JPS62118241A - Solid moisture measuring instrument for continuously measuring many samples - Google Patents

Solid moisture measuring instrument for continuously measuring many samples

Info

Publication number
JPS62118241A
JPS62118241A JP60259213A JP25921385A JPS62118241A JP S62118241 A JPS62118241 A JP S62118241A JP 60259213 A JP60259213 A JP 60259213A JP 25921385 A JP25921385 A JP 25921385A JP S62118241 A JPS62118241 A JP S62118241A
Authority
JP
Japan
Prior art keywords
sample
sample container
carrier gas
measurement
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60259213A
Other languages
Japanese (ja)
Inventor
Ryuzo Kano
龍三 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP60259213A priority Critical patent/JPS62118241A/en
Publication of JPS62118241A publication Critical patent/JPS62118241A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content

Abstract

PURPOSE:To measure automatically and continuously many samples by constituting the titled device so that both ends of a through-hole which has been formed in a good heat conductive member are closed by a window material of an infrared-ray transmission material and a measuring cell is formed, and a sample container fitting part is connected to the measuring cell in the good heat conductive member. CONSTITUTION:A sample 32 whose weight is measured is contained in a sample container 12, and when a turntable 40 moves and a sample inserting arm 42 rises up to a position of the sample container 12, a carrier gas flows in the direction B, as well, by changeover valves 51, 52, and air in the container 12 is driven out. The arm 42 rises further and pushes the container 12 into a container fitting part 10 of a cell block 2, and a supply of the carrier gas in the direction A is stopped by a changeover valve 50, so that the gas flows in only the direction B, and the gas which has passed through the container 12 flows to a measuring cell 7 of a cell block 2. The sample 32 is heated and moisture is led into the measuring cell 7 by the gas, a moisture concentration in this case is A/D-converted, it is inputted to a CPU and integrated, a moisture quantity is derived by deriving an average concentration in a prescribed time, and a moisture content is calculated from said quantity and weight of the sample and outputted.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は固体中に含まれる水分を測定する固体水分測定
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a solid moisture measuring device for measuring moisture contained in a solid.

(従来の技術) 従来の固体水分測定装置としては、天秤で試料の重量を
求める方式のもので、赤外線ランプ等で適当な温度に加
熱して重量の変化を求め加熱前と加熱後の重量差から水
分含有量を求める固体水分測定装置や、赤外線の反射光
の吸収により水分量を求める固体水分測定装置がある。
(Prior art) Conventional solid moisture measuring devices use a balance to measure the weight of a sample, heat it to an appropriate temperature with an infrared lamp, etc., measure the change in weight, and calculate the difference in weight between before and after heating. There are solid moisture measuring devices that measure the moisture content from a solid state, and solid moisture measuring devices that measure the moisture content by absorbing reflected infrared light.

また、従来の非分散形赤外線ガス分析計を用いて水分含
有量を求めることも考えられる。その場合の測定装置は
第4図に示されるようになる。
It is also conceivable to determine the moisture content using a conventional non-dispersive infrared gas analyzer. The measuring device in that case is shown in FIG.

60は加熱炉で、その中に試料32が収容され加熱され
る。62は非分散形赤外線ガス分析計であり、加熱炉6
0とこの非分散形赤外線ガス分析計62の間には試料3
2からの発生ガスを導く配管が設けられ、その配管には
水分が結露しないように加熱するヒータ64が巻かれて
いる。
60 is a heating furnace in which the sample 32 is housed and heated. 62 is a non-dispersive infrared gas analyzer, and heating furnace 6
0 and this non-dispersive infrared gas analyzer 62 is the sample 3.
A pipe is provided to guide the generated gas from the pipe 2, and a heater 64 is wrapped around the pipe to heat the pipe to prevent moisture from condensing.

(発明が解決しようとする問題点) 天秤を用いる固体水分測定装置では、より正確に水分量
を求めるのに重量の変化を大きくする必要があるため、
試料の量を多くする必要がある。
(Problems to be Solved by the Invention) In a solid moisture measuring device that uses a balance, it is necessary to increase the change in weight in order to more accurately determine the moisture content.
It is necessary to increase the amount of sample.

そのため、加熱の時間が長くかかるという欠点がある。Therefore, there is a drawback that heating takes a long time.

また、天秤で測定する場合、水の蒸発する温度以内で蒸
発する水以外の他の成分が含まれているときはその水以
外の成分により誤差が生じる。
Furthermore, when measuring with a balance, if components other than water that evaporate within the temperature at which water evaporates are included, errors will occur due to the components other than water.

反射光測定による固体水分測定装置は較正に問題があり
、精度が悪いという欠点がある。
Solid moisture measuring devices that use reflected light measurements have the disadvantage of poor calibration and poor accuracy.

第4図のような測定装置の場合には、加熱p40と非分
散形赤外線ガス分析計62の間での水分の結露を防ぐ加
熱手段が必要になるなど、装置としても大形化する。ま
た、配管での結露や配管への水分の吸着による指示の遅
れや誤差を生じることもある。
In the case of a measuring device as shown in FIG. 4, a heating means for preventing moisture condensation between the heating p40 and the non-dispersive infrared gas analyzer 62 is required, and the device becomes large in size. In addition, delays and errors in instructions may occur due to condensation on the piping or moisture adsorption on the piping.

本発明は、より少量の試料で短時間に正確な水分量を求
めることができ、かつ、多くの試料を自動的に連続して
測定することのできる固体水分測定装置を提供すること
を目的とするものである。
An object of the present invention is to provide a solid moisture measuring device that can accurately determine the moisture content in a short time using a smaller amount of sample, and can automatically and continuously measure many samples. It is something to do.

(問題点を解決するための手段) 実施例を示す第1図、第2図及び第3図を参照して説明
すると、本発明の多試料連続測定用固体水分測定装置は
、良熱伝導性部材(2a)に形成された貫通穴(6)の
両端が赤外線透過材料の窓材(8,9)で閉じられて測
定セル(7)が形成されているとともに、試料容器取付
は部(10)がその良熱伝導性部材(2a)内で測定セ
ル(7)に連結して形成されており、測定セル(7)に
はガス出口(14)が設けられており、かつ、良熱伝導
性部材(2a)には加熱手段(4)を備えてなるセルブ
ロック(2)と、試料(32)を収容するとともにキャ
リアガス入口(28)とキャリアガス出口(30)をも
ち試料容器取付は部(10)に嵌め込まれる形状に形成
された試料容器(12)と、試料容器(12)をセルブ
ロック(2)の試料容器取付は部(10)’に取りつけ
たり取り外したりする操作を自動的に行なう試料交換機
構(40,42)と、測定準備状態ではキャリアガスを
ガス出口(14)から測定セル(7)の方向に流し、測
定状態ではキャリアガスを流す方向を逆転させて試料容
器(12)から測定セル(7)の方向に流すようにキャ
リアガスの方向を切り換えるキャリアガス供給機構(5
0〜53)とを備え、測定セル(7)を含んで水分測定
用に設定された非分散形赤外線ガス分析計が構成されて
いる。
(Means for Solving the Problems) To explain with reference to FIGS. 1, 2, and 3 showing embodiments, the solid moisture measuring device for continuous measurement of multiple samples of the present invention has good thermal conductivity. Both ends of the through hole (6) formed in the member (2a) are closed with window members (8, 9) made of an infrared transmitting material to form a measurement cell (7), and the sample container is attached to the part (10). ) is connected to the measuring cell (7) within the good thermally conductive member (2a), and the measuring cell (7) is provided with a gas outlet (14) and has a good thermally conductive member (2a). The sexual member (2a) contains a cell block (2) equipped with a heating means (4) and a sample (32), and has a carrier gas inlet (28) and a carrier gas outlet (30). The sample container (12) is shaped to fit into the section (10), and the sample container (12) is automatically attached to and removed from the section (10)' in the cell block (2). In the measurement preparation state, the carrier gas flows from the gas outlet (14) toward the measurement cell (7), and in the measurement state, the direction in which the carrier gas flows is reversed to replace the sample container (40, 42). A carrier gas supply mechanism (5) that switches the direction of the carrier gas so that the carrier gas flows from
0 to 53), and includes a measurement cell (7) to constitute a non-dispersive infrared gas analyzer set for moisture measurement.

(実施例) 第1図は一実施例を表わし、第2図は同実施例における
非分散形赤外線ガス分析計部分を表わし、第3図は同実
施例における試料容器を表わす。
(Example) FIG. 1 shows an example, FIG. 2 shows a non-dispersive infrared gas analyzer part in the same example, and FIG. 3 shows a sample container in the same example.

2はセルブロックであり、第2図に詳細に示されている
ように、熱伝導性のよい金属部材2aにて形成されてい
る。セルブロック2の外側には加熱手段としてのヒータ
4が巻かれ、セルブロック2を120〜150℃の一定
温度に保つようになっている。
A cell block 2 is made of a metal member 2a having good thermal conductivity, as shown in detail in FIG. A heater 4 serving as a heating means is wound around the outside of the cell block 2 to maintain the cell block 2 at a constant temperature of 120 to 150°C.

セルブロック2には穴6が設けられ、この六6の両端が
石英ガラスやフッ他力リシウム(CaF=)のような赤
外線透過材料の窓材8,9で閉じられて測定セルフを構
成している。
A hole 6 is provided in the cell block 2, and both ends of the hole 6 are closed with window materials 8 and 9 made of an infrared transmitting material such as quartz glass or fluorinated lithium (CaF=) to constitute a measuring cell. There is.

セルブロック2内にはまた、試料容器取付は部10が形
成されている。試料容器取付は部10には第3図に示さ
れる試料容器12が嵌め込まれる。
A sample container mounting portion 10 is also formed within the cell block 2 . A sample container 12 shown in FIG. 3 is fitted into the sample container mounting portion 10. As shown in FIG.

試料32は試料容器12に収容された状態で、試料容器
取付は部10に収容される。試料容器取付は部10と測
定セルフの間はセルブロック2内に形成された穴により
連結されている。14は測定セルフからキャリアガスと
試料発生ガスを放出するガス出口である。
The sample 32 is housed in the sample container 12, and the sample container mounting section 10 accommodates the sample 32. A hole formed in the cell block 2 connects the sample container mounting section 10 and the measuring cell. 14 is a gas outlet for discharging carrier gas and sample generated gas from the measurement self.

測定セルフの一端側にはニクロム線やハロゲンランプな
どの赤外線用光源16が設けられ、その光源16と測定
セルフの窓材9との間にはチョッパ18が設けられてい
る。20はチョッパモータである。
An infrared light source 16 such as a nichrome wire or a halogen lamp is provided at one end of the measuring cell, and a chopper 18 is provided between the light source 16 and the window material 9 of the measuring cell. 20 is a chopper motor.

測定セルフの他端側には光学フィルタ22を介して赤外
線検出器24が設けられている。赤外線での水の吸収帯
は1.43μm、1.94μm。
An infrared detector 24 is provided on the other end side of the measuring cell with an optical filter 22 interposed therebetween. The absorption bands of water in infrared rays are 1.43 μm and 1.94 μm.

3μmなどにあるので、光学フィルタ22としてはその
ような波長域に透過特性をもつものを使用する。赤外線
検出器24としては半導体形のものを使用する。
Since the wavelength range is, for example, 3 μm, an optical filter 22 having transmission characteristics in such a wavelength range is used. As the infrared detector 24, a semiconductor type one is used.

このように、第2図に示される装置は、水分測定に選択
性をもった非分散形赤外線ガス分析計を構成している。
Thus, the apparatus shown in FIG. 2 constitutes a non-dispersive infrared gas analyzer with selectivity for moisture measurement.

そして、セルブロック2は測定セルを構成するとともに
、試料加熱炉も兼ねている。
The cell block 2 constitutes a measurement cell and also serves as a sample heating furnace.

第3図に示される試料容器12の一端にはキャリアガス
入口28をもつ蓋26が設けられ、他端にはキャリアガ
ス出口30が設けられている。キャリアガス入口28と
キャリアガス出口30には金属製の網28a、30aが
取りつけられている。
A lid 26 with a carrier gas inlet 28 is provided at one end of the sample container 12 shown in FIG. 3, and a carrier gas outlet 30 is provided at the other end. Metal meshes 28a and 30a are attached to the carrier gas inlet 28 and the carrier gas outlet 30.

32は収容された試料である。32 is a contained sample.

試料容器12の外形は第2Wiのセルブロック2の試料
容器取付は部10の形状に合うように作られている。そ
して、奉ヤリアガス出口30が試料容器取付は部IOの
奥に位置するように、試料容器12が試料容器取付は部
10に嵌め込まれる。
The external shape of the sample container 12 is made to match the shape of the sample container mounting section 10 of the second Wi cell block 2. Then, the sample container 12 is fitted into the sample container mounting portion 10 such that the rear gas outlet 30 is located at the back of the sample container mounting portion IO.

第1図に戻って説明すると、セルブロック2の下方には
試料交換機構を構成するターンテーブル40が設けられ
ており、ターンテーブル40には上方向に取り出すこと
のできる状態で複数個の試料容器12がへ列されている
。セルブロック2の試料容器取付は部10がターンテー
ブル40の方向を向き、かつ、ターンテーブル40に設
置された試料容器12をセルブロック2の試料容器取付
は部IOのちょうど下に位置させることができるように
、セルブロック2とターンテーブル40が位置決めされ
ている。44はターンテーブル40を回転させるモータ
である。
Returning to FIG. 1, a turntable 40 constituting a sample exchange mechanism is provided below the cell block 2, and the turntable 40 has a plurality of sample containers that can be taken out upward. 12 are lined up. The sample container mounting section 10 of the cell block 2 can be oriented toward the turntable 40, and the sample container 12 installed on the turntable 40 can be positioned just below the sample container mounting section IO of the cell block 2. The cell block 2 and the turntable 40 are positioned so that it can be used. 44 is a motor that rotates the turntable 40.

ターンテーブル40の下方、すなわち、セルブロック2
と反対側、には試料容器12を押し上げる構造で、中心
からキャリアガスが流れる構造のアーム42が設けられ
ている。
Below the turntable 40, that is, the cell block 2
On the opposite side, there is provided an arm 42 which is structured to push up the sample container 12 and which allows carrier gas to flow from the center.

アーム42が上方に移動して試料容器12を押し上げた
とき、アーム42の中心の穴が試料容器12のキャリア
ガス入口28に嵌め込まれる。アーム42もまた、試料
交換機構を構成する。
When the arm 42 moves upward to push up the sample container 12, the hole in the center of the arm 42 fits into the carrier gas inlet 28 of the sample container 12. Arm 42 also constitutes a sample exchange mechanism.

セルブロック2の測定セルフのキャリアガス出口14に
は切換え弁50を介して乾燥窒素ガスのようなキャリア
ガスが供給されるとともに、切換え弁50によりキャリ
アガス出口14からのガスを放出することができるよう
になっている。アーム42には切換え弁51及び52を
介してキャリアガスが供給されるとともに、切換え弁5
2によりスパンガスが供給されるようになっている。切
換え弁50〜52の切換え操作はCPU53により制御
される。切換え弁50〜52及びCPU53はキャリア
ガス供給機構を構成する。
A carrier gas such as dry nitrogen gas is supplied to the carrier gas outlet 14 of the measurement self of the cell block 2 via a switching valve 50, and the switching valve 50 can release the gas from the carrier gas outlet 14. It looks like this. Carrier gas is supplied to the arm 42 via switching valves 51 and 52, and the switching valve 5
2 supplies span gas. The switching operations of the switching valves 50 to 52 are controlled by the CPU 53. The switching valves 50 to 52 and the CPU 53 constitute a carrier gas supply mechanism.

本実施例の動作について説明する。The operation of this embodiment will be explained.

試料交換時は第1図の状態になっている。試料容器12
には重量測定の行なわれた試料32が収容されている。
When replacing the sample, the state is as shown in Figure 1. Sample container 12
A sample 32 whose weight has been measured is stored in the container.

セルブロック2は一定温度に加熱されている。このとき
、キャリアガスは記号Aで示されるようにキャリアガス
出口14から測定セルフに流される。そして非分散形赤
外線ガス分析計のゼロ点を確認し、このときの出力をゼ
ロとする。
Cell block 2 is heated to a constant temperature. At this time, the carrier gas is flowed from the carrier gas outlet 14 to the measuring cell as indicated by symbol A. Then, confirm the zero point of the non-dispersive infrared gas analyzer, and set the output at this time to zero.

次に、ターンテーブル40の移動が終り、試料挿入用の
アーム42が試料容器12の位置まで上がると、切換え
弁51.52により記号Bで示される方向にもキャリア
ガスが流され、試料容器12中の空気が追い出される。
Next, when the movement of the turntable 40 is finished and the sample insertion arm 42 is raised to the position of the sample container 12, the carrier gas is also flowed in the direction indicated by symbol B by the changeover valves 51 and 52, and the sample container 12 is The air inside is expelled.

その後、アーム42がさらに上昇して試料容器12をセ
ルブロック2の試料容器取付は部10に押し込む。この
とき、切換え弁50によりA方向のキャリアガスの供給
を停止し、キャリアガスはB方向にのみ流れるようにし
て、試料容器12を通ったキャリアガスをセルブロック
2の測定セルフに流れるようにする。
Thereafter, the arm 42 further rises to push the sample container 12 into the sample container mounting section 10 of the cell block 2. At this time, the supply of carrier gas in the A direction is stopped by the switching valve 50, and the carrier gas is made to flow only in the B direction, so that the carrier gas that has passed through the sample container 12 flows to the measurement cell of the cell block 2. .

これにより、試料32が加熱され、水分がキャリアガス
により測定セルフに導入される。このときの水分濃度を
A/D変換し、これをCPUに入れて積算し、一定時間
における平均濃度を求め、この濃度と流れたキャリアガ
スの量から発生した水分量を求め、これと試料重量から
水分の含有量を算出して出力する。
As a result, the sample 32 is heated and moisture is introduced into the measurement cell by the carrier gas. The moisture concentration at this time is A/D converted, this is put into the CPU and integrated, the average concentration over a certain period of time is determined, the amount of moisture generated is determined from this concentration and the amount of carrier gas that has flowed, and this and the weight of the sample are calculated. Calculate and output the moisture content from

1つの試料の測定が完了すると、アーム42が下降して
試料容器12をターンテーブル40の元の位置に戻すと
ともに、切換え弁50.51によりキャリアガスの方向
がB方向からA方向に切り換えられる。その後、ターン
テーブル40が所定の角度だけ回転して次の試料容器1
2を試料容器取付は部10の下に位置決めし、上記の操
作を繰り返えして測定を行なう。
When the measurement of one sample is completed, the arm 42 is lowered to return the sample container 12 to its original position on the turntable 40, and the direction of the carrier gas is switched from direction B to direction A by switching valves 50 and 51. After that, the turntable 40 rotates by a predetermined angle to move the next sample container 1.
2 is positioned under the sample container mounting section 10, and the above operations are repeated to perform measurements.

非分散層赤外線ガス分析計のの校正は空の試料容器を試
料容器取付は部10に嵌め込み、B方向のキャリアガス
を一定量の水分を含んだスパンガスに変更して一定時間
だけ流し、この値により校正を行なう。
To calibrate a non-dispersed layer infrared gas analyzer, insert an empty sample container into the sample container mounting section 10, change the carrier gas in direction B to span gas containing a certain amount of moisture, and let it flow for a certain period of time. Calibrate by.

なお、上記の実施例ではシングルビーム方式を採用して
いるが、非分散層赤外線ガス分析計で一般に行なわれて
いるダブルビーム方式としてもよい。
Although the above embodiment employs a single beam method, a double beam method, which is generally used in non-dispersed layer infrared gas analyzers, may also be used.

(発明の効果) 本発明によれば、次のような効果を達成することができ
る。
(Effects of the Invention) According to the present invention, the following effects can be achieved.

(1)測定セルと試料加熱炉が一体化されているので、
水の結露や水分吸着による濃度指示の遅れを考慮しなく
てもよい。
(1) Since the measurement cell and sample heating furnace are integrated,
There is no need to consider delays in concentration indication due to water condensation or moisture adsorption.

(2)測定セルと試料加熱炉が一体化されているため、
小型に設計できる。
(2) Since the measurement cell and sample heating furnace are integrated,
Can be designed to be small.

(3)試料加熱炉は常に加熱されており、その中に試料
が導入される構造であるため、加熱炉の昇温に要する時
間を短縮することができる。
(3) Since the sample heating furnace is constantly heated and the sample is introduced into it, the time required to raise the temperature of the heating furnace can be shortened.

(4)キャリアガスの流れを制御することにより、空気
中の水分の混入による誤差を除くことができる。
(4) By controlling the flow of carrier gas, errors caused by moisture in the air can be eliminated.

(5)非分散層赤外線ガス分析計の水分の感度は非常に
高いので、少量の試料で測定が可能である。
(5) The moisture sensitivity of the non-dispersed layer infrared gas analyzer is very high, so measurements can be made with a small amount of sample.

また、少量の試料ですむことから、短時間での測定が可
能であり、多試料でも短時間で測定することができる。
Furthermore, since a small amount of sample is required, measurement can be performed in a short time, and even a large number of samples can be measured in a short time.

(6)非分散層赤外線ガス分析計では水に対する選択性
をもたせることができるので、水分のみを正確に測定で
きる。
(6) Since the non-dispersed layer infrared gas analyzer can be made selective to water, only water can be accurately measured.

(7)非分散層赤外線ガス分析計の校正は一定の水分を
含んだガスを流すことにより簡単に行なうことができる
(7) A non-dispersed layer infrared gas analyzer can be calibrated easily by flowing a gas containing a certain amount of moisture.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一実施例を示す断面図、第2図は同実施例にお
ける非分散層赤外線ガス分析計の部分を示す断面図、第
3図は同実施例で使用される試料容器を示す断面図、第
4図は従来の非分散層赤外線ガス分析計を用いて水分測
定を行なおうとした場合の装置を示す概略図である。 2・・・・・・セルブロック、 2a・・・・・・良熱伝導性部材。 4・・・・・・ヒータ。 7・・・・・・測定セル。 8.9・・・・・・窓材、 IO・・・・・・試料容器取付は部、 12・・・・・・試料容器。 32・・・・・・試料。 40・・・・・・ターンテーブル。 42・・・・・・アーム、 50〜52・・・・・・切換え弁、 53・・・・・・CPU。
Fig. 1 is a sectional view showing one embodiment, Fig. 2 is a sectional view showing a portion of a non-dispersed layer infrared gas analyzer in the same embodiment, and Fig. 3 is a sectional view showing a sample container used in the same embodiment. 4 are schematic diagrams showing an apparatus for measuring moisture using a conventional non-dispersed layer infrared gas analyzer. 2... Cell block, 2a... Good thermal conductive member. 4... Heater. 7...Measurement cell. 8.9...Window material, IO...Sample container installation part, 12...Sample container. 32... Sample. 40... Turntable. 42...Arm, 50-52...Switching valve, 53...CPU.

Claims (1)

【特許請求の範囲】[Claims] (1)良熱伝導性部材に形成された貫通穴の両端が赤外
線透過材料の窓材で閉じられて測定セルが形成されてい
るとともに、試料容器取付け部がその良熱伝導性部材内
で前記測定セルに連結して形成されており、前記測定セ
ルにはガス出口が設けられており、かつ、前記良熱伝導
性部材には加熱手段を備えてなるセルブロックと、 試料を収容するとともにキャリアガス入口とキャリアガ
ス出口をもち前記試料容器取付け部に嵌め込まれる形状
に形成された試料容器と、 この試料容器を前記セルブロックの試料容器取付け部に
取りつけたり取り外したりする操作を自動的に行なう試
料交換機構と、 測定準備状態ではキャリアガスを前記ガス出口から測定
セル方向に流し、測定状態ではキャリアガスを流す方向
を逆転させて前記試料容器から測定セル方向に流すよう
にキャリアガスの方向を切り換えるキャリアガス供給機
構とを備え、 前記測定セルを含んで水分測定用に設定された非分散形
赤外線ガス分析計が構成されていることを特徴とする多
試料連続測定用固体水分測定装置。
(1) Both ends of a through hole formed in a good heat conductive member are closed with a window material made of an infrared transmitting material to form a measurement cell, and the sample container mounting portion is located inside the good heat conductive member. A cell block is formed connected to a measurement cell, the measurement cell is provided with a gas outlet, and the well thermally conductive member is provided with a heating means; A sample container having a gas inlet and a carrier gas outlet and formed in a shape to be fitted into the sample container attachment part, and a sample that automatically attaches and detaches the sample container to the sample container attachment part of the cell block. an exchange mechanism; in a measurement preparation state, the carrier gas flows from the gas outlet toward the measurement cell; in a measurement state, the direction of the carrier gas is reversed to flow from the sample container toward the measurement cell; A solid moisture measuring device for continuous measurement of multiple samples, comprising: a carrier gas supply mechanism; and a non-dispersive infrared gas analyzer configured for moisture measurement including the measurement cell.
JP60259213A 1985-11-19 1985-11-19 Solid moisture measuring instrument for continuously measuring many samples Pending JPS62118241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60259213A JPS62118241A (en) 1985-11-19 1985-11-19 Solid moisture measuring instrument for continuously measuring many samples

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60259213A JPS62118241A (en) 1985-11-19 1985-11-19 Solid moisture measuring instrument for continuously measuring many samples

Publications (1)

Publication Number Publication Date
JPS62118241A true JPS62118241A (en) 1987-05-29

Family

ID=17330965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60259213A Pending JPS62118241A (en) 1985-11-19 1985-11-19 Solid moisture measuring instrument for continuously measuring many samples

Country Status (1)

Country Link
JP (1) JPS62118241A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110641A (en) * 1990-08-30 1992-04-13 Shionogi & Co Ltd Method and apparatus for inspecting vial filled with powdered agent
EP0990131A1 (en) * 1996-01-30 2000-04-05 Arizona Instrument Corporation Moisture analyzer
EP1353164A1 (en) * 2002-04-12 2003-10-15 Sherwood Scientific Ltd Sorbate analysis method and apparatus
WO2007063840A1 (en) * 2005-11-30 2007-06-07 Eisai R & D Management Co., Ltd. Method of measuring moisture content of drying subject
JP2007225386A (en) * 2006-02-22 2007-09-06 Horiba Ltd Gas analyzer and semiconductor manufacturing apparatus
JP2009533662A (en) * 2006-04-10 2009-09-17 エフ.ホフマン−ラ ロシュ アーゲー Equipment for monitoring the lyophilization process

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110641A (en) * 1990-08-30 1992-04-13 Shionogi & Co Ltd Method and apparatus for inspecting vial filled with powdered agent
EP0990131A1 (en) * 1996-01-30 2000-04-05 Arizona Instrument Corporation Moisture analyzer
EP0990131A4 (en) * 1996-01-30 2001-12-19 Arizona Instr Corp Moisture analyzer
EP1353164A1 (en) * 2002-04-12 2003-10-15 Sherwood Scientific Ltd Sorbate analysis method and apparatus
WO2007063840A1 (en) * 2005-11-30 2007-06-07 Eisai R & D Management Co., Ltd. Method of measuring moisture content of drying subject
JPWO2007063840A1 (en) * 2005-11-30 2009-05-07 エーザイ・アール・アンド・ディー・マネジメント株式会社 Method for measuring moisture content of dried objects
JP2007225386A (en) * 2006-02-22 2007-09-06 Horiba Ltd Gas analyzer and semiconductor manufacturing apparatus
JP4727444B2 (en) * 2006-02-22 2011-07-20 株式会社堀場製作所 Gas analyzer and semiconductor manufacturing apparatus
JP2009533662A (en) * 2006-04-10 2009-09-17 エフ.ホフマン−ラ ロシュ アーゲー Equipment for monitoring the lyophilization process

Similar Documents

Publication Publication Date Title
EP3011310B1 (en) System for analyzing mercury
US6114700A (en) NDIR instrument
CA1078641A (en) Pulsed light colorimeter
US6368560B1 (en) Photometric gas detection system and method
US3734629A (en) Instrument for determining the optical density of fluids
US4045679A (en) Fluorescent gas analyzer
JP6651126B2 (en) Gas analyzer
JPS62118241A (en) Solid moisture measuring instrument for continuously measuring many samples
US6118134A (en) Optical mass gauge sensor having an energy per unit area of illumination detection
CN112857961B (en) Classification measurement method and system for atmospheric organic nitrate
US3969626A (en) Method and apparatus for detecting total reduced sulfur
US6630108B1 (en) Optical measuring head, in particular for automatic chemical or biological reaction analyzer
US4229105A (en) Sensitive measuring cell for a differential refractometer of the interference type
US3241922A (en) Instrumentation for the automatic, simultaneous ultramicro determination of the c-h-n contents of organic compounds
JPS62105033A (en) Solid moisture meter
US3513704A (en) Photometric thermometer and method of operation
JP3126759B2 (en) Optical analyzer
GB2278203A (en) Device and method for calibration of sensors
RU1805348C (en) High-temperature vacuum cuvette
JPS61175534A (en) Emissivity measuring apparatus
Wiegleb IR Absorption Photometer
SU1076777A1 (en) Heat flux measuring method
RU2091763C1 (en) Gear measuring atmospheric pollution
KR870000596B1 (en) Infrared radiation gas analysis device
JPH06308027A (en) Light measuring apparatus and ozone water concentration meter