態となる。
The compressor 23 continues to operate until the freezing compartment 2 and the refrigerating compartment 3 are sufficiently cooled, but stops when the internal temperature is cooled to a predetermined temperature. At this time, since the discharge pressure of the refrigerant from the compressor 23 disappears, the auxiliary container 3
The pressure in 6 decreases, and the internal pressure of the first bellows 35 also decreases.
Therefore, the slide valve 33 in the switching valve 32 is pushed by the force of the spring member 34 as shown in FIG.
The side opening is closed by the first opening / closing valve 28, the opening on the suction pipe 26 side is closed by the second opening / closing valve 30, and the third opening / closing valve 41 is moved to short-circuit the refrigerant inflow pipe 27 and the refrigerant outlet 29. Then, the inside of the cooler 6 tube is isolated in a loop shape.

【0047】コンプレッサー23の停止により隔離状態
となった冷却器6管内の冷媒はそのまま滞留することと
なり、切替弁32が無い場合には吸入管26の高圧側か
ら高温高圧冷媒が冷却器に流れ込み、冷却効率を低下さ
せるが、冷却器を隔離することにより流れ込みを阻止で
き、無駄な冷却器の温度上昇を防止する効果がある。
Refrigerant in the cooler 6 pipe which is in the isolated state due to the stop of the compressor 23 stays as it is, and when there is no switching valve 32, the high temperature high pressure refrigerant flows into the cooler from the high pressure side of the suction pipe 26, Although the cooling efficiency is reduced, it is possible to prevent the inflow by isolating the cooler and prevent an unnecessary temperature rise of the cooler.

【0048】また長時間冷却運転が続くと、冷凍室2の
扉4及び冷蔵室3の扉5の開閉によって進入した庫外の
空気に含まれる湿気は最も低温である冷却器6の外表面
に結露し霜となって冷却器6に付着堆積する。
When the cooling operation is continued for a long time, the moisture contained in the outside air that has entered by opening and closing the door 4 of the freezing compartment 2 and the door 5 of the refrigerating compartment 3 is reflected on the outer surface of the cooler 6 having the lowest temperature. Condensation forms frost and deposits on the cooler 6.

【0049】よって通常は一定間隔で除霜ヒーター13
に通電し除霜運転が行われる。除霜運転が開始される
と、冷却器6の冷却運転及びファン8の運転が停止され
る一方、除霜ヒーター13に通電される事で除霜ヒータ
ー13が熱せられ図5に示す直線的な放射伝熱20と対
流伝熱21とが発生する。
Therefore, the defrosting heater 13 is normally provided at regular intervals.
Is energized and defrosting operation is performed. When the defrosting operation is started, the cooling operation of the cooler 6 and the operation of the fan 8 are stopped, while the defrosting heater 13 is energized to heat the defrosting heater 13 and linearly move as shown in FIG. Radiative heat transfer 20 and convective heat transfer 21 are generated.

【0050】この内の対流伝熱21により、冷却器6が
加熱されて除霜が行われ、これと共に直線的な放射伝熱
20により吸着体14が加熱される。
The convective heat transfer 21 therein heats the cooler 6 for defrosting, and at the same time, the linear radiant heat transfer 20 heats the adsorbent 14.

【0051】この放射伝熱により高温となった吸着体1
4は吸着していた臭気成分を開放すると同時に、含有す
る触媒により臭気成分を熱分解して除去する事になり、
吸着機能が再生される。このとき屋根部材15は、除霜
ヒーター13からの熱を下方に封じ込めて吸着体14へ
の加熱を効率よく行う役割を果たすと共に、吸着体14
及び除霜ヒーター13に上方からの除霜水が直接落下す
るのを防止している。
The adsorbent 1 which has reached a high temperature due to this radiative heat transfer
No. 4 releases the adsorbed odor component, and at the same time, thermally decomposes and removes the odor component by the contained catalyst.
The adsorption function is regenerated. At this time, the roof member 15 plays a role of efficiently confining the heat from the defrost heater 13 to heat the adsorbent 14 downward, and
Also, defrosting water from above is prevented from directly falling onto the defrosting heater 13.

【0052】断熱材16は吸着体14の熱が、金属製で
熱伝導性の良い屋根部材15から放熱されるのを抑え、
また、前記屋根部材15への除霜水が落下し屋根部材1
5が急冷される事による吸着体14のヒートショックを
防止している。
The heat insulating material 16 suppresses the heat of the adsorbent 14 from being radiated from the roof member 15 made of metal and having good heat conductivity,
In addition, defrosting water drops on the roof member 15 and the roof member 1
The heat shock of the adsorbent 14 due to the rapid cooling of 5 is prevented.

【0053】この様に脱臭用の吸着体14や屋根部材1
5と断熱材16とが直線的な放射伝熱を遮るため熱の伝
達は大幅に低下し、冷却器6の上層部に熱を与え霜を溶
かすのには長時間の加熱が従来例では必要であった。
Thus, the deodorizing adsorbent 14 and the roof member 1
5 and the heat insulating material 16 block linear radiative heat transfer, heat transfer is significantly reduced, and long-time heating is required in the conventional example in order to apply heat to the upper layer of the cooler 6 to melt frost. Met.

【0054】しかし本発明の除霜装置であれば、図4で
示すように冷媒管内に隔離状態となった液体冷媒42は
冷却器6の下層部43で除霜ヒーター13にて熱せられ
蒸発し上層部44へ移動(白矢印Aの方向)し上層部4
4に熱を運ぶことになる。上層部44では霜45の融解
に熱が奪われ再度冷媒は凝縮し液体となり自重でもって
下層部に流れる(矢印Bの方向)。この繰り返しにより
冷却管内部にて冷媒の蒸発凝縮を利用した効率のよい熱
搬送が行われ上層部の外表面に付着した霜を内部から除
去するため短時間にて完了させることができる。
However, in the defrosting apparatus of the present invention, the liquid refrigerant 42 that has been isolated in the refrigerant tube as shown in FIG. 4 is heated by the defrosting heater 13 in the lower layer portion 43 of the cooler 6 and evaporated. Move to upper layer 44 (direction of white arrow A) and move to upper layer 4
It will carry heat to 4. In the upper layer portion 44, heat is taken by the melting of the frost 45, and the refrigerant is condensed again into a liquid and flows to the lower layer portion by its own weight (direction of arrow B). By repeating this, efficient heat transfer utilizing evaporation and condensation of the refrigerant is performed inside the cooling pipe, and the frost adhering to the outer surface of the upper layer portion is removed from the inside, so that it can be completed in a short time.

【0055】すなわち、下層部43に取り込まれた熱
は、上記で示すヒートパイプ理論により速やかに上層部
44に熱を運ぶことになる(図5、矢印Cの方向)。
That is, the heat taken into the lower layer portion 43 quickly carries the heat to the upper layer portion 44 according to the heat pipe theory described above (direction of arrow C in FIG. 5).

【0056】除霜が完了すると、冷却器6の上部に設け
られたバイメタルサーモ18が温度上昇にて検知し制御
機器31に信号を送り、コンプレッサー及びファンの運
転を開始させる。
When the defrosting is completed, the bimetal thermostat 18 provided above the cooler 6 detects the temperature rise and sends a signal to the control device 31 to start the operation of the compressor and the fan.

【0057】コンプレサー23の運転と同時に切替弁3
2のスライド弁33は運転時所定位置に戻り、再度冷媒
が冷凍サイクルシステム内を円滑に循環し始める。
At the same time as the operation of the compressor 23, the switching valve 3
The second slide valve 33 returns to a predetermined position during operation, and the refrigerant again starts smoothly circulating in the refrigeration cycle system.

【0058】以上のように本実施例によれば、冷却器6
内に封じ込められた液体冷媒42が下部に位置する除霜
ヒーター13により熱せられ、冷却器6管内の下層部4
3にて蒸発し上層部44に移動する。上層部44におい
ては冷却器6の外表面に付着している霜45により冷や
され、気体の冷媒が凝縮し液体となり、その自重にて下
層部43に移動する。これを繰り返す事により下層部4
3と上層部44との効率的な熱交換が冷却器6内部にて
行われるため、冷却器6の上層部44の外表面に付着し
た霜45も除霜ヒーター13の熱で加熱され融解し、非
常にすばやく効率よく除霜できる事となる。特に冷却器
6の冷媒流入口27と排出口29とを短絡連結する事に
より冷媒管がループ状となり気体冷媒と液体冷媒との移
動がより円滑に行われる。また、3つの開閉弁を一体化
する事により部品点数が少なくコンパクトに出来、一度
の動作で容易に操作できる。また、コンプレッサー23
の運転時と停止時の圧力変化を利用する事により確実に
スライド弁33の駆動を行うと共に電気量の比較的少な
い省電力の除霜装置となる。
As described above, according to this embodiment, the cooler 6
The liquid refrigerant 42 enclosed in the inside is heated by the defrost heater 13 located in the lower part, and the lower layer portion 4 in the cooler 6 tube is heated.
It vaporizes in 3 and moves to the upper layer part 44. In the upper layer portion 44, it is cooled by the frost 45 attached to the outer surface of the cooler 6, the gaseous refrigerant is condensed and becomes a liquid, and it moves to the lower layer portion 43 by its own weight. By repeating this, lower layer 4
Since efficient heat exchange between the upper layer part 44 and the upper layer part 3 is performed inside the cooler 6, the frost 45 attached to the outer surface of the upper layer part 44 of the cooler 6 is also heated by the heat of the defrost heater 13 and melted. , It will be possible to defrost very quickly and efficiently. In particular, by short-circuiting and connecting the refrigerant inlet 27 and the outlet 29 of the cooler 6, the refrigerant pipe becomes a loop and the gas refrigerant and the liquid refrigerant move more smoothly. Also, by integrating the three on-off valves, the number of parts can be reduced and the device can be made compact, and can be easily operated with one operation. Also, the compressor 23
By utilizing the pressure change at the time of operation and at the time of stop, the slide valve 33 can be reliably driven, and the power saving defrosting device can generate a relatively small amount of electricity.

【0059】尚、図6で示すように冷却器6の冷媒流入
口27を第一開閉弁28で、冷媒排出口29を第2開閉
弁29で別々の開閉弁で開閉して冷却内を隔離状態にし
ても冷却器内の冷媒による熱搬送は円滑に行われるがル
ープ状にする方が、気相の流れができるためより効果的
である。
As shown in FIG. 6, the refrigerant inlet 27 of the cooler 6 is opened and closed by the first opening / closing valve 28, and the refrigerant outlet 29 is opened and closed by the second opening / closing valve 29 by separate opening / closing valves. Even in the state, the heat transfer by the refrigerant in the cooler is smoothly performed, but the loop form is more effective because the vapor phase flow can be performed.

【0060】また、図7に示すように第一開閉弁28と
第二開閉弁30と第三開閉弁41とを別々に切り替える
ようにしても熱伝達効率向上の効果は得られるが、切り
替え弁32として一体開閉弁をすることで部品点数が少
なくなりコンパクトな設計が可能となる。また、個々の
別々の制御を行うと各開閉弁のタイミングが微妙にずれ
たりして信頼性の面から一体化が望ましい。
Further, as shown in FIG. 7, if the first opening / closing valve 28, the second opening / closing valve 30, and the third opening / closing valve 41 are separately switched, the effect of improving the heat transfer efficiency can be obtained, but the switching valve By using 32 as an integrated open / close valve, the number of parts is reduced and a compact design is possible. In addition, when the individual control is performed individually, the timing of each on-off valve may be slightly deviated, and integration is desirable from the viewpoint of reliability.

【0061】また、図8で示すように駆動部40を電磁
弁でのスライド弁移動も可能であるが、コンプレッサー
の運転停止時の圧力変化を利用した方が切り換えタイミ
ングを合わせ易く、電気量がよけいに必要とせず、確実
に動作させることができるので、コンプレッサーの圧力
変化を利用する方法が良好である。
As shown in FIG. 8, the drive unit 40 can be moved by a slide valve using an electromagnetic valve. However, it is easier to adjust the switching timing by using the pressure change when the compressor is stopped, and the amount of electricity is reduced. The method utilizing the pressure change of the compressor is preferable because it can be operated reliably without being required.

【0062】[0062]

【発明の効果】以上のように本発明は冷却器内に封じ込
められた液体冷媒が下部に位置する除霜ヒーターにより
熱せられ、冷却器管内の下層部にて蒸発し上層部に移動
する。上層部においては冷却器の外表面に付着している
霜により冷やされ、気体の冷媒が凝縮し液体となり、そ
の自重にて下層部に移動する。これを繰り返す事により
下層部と上層部との効率的な熱交換が冷却器内部にて行
われるため、冷却器の上層部の外表面に付着した霜も除
霜ヒーターの熱で加熱され融解し、非常にすばやく効率
よく除霜できる事となる。特に冷却器の冷媒流入口と排
出口とを短絡連結する事により冷媒管がループ状となり
気体冷媒と液体冷媒との移動がより円滑に行われ、3つ
の開閉弁を一体化する事により部品点数が少なくコンパ
クトに出来、一回の動作で容易に操作できる。また、コ
ンプレッサーの運転時と停止時の圧力変化を利用する事
により確実にスライド弁の駆動を行うと共に電気量の比
較的少ない省電力の除霜装置となる。
As described above, according to the present invention, the liquid refrigerant contained in the cooler is heated by the defrosting heater located in the lower part, evaporates in the lower layer in the cooler tube and moves to the upper layer. In the upper layer portion, it is cooled by frost adhering to the outer surface of the cooler, the gaseous refrigerant condenses into a liquid, and moves to the lower layer portion by its own weight. By repeating this, efficient heat exchange between the lower layer and the upper layer is performed inside the cooler, so the frost adhering to the outer surface of the upper layer of the cooler is also heated by the heat of the defrost heater and melts. , It will be possible to defrost very quickly and efficiently. In particular, by short-circuiting the refrigerant inlet and outlet of the cooler, the refrigerant pipe becomes a loop and the gas refrigerant and liquid refrigerant move more smoothly, and the number of parts is increased by integrating the three on-off valves. It is small and can be made compact, and can be easily operated with one operation. Further, by utilizing the pressure change when the compressor is operating and when it is stopped, the slide valve can be reliably driven and the power saving defrosting device can generate a relatively small amount of electricity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の冷凍冷蔵庫の除霜装置を含む
冷凍サイクルの概略図
FIG. 1 is a schematic view of a refrigeration cycle including a defroster for a refrigerator / freezer according to an embodiment of the present invention.

【図2】同装置のコンプレサー運転時の切り替え弁の平
面断面図
FIG. 2 is a plan cross-sectional view of a switching valve when the apparatus is operating as a compressor.

【図3】同装置のコンプレッサー停止時の切り替え弁の
平面断面図
FIG. 3 is a plan sectional view of a switching valve of the device when the compressor is stopped.

【図4】同装置の冷却器管内の動作を示す模式断面図FIG. 4 is a schematic cross-sectional view showing the operation in the cooler tube of the same device.

【図5】同装置の熱の移動の状態を示す縦断面図FIG. 5 is a vertical cross-sectional view showing a state of heat transfer of the device.

【図6】本発明の別の実施例を示す除霜装置の概略図FIG. 6 is a schematic view of a defrosting device showing another embodiment of the present invention.

【図7】本発明の別の実施例を示す除霜装置の概略図FIG. 7 is a schematic view of a defrosting device showing another embodiment of the present invention.

【図8】同装置の別の切り替え弁の平面断面図FIG. 8 is a plan sectional view of another switching valve of the same device.

【図9】従来の冷凍冷蔵庫の除霜装置を配置した状態を
表す冷凍冷蔵庫上部の縦断面図
FIG. 9 is a vertical cross-sectional view of the upper part of the freezer-refrigerator showing a state in which a defroster for a conventional freezer-refrigerator is arranged.

【図10】従来例の除霜ヒーター要部拡大断面図FIG. 10 is an enlarged cross-sectional view of essential parts of a conventional defrost heater.

【図11】従来例の除霜ヒーター要部拡大正面図FIG. 11 is an enlarged front view of essential parts of a conventional defrost heater.

【図12】従来の要部の空気の流れ状態を示した拡大断
面図
FIG. 12 is an enlarged cross-sectional view showing a conventional air flow state of essential parts.

【図13】従来の要部の熱の移動状態を示した拡大縦断
面図
FIG. 13 is an enlarged vertical cross-sectional view showing a conventional heat transfer state of essential parts.

【符号の説明】[Explanation of symbols]

6 冷却器 13 除霜用ヒーター 22 冷凍サイクル 23 コンプレッサー 24 凝縮器 25 膨張弁 26 吸入管 27 冷媒流入口 28 第一開閉弁 29 吸入管側排出口 30 第二開閉弁 32 切り替え弁 33 スライド弁 34 スプリング部材 35 第一ベローズ 37 第二ベローズ 40 駆動部 41 第三開閉弁 6 Cooler 13 Defrosting heater 22 Refrigeration cycle 23 Compressor 24 Condenser 25 Expansion valve 26 Suction pipe 27 Refrigerant inlet 28 First opening / closing valve 29 Suction pipe side outlet 30 Second opening / closing valve 32 Switching valve 33 Slide valve 34 Spring Member 35 First bellows 37 Second bellows 40 Drive part 41 Third on-off valve

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 冷媒がコンプレッサーから吐出され凝縮
器と膨張弁と冷却器と吸入管を経て前記コンプレッサー
に戻る冷凍サイクルシステムで前記冷却器への冷媒流入
口に第一開閉弁と冷媒排出口に第二開閉弁とを有し、冷
却器の下部には電気抵抗体を内蔵する除霜ヒーターが設
置され、前記冷却器の除霜時にはコンプレッサーの運転
を止め除霜ヒーターに通電すると共に前記第一開閉弁と
第二開閉弁とを同時に閉じ冷却器内を隔離状態にして除
霜することを特徴とする冷凍冷蔵庫の除霜装置。
1. A refrigeration cycle system in which refrigerant is discharged from a compressor and returned to the compressor via a condenser, an expansion valve, a cooler, and a suction pipe, and a first opening / closing valve and a refrigerant outlet are provided at a refrigerant inlet port to the cooler. A defrost heater having a second on-off valve and a built-in electric resistor is installed in the lower part of the cooler, and when defrosting the cooler, the operation of the compressor is stopped and the defrost heater is energized. A defroster for a refrigerator / freezer, wherein the on-off valve and the second on-off valve are simultaneously closed to defrost the inside of the cooler.
【請求項2】 冷却器の冷媒流入口と冷媒排出口とを連
結可能とする第三開閉弁を持ち、前記冷却器の除霜時に
はコンプレッサーの運転を止め除霜ヒーターに通電する
と共に第一開閉弁と第二開閉弁とを同時に閉じ、第三開
閉弁を開放にした状態にし、冷却器内を隔離状態にて除
霜することを特徴とする請求項1記載の冷凍冷蔵庫の除
霜装置。
2. A third opening / closing valve for connecting a refrigerant inlet and a refrigerant outlet of the cooler, wherein when the cooler is defrosted, the operation of the compressor is stopped and the defrosting heater is energized and the first opening / closing is performed. The defroster for a refrigerator / freezer according to claim 1, wherein the valve and the second opening / closing valve are simultaneously closed and the third opening / closing valve is opened to defrost the inside of the cooler in an isolated state.
【請求項3】 所定位置において膨張弁と冷却器への冷
媒流入口、および吸入管と冷却器からの冷媒排出口とを
連結し、駆動機構によりスライドしたとき膨張弁側開口
部を第一開閉弁で、吸入管側開口部を第二開閉弁にて閉
鎖すると共に蒸発器の冷媒流入口と冷媒排出口とを短絡
連結する第三の開閉弁とを一体で有するスライド弁と駆
動部からなる切り替え弁を冷却器に設けたことを特徴と
する請求項2記載の冷凍冷蔵庫の除霜装置。
3. The first opening and closing of the expansion valve side opening when the expansion valve and the refrigerant inlet to the cooler and the suction pipe and the refrigerant outlet from the cooler are connected at a predetermined position and slid by a drive mechanism. The valve includes a slide valve and a drive unit that integrally close a suction pipe side opening with a second opening / closing valve and a third opening / closing valve that short-circuits the refrigerant inlet and the refrigerant outlet of the evaporator. The defroster for a refrigerator / freezer according to claim 2, wherein a switching valve is provided in the cooler.
【請求項4】 スライド弁の駆動機構としてスライド弁
の一方に内圧により伸縮する第一ベローズと、その第一
ベローズの反対側にスプリング部材とを有し、前記第一
ベローズとコンプレッサー吐出側に内蔵した第二ベロー
ズと連結管で構成された駆動部の中に非凝縮性ガスを注
入しコンプレッサー運転時と停止時の圧力変化を利用し
てスライド弁を駆動させる駆動機構を持つ切り替え弁を
特徴とする請求項3記載の冷凍冷蔵庫の除霜装置。
4. A slide valve drive mechanism comprising a first bellows that expands and contracts due to internal pressure on one side of the slide valve, and a spring member on the opposite side of the first bellows, and is built into the first bellows and the discharge side of the compressor. It features a switching valve with a drive mechanism that drives a slide valve by injecting non-condensable gas into the drive unit composed of the second bellows and the connecting pipe and using the pressure change at the time of compressor operation and stop. The defrosting device for a refrigerator-freezer according to claim 3.
JP32907793A 1993-12-24 1993-12-24 Defrosting device in freezer type refrigerator Pending JPH07190597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32907793A JPH07190597A (en) 1993-12-24 1993-12-24 Defrosting device in freezer type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32907793A JPH07190597A (en) 1993-12-24 1993-12-24 Defrosting device in freezer type refrigerator

Publications (1)

Publication Number Publication Date
JPH07190597A true JPH07190597A (en) 1995-07-28

Family

ID=18217370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32907793A Pending JPH07190597A (en) 1993-12-24 1993-12-24 Defrosting device in freezer type refrigerator

Country Status (1)

Country Link
JP (1) JPH07190597A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100373688B1 (en) * 2000-10-05 2003-02-26 웅진코웨이주식회사 A water purifier having suction pipe of 's' type
WO2017034170A1 (en) * 2014-10-21 2017-03-02 엘지전자 주식회사 Defrosting apparatus and refrigerator including same
CN107525309A (en) * 2016-06-17 2017-12-29 松下知识产权经营株式会社 Evaporator, the Defrost method of evaporator and the cooling device using the evaporator
JP2018204874A (en) * 2017-06-06 2018-12-27 日立アプライアンス株式会社 refrigerator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100373688B1 (en) * 2000-10-05 2003-02-26 웅진코웨이주식회사 A water purifier having suction pipe of 's' type
WO2017034170A1 (en) * 2014-10-21 2017-03-02 엘지전자 주식회사 Defrosting apparatus and refrigerator including same
US11226150B2 (en) 2014-10-21 2022-01-18 Lg Electronics Inc. Defrosting device and refrigerator having the same
CN107525309A (en) * 2016-06-17 2017-12-29 松下知识产权经营株式会社 Evaporator, the Defrost method of evaporator and the cooling device using the evaporator
JP2018204874A (en) * 2017-06-06 2018-12-27 日立アプライアンス株式会社 refrigerator

Similar Documents

Publication Publication Date Title
US5941085A (en) Refrigerator having an apparatus for defrosting
JP2004069294A (en) Refrigerator and defrosting device
JPH0428988B2 (en)
US20090293514A1 (en) Cooling system for refrigerator
EP2578970B1 (en) Refrigerator
CN108139138B (en) Refrigeration device having a siphon in the condensate drain
KR20060113366A (en) Refrigerator
JPH07190597A (en) Defrosting device in freezer type refrigerator
JPH09229532A (en) Refrigerator
KR100469322B1 (en) Evaporator
JP3920653B2 (en) refrigerator
KR100494389B1 (en) Refrigerator and defroster
KR100220754B1 (en) Defrost apparatus of evaporator for a refrigerator
JP3626786B2 (en) Rapid cooling device
JPS621194B2 (en)
KR100216955B1 (en) A defroster of refrigerator making use of an air compressor
JPH04214166A (en) Freezing refrigerator
JP3274800B2 (en) Freezer refrigerator
KR100617185B1 (en) defrosting structure and defrosting method in the refrigerator
KR100512641B1 (en) Defrosting system of refrigerator
KR0165659B1 (en) Defrosting water evaporate apparatus of a refrigerator
JP2004212001A (en) Refrigerator
JP2753652B2 (en) refrigerator
CN106152670B (en) Refrigerating and freezing device
KR0161951B1 (en) Evaporator for a refrigerator