JPS62117311A - Laminated film capacitor - Google Patents

Laminated film capacitor

Info

Publication number
JPS62117311A
JPS62117311A JP25802285A JP25802285A JPS62117311A JP S62117311 A JPS62117311 A JP S62117311A JP 25802285 A JP25802285 A JP 25802285A JP 25802285 A JP25802285 A JP 25802285A JP S62117311 A JPS62117311 A JP S62117311A
Authority
JP
Japan
Prior art keywords
film
capacitor
double
electrode
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25802285A
Other languages
Japanese (ja)
Inventor
久明 立原
杉浦 紀行
西川 之康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25802285A priority Critical patent/JPS62117311A/en
Publication of JPS62117311A publication Critical patent/JPS62117311A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子機器、電気機器に用いられる積層フィル
ムコンfンザニ関スル。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a laminated film composite used in electronic equipment and electrical equipment.

従来の技術 近年、電子部品の実装技術の進歩に伴い、電子部品のチ
ップ化、小型化が急速に進んで、l・・す、フィルムコ
ンデンサにも、チップ化、小型化が?求さ扛ている。L
かしフーイルムコンデン市でIn 重体である樹脂フフ
イルノ、のIL誘電率がセラミノクコンデンザーやタン
タル電解コンデン」J等の誘電体ニくらべ約2ケタ以上
小さいため、小型化には不利である。
Conventional technology In recent years, with the advancement of electronic component mounting technology, the chipping and miniaturization of electronic components has progressed rapidly, and film capacitors have also been chipped and miniaturized. I'm looking for something. L
Since the IL dielectric constant of the heavy resin Fufilno is about two orders of magnitude smaller than that of dielectric materials such as ceramic capacitors and tantalum electrolytic capacitors, it is disadvantageous for miniaturization.

第7図、第8図にフィルムーコンデン→ノの素子構造を
示しており、第7図は両面金属化フ、イルムを用いる場
合、第8図は片面金属化フィルムを用いる場合のもので
ある。図において、1は両面金属化フィルム、2 、2
−1 、2−2はM着電極、3は誘電体フィルム、4−
1.4−2は溶射金属、5は片面金属化フィルノ1.6
−蒸着電極2,2−1.2−2と溶射金属4−1 、4
−2との接続部、7は蒸着マージン部、8し1金属化フ
イルムのはみ出し部である。
Figures 7 and 8 show the element structure of film-condensation. Figure 7 shows the case where double-sided metalized film is used, and Figure 8 shows the case where single-sided metalized film is used. . In the figure, 1 is a double-sided metallized film, 2 , 2
-1, 2-2 are M-coated electrodes, 3 is a dielectric film, 4-
1.4-2 is sprayed metal, 5 is single-sided metalized Filno 1.6
- Vapor deposited electrodes 2, 2-1, 2-2 and sprayed metal 4-1, 4
-2 is the connection part, 7 is the vapor deposition margin part, and 8 is the protruding part of the metallized film.

フィルノ・コンデンサの小型化について述べると、3 
・、 次の3点が重要である。
Regarding the miniaturization of Filno capacitors, 3
・The following three points are important.

1、誘電体フィルムを薄くすること。1. Make the dielectric film thinner.

2、外装体積を削減すること。2. Reduce the exterior volume.

3、非静電容量部分を削減すること。3. Reduce non-capacitive parts.

しかしながら、上記1、については現状膜厚2μmf4
のホリーエチレンテレフタレートフイルムが市場に出回
っているが、とれ以上薄いフィルムを量産するのは歩留
りが悪く、価格が高いものになってし捷う。壕だ上記2
、の外装材料を削減することは、コンデンサ素子の耐熱
性、耐湿性、長期信頼性を損うことになり好ましくない
。上記3、については、非静電容量部とは、静電容量の
形成に寄与していない部分のことで、第7図、第8図に
示す蒸着マージン部7、溶射金属部4−1゜4−2およ
び金属化フィルムがはみ出している部分8等がこれにあ
たる。コンデンサ体積が小さくなければ、非静電容量部
の体積は全体積に占める割合が小さいので問題とならな
いが、コンデンサ体積が小さく々ると、非静電容量部は
電極引出しのためにある程度の体積を必要とするので、
非静電容量部が全体積に占める割合が非常に大きくなっ
てくる。以−Iこのように非静電容量部は小型化を妨げ
る大きな要因のひとつである。
However, regarding 1 above, the current film thickness is 2 μm f4
Holly ethylene terephthalate film is on the market, but mass production of thinner films results in poor yields and high prices. It's a trench. Above 2.
Reducing the exterior material of the capacitor element is undesirable because it impairs the heat resistance, moisture resistance, and long-term reliability of the capacitor element. Regarding 3 above, the non-capacitance portion refers to a portion that does not contribute to the formation of capacitance, such as the vapor deposition margin portion 7 and the sprayed metal portion 4-1° shown in FIGS. 7 and 8. 4-2 and the portion 8 where the metallized film protrudes, etc. correspond to this. If the volume of the capacitor is not small, the volume of the non-capacitance part will not be a problem as it will account for a small proportion of the total volume, but if the volume of the capacitor is small, the volume of the non-capacitance part will take up a certain amount of volume to draw out the electrodes. Since it requires
The ratio of the non-capacitance portion to the total area becomes extremely large. As described above, the non-capacitance portion is one of the major factors hindering miniaturization.

まだ、積層フィルムコンデンザを小型化していくと、静
電容量精度が低下する。静電容量精度は、対向電極幅精
度に大きく影響を受けるが、対向電極幅精度は、蒸着時
のフィルム幅方向の寸法精度、フィルムのスリットM度
、積層時のフィルム幅方向の精度によって決する。小7
1;1,1化さ、#すると対向電極幅を細くしなけわば
な「〕々いので、前記3つの寸法精度の限界に近づくた
めである。
However, as laminated film capacitors are made smaller, capacitance accuracy decreases. The capacitance accuracy is greatly influenced by the width accuracy of the counter electrode, and the width accuracy of the counter electrode is determined by the dimensional accuracy in the film width direction during vapor deposition, the slit M degree of the film, and the accuracy in the film width direction during lamination. 7th grade
This is because the width of the opposing electrode would have to be made thinner if it were converted to 1;

次に電極引出し部について述べる。積層フィルムコンデ
ンザの電極引出しは、金属化フィルムがはみ出している
部分8に金属溶射したり梼電性ペイントを塗布したりし
て行われている。ここで、金属化フィルム1,5の蒸着
電極2−1.2−2と溶射金属等4−1.4−2との接
触状態はコンデンサ素子特性を大きく左右する要素であ
る。この接触状態が悪い場合には単に素子特性の劣化だ
けでなく、蒸着電極2−1.2−2と溶射金属4−1,
4−2が離れた場合には、コンデンサ素子を失う場合さ
えあり、この接触部分には電気的にも機械的にも充分な
強度が必要である。この接触部分が充分な強度を保つに
は第7図、第8図に示す」:うに、溶射金属4−1.4
−2が金属化フィルム相互間の間隙に侵入して蒸着電極
2 、2−1 。
Next, the electrode extension section will be described. The electrodes of the laminated film capacitor are drawn out by spraying a metal or applying a dielectric paint to the protruding portion 8 of the metallized film. Here, the contact state between the vapor deposited electrodes 2-1.2-2 of the metallized films 1 and 5 and the sprayed metal etc. 4-1.4-2 is a factor that greatly influences the characteristics of the capacitor element. If this contact condition is poor, not only the element characteristics will deteriorate, but also the vapor deposited electrode 2-1, 2-2 and the sprayed metal 4-1,
If 4-2 separates, the capacitor element may even be lost, so this contact portion must have sufficient strength both electrically and mechanically. In order for this contact part to maintain sufficient strength, it is shown in Figures 7 and 8.
-2 penetrates into the gap between the metallized films to form the deposited electrodes 2 and 2-1.

2−2の面との接続部6(この状態を面接続と称す。)
を保つ必要がある。もし第9図のように溶射金属4−1
.4−2が金属化フィルム相互間の間隙に侵入せず、蒸
着電極2の端部との接続部9のみ(この状態を線接続と
称す。)であると、接触面積が極めて小さいために非常
に弱い接続となる。ここで薄手のフィルムを使用した場
合、厚さが薄いだめにフィルム相互間の間隙が狭くなる
ことや、いわゆるフィルムの腰が弱いために本来あるべ
きフィルム相互間の間隙をフィルム自体の変形により塞
いでしまうことなどのために、前記のような面接続状態
が非常に得られにぐい。
Connection part 6 with surface 2-2 (this state is called surface connection)
need to be maintained. If sprayed metal 4-1 as shown in Figure 9
.. If 4-2 does not penetrate into the gap between the metallized films and only connects to the end of the vapor-deposited electrode 2 (this state is called a line connection), the contact area is extremely small and the contact area is extremely small. It becomes a weak connection. If a thin film is used here, the gap between the films becomes narrow due to the thin thickness, and the so-called stiffness of the film is weak, so the gap between the films that should have been closed may be closed due to the deformation of the film itself. Because of this, it is very difficult to obtain the above-mentioned surface connection state.

従来の技術では、このような構成の場合、第10図のよ
うにフィルム縁辺部に、フィルム厚さ方向61・− への突起状の変形部1oを、フィルム長さ方向に繰り返
し設けることにより、溶射金属がフィルム相互間に侵入
しやすいように間隙を押し拡げることが提案されている
In the conventional technology, in the case of such a structure, as shown in FIG. 10, by repeatedly providing protruding deformation parts 1o in the film thickness direction 61. It has been proposed to widen the gap so that the sprayed metal can more easily penetrate between the films.

発明が解決しようとする問題点 以上述べたJ:うに、従来の積層フィルムコンデンサで
は、非静電容量部の占める体積の割合が大きいために、
小型化に不利であること、また前述のように小型化する
ほど静電容量精度が出しにくいこと、また電極引出し部
については、前述の突起を設ける工法でも、溶射金属と
蒸着電極との面接続が、突起の近傍でしか得られないた
め、面接続とはいっても、その強度が電気的2機械的に
弱いこと、また突起のためにある程度の体積を必要とす
る、などの問題点があった。
Problems to be Solved by the Invention As stated above, in conventional multilayer film capacitors, the non-capacitance portion occupies a large proportion of the volume.
This is disadvantageous for miniaturization, and as mentioned earlier, the smaller the size, the more difficult it is to achieve capacitance accuracy.As for the electrode lead-out part, even with the method of providing the protrusions mentioned above, surface connection between the sprayed metal and the vapor-deposited electrode is difficult. can only be obtained near the protrusions, so even though it is a surface connection, there are problems such as its strength is weak electrically and mechanically, and a certain amount of volume is required for the protrusions. Ta.

本発明は、以上の欠点に鑑み、積層フィルムコンデンサ
から蒸着マージン部と金属化フィルムのはみ出し部を削
除することによね、非静電容量′部の占める体積割合を
従来より小さくしてコンデンサの小型化を極めて有利に
し、寸だ、小型化に伴う静電界t?j、 M度低下を防
正し、さらに溶射金属と蒸A・電極の接続をより強い面
接続とすることを目的とし、小型で、静電容量精度およ
び素子特性の優れた積層フィルムコンデンサを提供する
ものである。
In view of the above drawbacks, the present invention eliminates the vapor deposition margin and the protruding portion of the metallized film from a multilayer film capacitor, thereby reducing the volume ratio occupied by the non-capacitance portion compared to the conventional one, thereby making the capacitor more compact. It is extremely advantageous to reduce the electrostatic field due to miniaturization. J, We provide a small multilayer film capacitor with excellent capacitance accuracy and element characteristics, with the aim of preventing the decrease in M degree and making the connection between the sprayed metal and the vaporized A/electrode a stronger surface connection. It is something to do.

問題点を解決するプζめの手段 前記目的を達成するために、本発明のフィルムコンデン
サは両面金属化フィルムを蛇腹状に折りた/こむことに
」=って積層し、折り返し部の外面に電極引き1111
〜部を形成した構成としたものである。
A further means for solving the problem In order to achieve the above object, the film capacitor of the present invention consists of double-sided metallized films that are folded/folded into a bellows shape and laminated, and the outer surface of the folded portion is laminated. Electrode pull 1111
.about. section is formed.

′!!たこのようにして得たコンデンサを母材として、
切断のと、レーザー照射、噴水流等、適当な方法で切断
することによって積層フィルムコンデンサを得てもよい
。捷た、両面金属化フィルムを蛇腹状に折りたたむ方向
は、フィルム長さ方向へ折りたたんでも、あるいはフィ
ルム幅方向へ折りたたんでもよい。
′! ! Using the capacitor obtained in this way as a base material,
A multilayer film capacitor may be obtained by cutting and cutting by an appropriate method such as laser irradiation, water jet, etc. The direction in which the twisted double-sided metallized film is folded into a bellows shape may be in the length direction of the film or in the width direction of the film.

作  用 前記の構成により、本発明の積層フィルムコンデンサは
、両面金属化フィルム1の蒸着電極2−1゜2−2が、
折りだに壕れた折り返l〜部で外側に露出[5、てi−
リ、また、フィルム膜厚に31、り月向市;極と絶縁さ
れることで、電極引出しの/こめの金属化フィルムのは
み出1−7や蒸着マージンが不便になるため、従来の積
層)、fルムコンデンザと比較[7て非常に小型になる
1、壕だ蒸着電極が外側に露出し、ているため、蒸Ii
電極と溶射金属等が確実に面接続を保つので素子特性が
非常に良好となる1、また、本発明のコンデンサは、対
向電極幅精度が、旬月からの切断時の寸法精度、あるい
は切断しない場合両面金属化フィルノ・のスリット精度
のみに、1: 。
Effect With the above-described configuration, the laminated film capacitor of the present invention has the vapor-deposited electrodes 2-1 and 2-2 of the double-sided metallized film 1.
Exposed to the outside at the folded fold l~ part [5,
In addition, the film thickness is 31%, and insulation from the electrode makes it inconvenient to protrude the metallized film 1-7 of the electrode drawer and the evaporation margin, so conventional lamination) , compared to the f-lume condenser [7] and is very small in size.
Since the surface connection between the electrode and the sprayed metal etc. is maintained reliably, the device characteristics are very good1.Also, in the capacitor of the present invention, the width accuracy of the opposing electrode is the same as the dimensional accuracy when cutting from the middle of the month, or when it is not cut. In the case of double-sided metallized Filno, the slitting accuracy is only 1:.

て決捷るので、蒸着や積層の時に影響さilず、静電容
量精度が非常に良’If I= hる。
Therefore, it is not affected during vapor deposition or lamination, and the capacitance accuracy is very good.

実施例 以下本発明の実施例について説明する。Example Examples of the present invention will be described below.

第1図、第2図に本発明の一実施例によるフィルムコン
デンサを示してj・・す、図(〆こおいて10は誘電体
フィルム11の両面に蒸着電極12−1゜12−2を形
成することにより構成1−7だ両面金属化フィルムであ
り、この両面金属化フィルム109、−7 は、フィルムの長手方向に所定の間隔で蛇腹状に折りん
た1れている。この折りたた捷れた両面金属化フィルム
1oの折り返し部の外面には、電極引き出し7部13−
1.13−2が形成されている。
Figures 1 and 2 show a film capacitor according to an embodiment of the present invention. The structure 1-7 is a double-sided metallized film, and this double-sided metalized film 109,-7 is folded into a bellows shape at predetermined intervals in the longitudinal direction of the film. On the outer surface of the folded part of the twisted double-sided metallized film 1o, an electrode drawer 7 part 13-
1.13-2 is formed.

次に具体例を挙げて説明する。Next, a specific example will be given and explained.

両面金属化フィルムとして、膜厚2μmのポリ−エチレ
ンテレフタレートフィルム両面にアルミニウムを蒸着し
たものを用いた。この両面金属化フィルムを第3図に示
すようにフィルム長さ方向に折り返し幅を6胴ずつと−
〕て蛇腹状に1,000回折りたたんだ。なお、第3図
において、14−f。
As the double-sided metallized film, a 2 μm thick poly-ethylene terephthalate film with aluminum vapor-deposited on both sides was used. As shown in Figure 3, this double-sided metallized film is folded back in the length direction of the film, and the width is 6 cylinders at a time.
] and folded it into a bellows shape 1,000 times. In addition, in FIG. 3, 14-f.

14−2は折りたたみ用のL字形治具、15は送りロー
ラ、16はバネ、17は折りたたまれた両面金属化フィ
ルム10が押し込1れるケースである。折り返(一部分
に亜鉛を片側0.6ranずつ溶射した。このようにし
て得たコンデンサ母材を切断のこによりESm幅になる
ように切断してコンデンサを得た。比較例(A)として
第8図に示す片面金属化フィルムを積層した構成のコン
デンサも試作した。
14-2 is an L-shaped jig for folding, 15 is a feed roller, 16 is a spring, and 17 is a case into which the folded double-sided metallized film 10 is pushed. Zinc was thermally sprayed on the folded part (0.6 ran on each side). The capacitor base material thus obtained was cut with a cutting saw to a width of ESm to obtain a capacitor. As a comparative example (A), We also prototyped a capacitor with a laminated single-sided metallized film structure as shown in Figure 8.

この片面金属化フィルムはフィルム幅7゜srMnで、
10 ′−−− 蒸着マージン幅1胴である。壕だ積層時の対向幅は5 
M 、片面金属化フィルムのを1み出し部の幅klO,
5rrvnと!〜だ。前記片面金属化フィルノ・を1,
000枚積層重た後、片面金属化フ、fルムのはみ出し
7部に亜鉛を片側o、smずつ溶射し、切断のこにより
5胴幅になるように切断し7でコンデンサを得た。
This single-sided metallized film has a film width of 7°srMn,
10' --- Vapor deposition margin width is 1 cylinder. Opposing width when stacking trenches is 5
M, the width of the protrusion of the single-sided metallized film klO,
5rrvn! ~is. 1,
After stacking 1,000 pieces of film, one side of the film was metallized, and zinc was thermally sprayed onto the protruding 7 parts of the film on each side, and the capacitor was cut into 5 cylinders with a cutting saw.

さらに比較例(B)と1−で、前記の片面金属化フィル
ムの蒸着マージンのない側の縁辺部にフィルム厚さ方向
の突起状変形を設Hkものを、比較例^)と同様の方法
でコンデンサ素子に加下し−7だ7.々お、前記の突起
の大きさはフィルム幅方向、長さ方向、厚さ方向とも約
o、5fiであり、フ、イルム長さ方向に2調のピッチ
で繰り返し設けられている。なす、・本発明のコンデン
サおよび比較例(Al、(B)とも20ロツト、各々1
,000個ずつ試作した。
Furthermore, in Comparative Examples (B) and 1-, a protruding deformation in the film thickness direction was created on the edge of the single-sided metallized film on the side without the vapor deposition margin by the same method as in Comparative Example ^). Addition to the capacitor element is -7.7. Each of the projections has a size of about 0.5fi in the film width direction, length direction, and thickness direction, and is repeatedly provided at a two-tone pitch in the length direction of the film. Eggplant, capacitor of the present invention and comparative example (20 lots for both Al and (B), 1 each
,000 pieces were prototyped.

以上のようにして試作した積層フィル1、コンデンサの
モ均静電容量、平均誘電正接、静電容量不良率、平均素
子体積を測定1−だ結果を第1表に示す。なお静電容量
不良率は、平均静電容縫を中心として+6係の範囲以外
の静電界!11を示[7た素イ11 べ一 の個数が全体に対する百分率である。
Table 1 shows the results of measuring the average capacitance, average dielectric loss tangent, capacitance failure rate, and average device volume of the laminated film 1 and the capacitor manufactured as described above. In addition, the capacitance failure rate is based on the electrostatic field outside the +6 range centered on the average capacitance sewing! 11 is shown as [7 primes I11 The number of primes is a percentage of the total.

第1表 さらに、試作した3種類のコンデンサを各々50個ずつ
充放電試験に供した。その結果を第6図に示す。々お充
放電試験は、バックコンデンサ容t1 tiF tN圧
150VDCv充放電抵抗1Ωという条件の下で行った
Table 1Furthermore, 50 of each of the three types of prototype capacitors were subjected to a charge/discharge test. The results are shown in FIG. The charging and discharging tests were conducted under the following conditions: back capacitor capacity t1 tiF tN pressure 150 VDCv charging/discharging resistance 1Ω.

第1表に示す結果から、本発明のコンデンサは比較例(
5)、(B)とほぼ同じ容量であるが、素子体積が約4
6q6縮小されている。これは前述のように、素子内部
に蒸着マージンや金属化フィルムのはみ出し部がないた
めに極めて縮小化できたからである。また本発明のコン
デンサは、静電容量不良率が比較例(A)、(B)に比
較して極めて低い。これは前述のように、比較例(8)
、(B)では静電容量精度が対向電極幅精度によって大
きく変わるが、対向電極幅は蒸着寸法精度、スリット精
度、積層精度に大きく影響をうけるだめ第1表に示すよ
うに、静電容量不良率が大きい。しかし本発明のコンデ
ンサは上述のように前記の精度は不要であるため、不良
率が低い。さらに本発明のコンデンサは第6図に示すよ
うに充放電特性でも比較例とくらべて良好な特性を示す
。これは本発明のコンデンサでは蒸着電極と溶射金属が
比較例より強い接続をしていることを示すものである。
From the results shown in Table 1, it can be seen that the capacitor of the present invention is the comparative example (
5), has almost the same capacity as (B), but the element volume is about 4
It has been reduced by 6q6. This is because, as mentioned above, there is no vapor deposition margin or protruding portion of the metallized film inside the device, so it can be extremely downsized. Furthermore, the capacitor of the present invention has an extremely low capacitance defect rate compared to Comparative Examples (A) and (B). As mentioned above, this is Comparative Example (8)
, (B), the capacitance accuracy varies greatly depending on the width accuracy of the opposing electrode, but the width of the opposing electrode is greatly affected by the evaporation dimensional accuracy, slit accuracy, and lamination accuracy. The rate is large. However, since the capacitor of the present invention does not require the above-mentioned precision as described above, the defective rate is low. Furthermore, as shown in FIG. 6, the capacitor of the present invention exhibits better charging and discharging characteristics than the comparative example. This indicates that in the capacitor of the present invention, the vapor deposited electrode and the sprayed metal have a stronger connection than in the comparative example.

なお、本発明においてrt1第4図のように両面金属化
フィルム10をフィルムの幅方向に蛇腹状に折り返して
折りたたんでもよい。第4図において、18は両面金属
化フィルム10のフィルムの幅方向に蛇腹状に折り目を
設けるローラ、19はそのローラ18によって付けられ
た折り目に沿ってフィルムを折りたたむローラ、20は
巻取ローラである。
In addition, in the present invention, the double-sided metallized film 10 may be folded back in a bellows shape in the width direction of the film as shown in rt1 FIG. 4. In FIG. 4, 18 is a roller that creates bellows-shaped folds in the width direction of the double-sided metallized film 10, 19 is a roller that folds the film along the creases formed by the roller 18, and 20 is a take-up roller. be.

134−ン また、第3図、第4図のようにして、両面金属化フィル
ム1oを折りたたんだ後、素子とする場合、その折りた
たんだ積層物の端面に電極引き出し部を形成して完成品
とすればよいが、1枚のフィルムから多数の素子が得ら
れる大きさの両面金属化フィルム10を用いる場合は、
折りたたんで電極引き出し部を形成した後、所定の大き
さに々るように切断すればよい。第6図にその切断方法
の例を示しており、(a)は噴水流により行う場合、(
b)はレーザー光線により行う場合、(C)は切断のと
により行う場合である。なお、21はコンデンサ母材、
22は噴水流ノズル、23はレーザー光源、24は切断
のとである。
134-In addition, when the double-sided metallized film 1o is folded to form an element as shown in FIGS. 3 and 4, electrode extension parts are formed on the end faces of the folded laminate to form the finished product. However, when using a double-sided metallized film 10 of a size that allows a large number of elements to be obtained from one film,
After folding to form an electrode extension part, it may be cut to a predetermined size. An example of the cutting method is shown in Fig. 6.
b) is a case where the process is performed using a laser beam, and (C) is a case where the process is performed by cutting. In addition, 21 is the capacitor base material,
22 is a fountain nozzle, 23 is a laser light source, and 24 is a cutting blade.

発明の効果 以上のように本発明の積層フ゛イルムコンデンサは、両
面金属化フィルムを蛇腹状に折りたたむことによって積
層した後、折り返し部分に金属溶射や導電性ペイントに
より電極引き出し部を形成した構成となっているため、
従来より極めて小型で、静電容量精度が良好で、素子特
性に優れた積層フ14べ−5・ イルムコンデンサとなり、小型化、チップ化ができ、工
業的に極めて大きな効果をもたらすものである。
Effects of the Invention As described above, the laminated film capacitor of the present invention has a structure in which double-sided metallized films are laminated by folding them into a bellows shape, and then electrode extension portions are formed on the folded portions by metal spraying or conductive paint. Because
This is a multilayer film 14-base film capacitor that is much smaller than conventional capacitors, has good capacitance accuracy, and excellent element characteristics, and can be miniaturized and made into chips, resulting in extremely large industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例によるコンデンサの斜視図、
第2図は同コンデンサの断面図、第3図は本発明のコン
デンサの製造工程でフィルム長さ方向に折りたたむ工法
の一例を示した斜視図、第4図はフィルム幅方向に折り
たたむ工法の一例を示した斜視図、第6図は本発明のコ
ンデンサを切断により得る場合の切断工法の例を示した
斜視図、第6図は本発明のコンデンサと各比較例につい
て充放電試験を行なった結果を示す特性図、第7図は従
来の両面金属化フィルムを使用した積層フィルムコンデ
ンサの断面図、第8図は従来の片面金属化フィルムを使
用した積層フィルムコンデンサの断面図、第9図は従来
の積層フィルムコンデンサにおいて、蒸着電極と溶射金
属が線接続している状態を示す断面図、第10図はフィ
ルム縁辺部に突起状変形をもつ従来の積層フィルムコン
デン15 〆\−。 ザの積層状態を示す斜視図である。 10・・・・・・両面金属化フィルム、12−1.12
−2・・・・・・蒸着電極、13−1 、13−2・・
・・・・電極引き出し部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名−7
ζ− へ         ゝ Cつ 城     − 第3図 第5図 (Cン 第7図 第9図 第10図
FIG. 1 is a perspective view of a capacitor according to an embodiment of the present invention;
Fig. 2 is a cross-sectional view of the same capacitor, Fig. 3 is a perspective view showing an example of the method of folding the film in the length direction in the manufacturing process of the capacitor of the present invention, and Fig. 4 is an example of the method of folding the film in the width direction. FIG. 6 is a perspective view showing an example of the cutting method for obtaining the capacitor of the present invention by cutting, and FIG. 6 shows the results of a charge/discharge test for the capacitor of the present invention and each comparative example. Figure 7 is a cross-sectional view of a conventional multilayer film capacitor using a metalized film on both sides, Figure 8 is a cross-sectional view of a conventional multilayer film capacitor using a metalized film on one side, and Figure 9 is a cross-sectional view of a conventional multilayer film capacitor using a metalized film on one side. FIG. 10 is a cross-sectional view showing a line connection between a vapor-deposited electrode and a sprayed metal in a laminated film capacitor. FIG. 10... Double-sided metallized film, 12-1.12
-2... Vapor deposition electrode, 13-1, 13-2...
...Electrode extraction part. Name of agent: Patent attorney Toshio Nakao and 1 other person-7
ζ- To ゝC Castle - Figure 3 Figure 5 (C Figure 7 Figure 9 Figure 10

Claims (3)

【特許請求の範囲】[Claims] (1)両面金属化フィルムを蛇腹状に折りたたむことに
よって積層し、かつ折り返し部の外面に電極引き出し部
を設けたことを特徴とする積層フィルムコンデンサ。
(1) A multilayer film capacitor characterized in that double-sided metallized films are stacked by folding them into a bellows shape, and an electrode extension portion is provided on the outer surface of the folded portion.
(2)両面金属化フィルムをフィルムの長手方向に折り
返えして蛇腹状に折りたたむことを特徴とする特許請求
の範囲第1項記載の積層フィルムコンデンサ。
(2) The laminated film capacitor according to claim 1, wherein the double-sided metallized film is folded back in the longitudinal direction of the film to form a bellows shape.
(3)両面金属化フィルムをフィルムの幅方向に折り返
えして蛇腹状に折りたたむことを特徴とする特許請求の
範囲第1項記載の積層フィルムコンデンサ。
(3) The laminated film capacitor according to claim 1, wherein the double-sided metallized film is folded back in the width direction of the film to form a bellows shape.
JP25802285A 1985-11-18 1985-11-18 Laminated film capacitor Pending JPS62117311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25802285A JPS62117311A (en) 1985-11-18 1985-11-18 Laminated film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25802285A JPS62117311A (en) 1985-11-18 1985-11-18 Laminated film capacitor

Publications (1)

Publication Number Publication Date
JPS62117311A true JPS62117311A (en) 1987-05-28

Family

ID=17314441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25802285A Pending JPS62117311A (en) 1985-11-18 1985-11-18 Laminated film capacitor

Country Status (1)

Country Link
JP (1) JPS62117311A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422324U (en) * 1987-07-30 1989-02-06
CN106935405A (en) * 2017-03-06 2017-07-07 西南交通大学 A kind of folding film capacitor and preparation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422324U (en) * 1987-07-30 1989-02-06
JPH0422734Y2 (en) * 1987-07-30 1992-05-26
CN106935405A (en) * 2017-03-06 2017-07-07 西南交通大学 A kind of folding film capacitor and preparation method

Similar Documents

Publication Publication Date Title
JP5131193B2 (en) Metallized film capacitors
US3457478A (en) Wound film capacitors
US3855507A (en) Self heating capacitors
JPS62117311A (en) Laminated film capacitor
JPH06168845A (en) Chip type laminated film capacitor
KR102063782B1 (en) Film capacitor
US20220130612A1 (en) Multilayer capacitor
JP6321414B2 (en) Film capacitor
JPS62190828A (en) Manufacture of metallized film capacitor
JP2920240B2 (en) Metallized film capacitors
JPS61287119A (en) Metalized film capacitor
US3178623A (en) Wound metallized capacitor
US3675094A (en) Impregnated self-healing alternating voltage capacitor
JPH09270359A (en) Metallized film capacitor
CN219226079U (en) Capacitor film for producing coiled capacitor
JPH0379013A (en) Manufacture of film capacitor
JPS5897823A (en) Method of producing metallized film condenser
JPS5867017A (en) Method of producing metallized film condenser
JP4704951B2 (en) Metallized film capacitors
JPS596520A (en) Condenser
JPS6128210B2 (en)
JPS63224313A (en) Metallized plastic film capacitor
JPS63216324A (en) Laminated film capacitor
JPH0399411A (en) Film capacitor
JPS59167008A (en) Film capacitor