JPS62119277A - Printing paste for thick film - Google Patents

Printing paste for thick film

Info

Publication number
JPS62119277A
JPS62119277A JP60258280A JP25828085A JPS62119277A JP S62119277 A JPS62119277 A JP S62119277A JP 60258280 A JP60258280 A JP 60258280A JP 25828085 A JP25828085 A JP 25828085A JP S62119277 A JPS62119277 A JP S62119277A
Authority
JP
Japan
Prior art keywords
solvent
powder
paste
thick film
dibutyl phthalate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60258280A
Other languages
Japanese (ja)
Inventor
Toshio Yoshihara
俊雄 吉原
Shinji Ishii
石井 信次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP60258280A priority Critical patent/JPS62119277A/en
Publication of JPS62119277A publication Critical patent/JPS62119277A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Non-Adjustable Resistors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

PURPOSE:To obtain the titled paste having low viscosity variation and high printing accuracy and useful for the screen printing of an electrically conductive pattern, a resist pattern, etc., by compounding metallic powder with an organic vehicle and a specific solvent such as dibutyl phthalate. CONSTITUTION:The objective paste can be produced by kneading metallic powder, metal oxide powder, dielectric substance powder, glass powder, etc., with an organic vehicle and compounding the resultant printing paste for thick film IC with dibutyl phthalate and/or diethyl phthalate which is a solvent having high boiling point and low vapor pressure at room temperature. The volume ratio of dibutyl phthalate and/or diethyl phthalate in the whole solvent is preferably >=60%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、スクリーン印刷によって形成される導電パタ
ーン、抵抗パターン、誘導体パターン、絶縁パターン用
の厚膜用印刷ペーストに関ずろ。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a thick film printing paste for conductive patterns, resistance patterns, dielectric patterns, and insulation patterns formed by screen printing.

〔発明の背景〕[Background of the invention]

スクリーン印刷で形成される各種厚膜回路は広い分野で
利用されており、用途に応じた厚膜用印刷ペーストを使
い分けることによって、導電体、抵抗体、誘電体、絶縁
体が形成される。これ等印刷ペーストは、厚膜素子主材
料並びに必要に応じ加えられる添加物と、有機ビヒクル
とを混練することによってペースト状のものに作製され
、スクリーン印刷技術によって基板上、或いは基板上の
回路素子・絶縁層の上に、選択的にパターン付けされる
。上記厚膜素子主材料としては、Au。
Various thick film circuits formed by screen printing are used in a wide range of fields, and conductors, resistors, dielectrics, and insulators can be formed by using thick film printing pastes depending on the application. These printing pastes are made into a paste by kneading the main material for thick film elements, additives added as necessary, and an organic vehicle, and are printed on a substrate or circuit elements on a substrate using screen printing technology. - Selectively patterned on top of the insulating layer. The main material of the thick film element is Au.

Ag、Pb、Cu、  Ni等の金属粉末、RuO2゜
PdO等の金属酸化物粉末、BaTiO3等の誘電体粉
末、結晶化ガラス等のガラス粉末が挙げられ、これ等を
用いた厚膜用印刷ペーストは公知である。
Examples include metal powders such as Ag, Pb, Cu, and Ni, metal oxide powders such as RuO2゜PdO, dielectric powders such as BaTiO3, and glass powders such as crystallized glass, and printing pastes for thick films using these. is publicly known.

ところで、上述した各厚膜用印刷ペーストは、その粘度
が経時的に変化しないことが望ましく、経時的に粘度が
変化した場合、印刷精度が劣化するという重要問題が発
生する。この粘度変化は、主として有機ビヒクル中の溶
剤の蒸発に起因し、このため、印刷工程中に粘度変化の
極力小さな有機ビヒクルの開発が望まれている。
By the way, it is desirable that the viscosity of each of the thick film printing pastes described above does not change over time, and if the viscosity changes over time, an important problem arises in that printing accuracy deteriorates. This change in viscosity is mainly caused by the evaporation of the solvent in the organic vehicle, and therefore, it is desired to develop an organic vehicle whose viscosity changes as little as possible during the printing process.

〔従来技術およびその問題点〕[Prior art and its problems]

即ち、従来の有機ビヒクルは、バインダーとして、エチ
ルセルロースに代表されるセルロース系の化合物、ポリ
メタアクリレート等のアクリル系の化合物等を用い、こ
れを、α−テルピネオール、n−ブチルカルピトールア
セテート等からなる溶剤に溶かして形成したものが一般
的であったが、これ等の有機ビヒクルは、短時間で粘度
が変化し、溶剤の蒸発によって粘度が増大するため、ス
クリーン印刷工程での膜厚の変化等の印刷精度の低下を
来たし、また、時としてメンシュの目づまりが生じる等
の問題が発生した。
That is, conventional organic vehicles use, as a binder, a cellulose compound represented by ethyl cellulose, an acrylic compound such as polymethacrylate, etc. Generally, these organic vehicles were formed by dissolving them in a solvent, but the viscosity of these organic vehicles changes in a short period of time, and the viscosity increases with evaporation of the solvent, resulting in changes in film thickness during the screen printing process, etc. This resulted in a decrease in printing accuracy, and problems such as clogging of the mensch occurred at times.

これは、α−テルピネオール、n−ブチルカルピトール
アセテートで代表される従来の有機ビヒクル用の溶剤は
、前者はその沸点が218℃で、後者のそれは217℃
と共に常温よりも相当に高い数字であるが、この程度の
沸点であっても常温での蒸気圧が相当に高いため蒸発が
生じるためと考えられるためである。
This is because conventional solvents for organic vehicles, represented by α-terpineol and n-butylcarpitol acetate, have boiling points of 218°C and 217°C for the latter.
This is because the vapor pressure at room temperature is considerably high even at this level of boiling point, and evaporation occurs.

〔発明の目的〕[Purpose of the invention]

従って、本発明が解決しようとする課題は、上述の従来
技術の欠点を解消、即ち粘度変化の少い有機ビヒクルを
用いた厚膜用印刷ペーストの実現にあり、もって、長時
間の連続印刷時にも膜厚変動の少い、長期安定性に優れ
た印刷ペーストを提供することをその目的とする。
Therefore, the problem to be solved by the present invention is to solve the above-mentioned drawbacks of the prior art, that is, to realize a thick film printing paste using an organic vehicle with little change in viscosity. The purpose is to provide a printing paste with excellent long-term stability and less variation in film thickness.

〔発明の概要・作用〕[Summary and operation of the invention]

本発明者等は種々検討の結果、金属粉末、金属酸化物粉
末、誘電体粉末およびガラス粉末のうち1種、又はこれ
らの2種以上の混合物を、有機ビヒクルと混練してなる
厚膜用印刷ペーストにおいて、前記有機ビヒクルの溶剤
として、沸点が高くかつ常温での蒸気圧が小さい溶剤で
ある、ジブチルフタレート、ジエチルフタレートのうち
少くとも1種を単独、或いは少くとも1種を主成分とし
てなるものを用いた厚膜用61刷ペーストによって、上
記した目的を達成することを見出した。
As a result of various studies, the inventors of the present invention have discovered that a thick film printing product is produced by kneading one of metal powder, metal oxide powder, dielectric powder, and glass powder, or a mixture of two or more of these powders, with an organic vehicle. In the paste, as a solvent for the organic vehicle, at least one of dibutyl phthalate and diethyl phthalate, which are solvents with a high boiling point and a low vapor pressure at room temperature, is used alone, or at least one of them is used as a main component. It has been found that the above-mentioned object can be achieved by using a thick film paste 61 using the above-mentioned method.

即ち、ジブチルフタレートおよびジエチルフタレートは
、前記したα−テルピネオール、n−ブチルカルピトー
ルアセテートに較べて、沸点が更に高く、且つ常温での
蒸気圧も小さい上、各種バインダーを溶解し、また、印
刷後の乾燥工程でも容易に乾燥可能である。
That is, dibutyl phthalate and diethyl phthalate have higher boiling points and lower vapor pressures at room temperature than the above-mentioned α-terpineol and n-butylcarpitol acetate, and also dissolve various binders, and can be used after printing. It can be easily dried even in the drying process of

〔発明の実施例〕[Embodiments of the invention]

発明者等は、前記したα−テルピネオール、n−ブチル
カルピトールアセテートよりも沸点カ高く、バインダー
の溶解性に優れたものを種々検討し、た。即ち、沸点が
高いと常温での蒸気圧は小さくなり、蒸発速度が遅くな
って前述した粘度変化(粘度の増大)を抑えることが期
待できるからである。しかしながら、沸点が相当以上に
高くなり常温での蒸気圧があまりに小さくなると、通常
、120〜150℃で10〜20分行なわれる印刷後の
乾燥工程では、印刷されたパターンの乾燥が極めて困難
になる。また、溶剤として各種バインダーを溶かす溶解
性にも優れていなくてはいけたい。特に発明者等は、窒
素雰囲気等の不活性ガス人 雰囲゛年で焼成を行なうCuペースト用等の11機ビヒ
クル、即ち、不活性ガス雰囲気中で分解可能なバインダ
ーを溶かすこともできる溶剤であることも考慮した。こ
のような各観点から種々の溶剤を比較・検討した結果、
ジアルキルフタル酸系のジブチルフタレートとジエチル
フタレートが、極めて特性に優れた好適なものであるこ
とを見出した。
The inventors have studied various compounds that have a higher boiling point than the above-mentioned α-terpineol and n-butyl carpitol acetate and have excellent binder solubility. That is, if the boiling point is high, the vapor pressure at room temperature will be low, the evaporation rate will be slow, and it can be expected that the above-mentioned viscosity change (viscosity increase) can be suppressed. However, if the boiling point becomes extremely high and the vapor pressure at room temperature becomes too low, it becomes extremely difficult to dry the printed pattern in the post-printing drying process, which is usually carried out at 120-150°C for 10-20 minutes. . It also needs to have excellent solubility as a solvent to dissolve various binders. In particular, the inventors have developed a vehicle for Cu paste that is fired in an inert gas atmosphere such as a nitrogen atmosphere, that is, a solvent that can also dissolve a decomposable binder in an inert gas atmosphere. I also considered something. As a result of comparing and studying various solvents from these various viewpoints,
It has been found that dialkyl phthalic acid-based dibutyl phthalate and diethyl phthalate are suitable and have extremely excellent properties.

このジブチルフタレートとジエチルフタレート、および
比較のための参考例としての前述したα−テルピネオー
ルの、沸点、融点および蒸発のバロメータ値としての蒸
気圧10mmHgにおける蒸気圧温度を示すと下記の表
−1の通りである。
The vapor pressure temperature at a vapor pressure of 10 mmHg as the boiling point, melting point, and evaporation barometer values of dibutyl phthalate and diethyl phthalate, and the above-mentioned α-terpineol as a reference example for comparison are shown in Table 1 below. It is.

(表−1) 上記ジエチルフタレートおよびジブチルフタレートは、
各々単独で溶剤として用いられることは勿論、ジエチル
フタレートとジブチルフタレートとを混合して溶剤とし
て用いろことができる。更には、ジエチルフタレートと
ジブチルフタレートの一種又は2種を主成分として溶剤
全体の略55wt%以上、望ましくは5Qwt%以上を
、この両者のうち一方もL <は両者の混合液とし、他
を従来用いられている、α−テルピネオール、rl −
ブチルカルピトール、n−ブチルカルピトールアセテー
ト、パインオイル、ヒマシ油等にしても良い。
(Table-1) The above diethyl phthalate and dibutyl phthalate are
Of course, each of them can be used alone as a solvent, or a mixture of diethyl phthalate and dibutyl phthalate can be used as a solvent. Furthermore, approximately 55 wt% or more, preferably 5 Qwt% or more of the entire solvent contains one or two of diethyl phthalate and dibutyl phthalate as main components, one of them is a mixture of the two, and the other is conventional. The α-terpineol used, rl −
Butyl carpitol, n-butyl carpitol acetate, pine oil, castor oil, etc. may also be used.

上述のようにジエチルフタレート、ジブチルフタレート
を、1種単独もしくは2種混合したもの、或いは両者の
うちの少くとも一方を生成分とする溶剤に対し、バイン
ダーが溶解される。バインダ1″こ −と溶剤との本船マ略1:9とされる。
As mentioned above, the binder is dissolved in a solvent containing diethyl phthalate, dibutyl phthalate alone, a mixture of the two, or at least one of the two as a product. The ratio of binder 1'' to solvent is approximately 1:9.

バインダーとしては、エチルセルロース、メチルセルロ
ース、ニトロセルロース等のセルロース系の合成化合物
、rl−ブチルメタクリレート、インブチルメタクリレ
ート、エチルメタクリレート等のアクリル系の合成化合
物、或いはポリスチロール等の他の合成化合物、ロジン
等の天然樹脂等等を用いることができ、これらを1種ま
たは2種以上混合してバインダーとし、前記溶剤に溶解
し7て有機ビヒクルを作成する。
As a binder, cellulose-based synthetic compounds such as ethyl cellulose, methyl cellulose, and nitrocellulose, acrylic synthetic compounds such as rl-butyl methacrylate, inbutyl methacrylate, and ethyl methacrylate, or other synthetic compounds such as polystyrene, rosin, etc. Natural resins and the like can be used, and one or more of these are mixed to form a binder, and the binder is dissolved in the above-mentioned solvent to prepare an organic vehicle.

このようにして作成した有機ビヒクルは、金属粉末、金
属酸化物粉末、誘電体粉末およびガラス粉末のうちの1
種又はこれらの2種以上の混合物と充分に混練して、用
途に応じた厚膜ペーストとされ、スクリーン印刷で所望
パターンに形成される。
The organic vehicle thus prepared can be one of metal powder, metal oxide powder, dielectric powder and glass powder.
It is thoroughly kneaded with a seed or a mixture of two or more of these to form a thick film paste depending on the application, and formed into a desired pattern by screen printing.

(実験例−1) 有機ビヒクルのバインダーとして、不活性ガス雰囲気中
での分解性に優れた、■1−ブチルメタクリレート、イ
ンブチルメタクリレート、エチルメタクリレートのうち
の1種又は2種以上の混合物を用い、溶剤として表−2
に示すように、ジエチルフタレートおよび/またはジブ
チルフタレートのうちの少くとも1種を含んだものを種
々作成し、これを重量化、バインダー:溶剤=1:9の
比率で混ぜ、有機ビヒクルを作成した。このバインダー
の溶解は、80〜90℃に加熱して還元冷却器をつけて
行なった。
(Experiment Example-1) As a binder for the organic vehicle, one or a mixture of two or more of 1-butyl methacrylate, inbutyl methacrylate, and ethyl methacrylate, which have excellent decomposition properties in an inert gas atmosphere, is used. , as a solvent Table-2
As shown in , various compounds containing at least one of diethyl phthalate and/or dibutyl phthalate were prepared, weighed, and mixed at a binder:solvent ratio of 1:9 to prepare an organic vehicle. . The binder was dissolved by heating to 80 to 90° C. and using a reduction cooler.

平均粒径0.77μmの(u粉末50,9、酸化ビスマ
ス〔住友金属鉱山■製)3.5g、ホウケイ酸ガラスフ
リット〔旭硝子■製、ASF1340〕11に対し、上
述の各有機ビヒクル7.6:lを加えて、ロールミルに
て充分に混練して(Uペーストを作成した。
7.6 g of each of the above-mentioned organic vehicles was added to (U powder 50.9, 3.5 g of bismuth oxide [manufactured by Sumitomo Metal Mining ■], and 11 g of borosilicate glass frit [manufactured by Asahi Glass ■, ASF1340]) with an average particle size of 0.77 μm. :1 was added and sufficiently kneaded using a roll mill (to create U paste).

このように形成された各Cuペーストの初期粘度をブル
ックフィールド型粘度計で測定すると共に、各Cuペー
ストを109ずつとって、平滑な絶縁基板上に4の角に
均一に延ばして塗付・被着し、これを25℃、75%R
Hで4時間放置した後、これをヘラ等で採集して混練し
、同じくブルックフィールド型粘度計でその粘度を測定
し、前記初期粘度との対比において粘度変化を調べた。
The initial viscosity of each Cu paste formed in this way was measured using a Brookfield viscometer, and 109 pieces of each Cu paste were taken and spread uniformly on the four corners of a smooth insulating substrate. 25℃, 75%R
After being left in H for 4 hours, the mixture was collected with a spatula, kneaded, etc., and its viscosity was measured using a Brookfield viscometer, and the change in viscosity was examined in comparison with the initial viscosity.

この結果は、次の表−2に示す通りである。The results are shown in Table 2 below.

該表−2において、◎印は粘度変化率が0〜5係、○印
は同じく5〜10%、Δ印は10〜20襲、X印は20
%以上をそれぞれ示しており、◎印、○印は、粘度変化
で見ると実用上高い評価ができる。また、上記表−2か
ら明らかなように、ジエチルフタレート、ジブチルフタ
レートに加える他の溶剤としては、α−テルピネオール
が適しており、この場合溶剤全体に対し40Wt1以下
で(表−2)・・・・・・溶剤成分と粘度変化あると充
分に粘度変化が抑えられることが確認された。また、乾
燥性の点でも、120〜150℃で10〜20分の乾燥
工程で、上述した◎印、○印は何れも十分な乾燥性を示
した。なお、該実験例ではCuペーストに適用している
ので、乾燥時の酸化防止のため出来るだけ低い温度、例
えば120℃で乾燥する場合、この低温乾燥性と粘度変
化とを勘案すると、衣−2の中では、溶剤としてジエチ
ルフタレート単独のものが最モ適している。
In Table 2, ◎ indicates the viscosity change rate is 0 to 5, ○ indicates the same 5 to 10%, Δ indicates 10 to 20, and X indicates 20%.
% or more, and the ◎ and ○ marks indicate a high evaluation in terms of viscosity change. Furthermore, as is clear from Table 2 above, α-terpineol is suitable as another solvent to be added to diethyl phthalate and dibutyl phthalate, and in this case, the amount of α-terpineol is 40 Wt1 or less relative to the entire solvent (Table 2)... ...It was confirmed that the viscosity change could be sufficiently suppressed by the presence of the solvent component and the viscosity change. In addition, in terms of drying properties, the above-mentioned ◎ and ◯ marks both showed sufficient drying properties in a drying process of 10 to 20 minutes at 120 to 150°C. In addition, since this experiment example is applied to Cu paste, when drying is carried out at the lowest possible temperature, for example 120°C, to prevent oxidation during drying, taking into account this low temperature drying property and viscosity change, the coating -2 Among these, diethyl phthalate alone is most suitable as a solvent.

(実験例−2) バインダーとしてエチルセルロース又ハn −ブチルメ
タクリレートを用い、溶剤として、ジエチルフタレート
単独、ジブチルフタレート単独、ジエチルフタレート5
0wt%とジブチルフタレート5Qwt%の混合液の3
種を用い、バインダーと溶剤とを重量比1:9で混ぜ、
前記実験例−1と同一手法で有機ビヒクルを6種類作成
した。
(Experimental Example-2) Ethyl cellulose or n-butyl methacrylate was used as the binder, and diethyl phthalate alone, dibutyl phthalate alone, diethyl phthalate 5 were used as the solvent.
3 of a mixed solution of 0wt% and dibutyl phthalate 5Qwt%
Using seeds, mix binder and solvent at a weight ratio of 1:9,
Six types of organic vehicles were prepared using the same method as in Experimental Example-1.

そして、平均粒径2μmの結晶化ガラスフリット〔旭硝
子■裂、ASF−1600180,9に対し、上記各有
機ビヒクルを359加えて、ロールミルにて充分混練し
て、6種類のガラス絶縁ペーストを作成した。
Then, 359 of each of the above organic vehicles was added to crystallized glass frit (ASF-1600180, 9, manufactured by Asahi Glass Corporation, ASF-1600180, 9) with an average particle size of 2 μm, and the mixture was sufficiently kneaded in a roll mill to create 6 types of glass insulation pastes. .

これを実験例−1と同一手法で粘度変化を測定・評価し
た結果、総べて極めて粘度変化の少い良好なデータが得
られた。また、乾燥性の点でも問題はなかった。
The viscosity change was measured and evaluated using the same method as in Experimental Example 1, and as a result, good data with very little viscosity change was obtained. Further, there were no problems in terms of dryness.

(実験例−3) バインダーとしてイソブチルメタクリレートを用い、溶
剤として、ジエチルフタレート単独、ジブチルフタレー
ト単独、ジエチルフタレート50wt%とジブチルフタ
レート50wt%の混合液の3種を用意し、バインダー
と溶剤との重量比1:9で混ぜ、実験例1と同一手法で
有機ビヒクルを3種類作成した。
(Experimental Example-3) Using isobutyl methacrylate as a binder, three types of solvents were prepared: diethyl phthalate alone, dibutyl phthalate alone, and a mixed solution of 50 wt% diethyl phthalate and 50 wt% dibutyl phthalate, and the weight ratio of binder and solvent was determined. Three types of organic vehicles were prepared using the same method as in Experimental Example 1 by mixing them at a ratio of 1:9.

そして、平均粒径2μmの銀粉末60.9、平均粒径0
.1μmのパラジウム粉末15g、酸化ビスマス4.5
I、ホウケイ酸鉛ガラスフリット〔旭硝子■製、AS 
F−1370〕5.5gに対し、上記各有機ビヒクルを
48F加えて、充分に混練して3種類のAg−Pdペー
ストを作成した。
Then, silver powder with an average particle size of 2 μm, 60.9, and an average particle size of 0
.. 15g of 1μm palladium powder, 4.5g of bismuth oxide
I, borosilicate lead glass frit [manufactured by Asahi Glass, AS
48 F of each of the above organic vehicles was added to 5.5 g of [F-1370] and sufficiently kneaded to prepare three types of Ag-Pd pastes.

これを実験例−1と同一手法で評価した結果、総べて粘
度変化が極めて少いことが確認され、乾燥性も保証され
た。
As a result of evaluating this using the same method as in Experimental Example-1, it was confirmed that the viscosity change was extremely small in all, and the drying property was also guaranteed.

(実験例−4) バインダーとして、n−ブチルメタクリレートを用い、
溶剤として実験例−2,3で用いたと同じ3種を用意し
、これと同一混合比・同一手法で3種類の有機ビヒクル
を作成した。
(Experiment example-4) Using n-butyl methacrylate as a binder,
The same three types of solvents used in Experimental Examples 2 and 3 were prepared, and three types of organic vehicles were created using the same mixing ratio and the same method.

そして、平均粒径()、5μmの酸化ルテニウム46.
5 #とホウケイ酸鉛ガラスフリント〔旭硝子■製、A
SF−1380153,5,9の混合物に、上記有機ビ
ヒクル48gを加えて充分に混練し、3種類のRuO2
系抵抗ペーストを作成した。
And ruthenium oxide with an average particle size () of 5 μm 46.
5 # and lead borosilicate glass flint [manufactured by Asahi Glass, A
48 g of the above organic vehicle was added to the mixture of SF-1380153, 5, and 9 and thoroughly kneaded to form three types of RuO2.
A system resistance paste was created.

これを実験例−1と同様の手法で評価したところ、総べ
て粘度変化の少い良好な結果を示した。
When this was evaluated using the same method as in Experimental Example 1, all showed good results with little change in viscosity.

また、乾燥性でも問題のないことが確認された。It was also confirmed that there were no problems with drying.

(実験例−5) バインダーとして、エチルメタクリレートを用い、溶剤
として実験例2,3.4で用いたと同じ3種を用意し、
これと同一混合比・同一手法で3種類の有機ビヒクルを
作成した。
(Experimental Example-5) Ethyl methacrylate was used as the binder, and the same three solvents as used in Experimental Examples 2 and 3.4 were prepared.
Three types of organic vehicles were created using the same mixing ratio and method.

そして、平均粒径1.5/Jmのチタン酸バリウム粉末
93.5&と、平均粒径11zmのビスマス酸ガラスフ
リット6.5.!7の混合物に対し、上記各有機ビヒク
ルを58g加えて充分に混練し、3種類のBaTiO3
系の誘電体ペーストを作成した。
Barium titanate powder 93.5mm with an average particle size of 1.5/Jm and bismuthate glass frit 6.5mm with an average particle size of 11zm. ! To the mixture of 7, 58g of each of the above organic vehicles was added and thoroughly kneaded, and three types of BaTiO3 were added.
A dielectric paste of the system was created.

これを、実験例−1と同一手法で評価したところ、総べ
て粘度変化の少い良好な結果を示し、乾燥性の点でも問
題がないことが確認された。
When this was evaluated using the same method as in Experimental Example 1, it was confirmed that all the samples showed good results with little change in viscosity, and there were no problems in terms of drying properties.

なお、上述した実験例においては、4時間数直後の粘度
変化で評価しているが、30時間放置後でも、略同様の
良好な粘度変化の少さを示すことも実験例−1の一部の
ペーストの30時間放置実験で確認できた。なお、また
本発明は、以上記述した以外のバインダーを用い、また
、実験例以外の他のペーストにも適用し得ることは勿論
である。
In addition, in the above-mentioned experimental example, the viscosity change was evaluated immediately after 4 hours, but some of the experimental examples 1 also showed that the viscosity change was almost the same even after being left for 30 hours. This was confirmed in an experiment where the paste was left for 30 hours. It goes without saying that the present invention can also be applied to binders other than those described above and to pastes other than the experimental examples.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、印刷工程中における粘度
変化の少い厚膜用ペーストが提供でき、長時間連続印刷
を行なっても膜厚変動が少く、印刷精度の高いペースト
を提供でき、経時的に安定した信頼性の高いペーストの
実現は、その価値産業的に多大である。
As described above, according to the present invention, it is possible to provide a paste for thick film with little change in viscosity during the printing process, and a paste with high printing accuracy that has little variation in film thickness even after continuous printing for a long time. The realization of a highly reliable paste that is stable over time has great industrial value.

以上that's all

Claims (1)

【特許請求の範囲】[Claims]  金属粉末、金属酸化物粉末、誘導体粉末およびガラス
粉末のうち1種、又はこれらの2種以上の混合物を、有
機ビヒクルと混練してなる厚膜用印刷ペーストにおいて
、前記有機ビヒクルの溶剤として、沸点が高くかつ常温
での蒸気圧が小さい溶剤である、ジブチルフタレート、
ジエチルフタレートのうち少くとも1種を単独、或いは
少くとも1種を主成分としてなるものを用いたことを特
徴とする厚膜印刷用ペースト。
In a thick film printing paste prepared by kneading one or a mixture of two or more of metal powder, metal oxide powder, derivative powder, and glass powder with an organic vehicle, as a solvent for the organic vehicle, the boiling point dibutyl phthalate, a solvent with high vapor pressure and low vapor pressure at room temperature;
A thick film printing paste characterized by using at least one diethyl phthalate alone or containing at least one diethyl phthalate as a main component.
JP60258280A 1985-11-18 1985-11-18 Printing paste for thick film Pending JPS62119277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60258280A JPS62119277A (en) 1985-11-18 1985-11-18 Printing paste for thick film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60258280A JPS62119277A (en) 1985-11-18 1985-11-18 Printing paste for thick film

Publications (1)

Publication Number Publication Date
JPS62119277A true JPS62119277A (en) 1987-05-30

Family

ID=17318051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60258280A Pending JPS62119277A (en) 1985-11-18 1985-11-18 Printing paste for thick film

Country Status (1)

Country Link
JP (1) JPS62119277A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198207A (en) * 1991-08-13 1993-08-06 E I Du Pont De Nemours & Co Thick-film paste composition by which screen printing is possible
US7481953B2 (en) * 2004-09-01 2009-01-27 Tdk Corporation Thick-film resistor paste and thick-film resistor
CN104277213A (en) * 2014-08-13 2015-01-14 河北科技大学 Method for preparing hyperbranched unsaturated polyester resin
CN104992801A (en) * 2015-06-30 2015-10-21 苏州洋杰电子有限公司 Resistance paste and preparation method thereof
CN105139916A (en) * 2015-06-30 2015-12-09 苏州洋杰电子有限公司 Carbon powder doped molybdenum-based thick film resistance paste and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198207A (en) * 1991-08-13 1993-08-06 E I Du Pont De Nemours & Co Thick-film paste composition by which screen printing is possible
US7481953B2 (en) * 2004-09-01 2009-01-27 Tdk Corporation Thick-film resistor paste and thick-film resistor
CN104277213A (en) * 2014-08-13 2015-01-14 河北科技大学 Method for preparing hyperbranched unsaturated polyester resin
CN104992801A (en) * 2015-06-30 2015-10-21 苏州洋杰电子有限公司 Resistance paste and preparation method thereof
CN105139916A (en) * 2015-06-30 2015-12-09 苏州洋杰电子有限公司 Carbon powder doped molybdenum-based thick film resistance paste and preparation method thereof
CN105139916B (en) * 2015-06-30 2017-01-04 苏州洋杰电子有限公司 Carbon dust doping molybdenio thick-film resistor paste and preparation method thereof

Similar Documents

Publication Publication Date Title
US4399320A (en) Conductor inks
US4859364A (en) Conductive paste composition
US8053066B2 (en) Conductive paste and wiring board using same
DE2714196C3 (en) Coated alumina substrate and powder mixture for coating such substrates
JPS588767A (en) Resistor ink
US3878443A (en) Capacitor with glass bonded ceramic dielectric
JPS62119277A (en) Printing paste for thick film
DE2551036B2 (en) BORIDE COMPOSITION AND ITS USE
DE2441207B2 (en) POWDER CONTAINING PRECIOUS METALS
US4070200A (en) Compositions containing diethylene glycol ether
EP0291064B1 (en) Conductive paste composition
JP3656558B2 (en) Conductive paste and electronic component using the same
JPS585947B2 (en) Printing paste for thick film
JPS6046949A (en) Paste for thick film
JPH03285965A (en) Conductor paste composition for green sheet
CA1167247A (en) Conductor inks
JP2003281948A (en) Manufacturing method for conductive paste
JP3246245B2 (en) Resistor
KR910001506B1 (en) Conductive paste composition
JP3571771B2 (en) Thick film paste composition
GB2085481A (en) Improved copper conductor inks
JPH06252524A (en) Method for manufacturing ceramic substrate with conductor
JPS61136977A (en) Electroconductive paste for thick film circuit
JPH08143841A (en) Vehicle for thick film paste
JPS61203504A (en) Conductive paste