JPS62116556A - Production of alkyl mercaptan - Google Patents

Production of alkyl mercaptan

Info

Publication number
JPS62116556A
JPS62116556A JP60257389A JP25738985A JPS62116556A JP S62116556 A JPS62116556 A JP S62116556A JP 60257389 A JP60257389 A JP 60257389A JP 25738985 A JP25738985 A JP 25738985A JP S62116556 A JPS62116556 A JP S62116556A
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen sulfide
olefin
reaction
isobutene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60257389A
Other languages
Japanese (ja)
Other versions
JPH0425945B2 (en
Inventor
Hiroshi Yoshida
寛 吉田
Eiji Tanaka
栄治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Chemical Co Ltd
Original Assignee
Kuraray Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Chemical Co Ltd filed Critical Kuraray Chemical Co Ltd
Priority to JP60257389A priority Critical patent/JPS62116556A/en
Publication of JPS62116556A publication Critical patent/JPS62116556A/en
Publication of JPH0425945B2 publication Critical patent/JPH0425945B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain a compound useful as an odorant for town gas in good yield in a process for providing continuous reaction for a long period at a low equipment cost, by reacting an olefin with hydrogen sulfide in the presence of a high-performance catalyst by a moving bed method. CONSTITUTION:An olefin, e.g. isobutene, is reacted with hydrogen sulfide in a moving bed of an alumina catalyst obtained by preparing spherical gel from a basic sol of aluminum hydroxide, heat-treating the gel at 500-700 deg.C and removing sulfate radicals, etc., and having >=95% alumina content and >=0.8meq/g acidity to afford the aimed substance. If the yield is to be maximized, the reaction is carried out under the following conditions: Blowing gas composition; 20:60:40 nitrogen gas:hydrogen sulfide:isobutene, 80 deg.C temperature and 120hr<-1> space velocity (SV).

Description

【発明の詳細な説明】 〔産業上の利用分野〕本発明はアルキルメルカプタンの
製法に関するもので、さらに詳しくはオレフィンと硫化
水素から高性能のアルミナ触媒を使用したアルキルメル
カプタンの製法に関するものである。特に都市ガスの着
臭剤として使用されている第三ブチルメルカプタンの製
法として簡便で有用なものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing alkyl mercaptans, and more particularly to a method for producing alkyl mercaptans from olefins and hydrogen sulfide using a high-performance alumina catalyst. In particular, it is a simple and useful method for producing tert-butyl mercaptan, which is used as an odorant for city gas.

〔従来の技術〕アルキルメルカプタン特に第三ブチルメ
ルカプタンの製法として、特開昭51−4860.6号
公報に第三アルコールと硫化水素を硫酸を含む液相で反
応させることによる第三メルカプタンの製法が記載され
ている。例えばt−ブタノール0.1モルと硫化水素0
.13モルを1〜40 Kg/crAの加圧下、600
0〜120°Cで10〜120分反応させた場合、アル
コール転化率98%、メルカプタンへの選択率74%、
スルフィドへの選択率26%であった。また硫黄シリカ
アルミナを触媒としてイソブテンと硫化水素を加圧下で
反応させた場合、第三ブチルメルカプタンが得られたが
、収率は低かった。
[Prior Art] As a method for producing alkyl mercaptan, particularly tertiary-butyl mercaptan, Japanese Patent Application Laid-Open No. 51-4860.6 discloses a method for producing tertiary mercaptan by reacting tertiary alcohol and hydrogen sulfide in a liquid phase containing sulfuric acid. Are listed. For example, 0.1 mole of t-butanol and 0 hydrogen sulfide
.. 13 mol under pressure of 1 to 40 Kg/crA, 600
When reacted at 0 to 120°C for 10 to 120 minutes, alcohol conversion rate was 98%, selectivity to mercaptan was 74%,
The selectivity to sulfide was 26%. Furthermore, when isobutene and hydrogen sulfide were reacted under pressure using sulfur-silica-alumina as a catalyst, tert-butyl mercaptan was obtained, but the yield was low.

特公昭53−141209号公報には合成ゼオライト触
媒を使用してオレフィンと硫化水素を加圧(20〜10
00Ps ig )、温度50°〜150°C下で反応
させて炭素数4〜18の第三メルカプタンの製法が記載
されている。
Japanese Patent Publication No. 53-141209 discloses that a synthetic zeolite catalyst is used to pressurize olefin and hydrogen sulfide (20 to 10
00Psig), a method for producing tertiary mercaptans having 4 to 18 carbon atoms by reaction at a temperature of 50° to 150°C is described.

特公昭39 25109 号公N ニハAtFs −B
(、As (7)混合触媒存在下で、炭素数8〜18の
すレフインと硫化水素を反応させて高収率で高級アルキ
ルメルカプタンが得られる旨記載されている。
Special Publication No. 25109 No. N Niha AtFs -B
(, As (7)) It is described that a higher alkyl mercaptan can be obtained in high yield by reacting carbon number 8-18 carbon atoms with hydrogen sulfide in the presence of a mixed catalyst.

特開昭55−9087号公報には下記のような構造を有
すアセトフェノン誘導体を触媒として使用し、紫外線照
射下で硫化 心   00R1 R+、Rs;アル Rz; 7 X =−/lz基マタはアルコキシル基R
’−n = 1〜4のアルキル基 水素とオレフィン例えば1チレン、プロピレン、イソブ
テン等を加圧下(250〜600Psig ) 、温変
O0〜700Cで反応させてメルカプタンを合成する方
法が記載されている。
JP-A No. 55-9087 discloses that an acetophenone derivative having the following structure is used as a catalyst, and under ultraviolet irradiation, the sulfide core 00R1 R+, Rs; Al Rz; 7 X =-/lz group is alkoxyl. group R
A method is described in which mercaptans are synthesized by reacting hydrogen of an alkyl group of '-n = 1 to 4 with an olefin such as 1 tylene, propylene, isobutene, etc. under pressure (250 to 600 Psig) at a temperature varying from 0 to 700C.

その他R,F、Noyler:J、Chern、8oc
、 1532(1947)に硫黄を触媒として45 a
tm、 、150°Cでイソブテン或いはシクロヘキセ
ンと硫化水素を反応させるメルカプタン合成法が記載さ
れている。また 8.0゜JonesslE、F、Ro
id; J、Chem、8oc、2456(1938)
には硫黄を触媒としてエチレン、プロピレン或いはイソ
ブテンと硫化水素をボンベtこ封じこめ、加圧下180
’Oで反応させてメルカプタンを合成する方法が、また
Landa 8.Weisser;J、Co11ect
ion 0zeck。
Others R, F, Noyler: J, Chern, 8oc
, 1532 (1947) using sulfur as a catalyst 45a
A method for synthesizing mercaptans is described in which isobutene or cyclohexene is reacted with hydrogen sulfide at 150°C. Also 8.0゜JonesslE, F, Ro
id; J, Chem, 8oc, 2456 (1938)
Then, ethylene, propylene, or isobutene and hydrogen sulfide were sealed in a cylinder using sulfur as a catalyst, and the mixture was heated to 180°C under pressure.
A method for synthesizing mercaptan by reacting with 'O is also described in Landa 8. Weisser; J, Co11ect
ion 0zeck.

OhemCommum  2197(1957)E硫化
モリブデン、または硫化タングステンを触媒としてエチ
レンまたはシクロヘキサンと硫化水素を1gat+n 
 200゜〜250°Cで反応させてメルカプタンを合
成する方法が記載されている。
OhemCommum 2197 (1957)E 1 gat+n of ethylene or cyclohexane and hydrogen sulfide using molybdenum sulfide or tungsten sulfide as a catalyst
A method for synthesizing mercaptans by reacting at 200° to 250°C is described.

〔発明が解決しようとする問題点〕メルカプタンはオレ
フィンと硫化水素のMarkawnikoff  型付
加生成物として得られることが知られている。触媒とし
では金属酸化物、濃硫酸、硫黄等が知られているが、強
酸性のシリカ−アルミナ、濃硫酸が高活性を示している
。しかし、これらの反応は通常加圧下のきびしい条件で
なされるため、副生成物も多く、収率も余り高くならな
い。
[Problems to be Solved by the Invention] It is known that mercaptans can be obtained as Markawnikoff-type addition products of olefins and hydrogen sulfide. Metal oxides, concentrated sulfuric acid, sulfur, etc. are known as catalysts, but strongly acidic silica-alumina and concentrated sulfuric acid have shown high activity. However, since these reactions are usually carried out under severe conditions under pressure, there are many by-products and the yield is not very high.

そこで工業的に効率よく生産するため課題として第1は
常圧、低温で使用可能な活vAが高く、且つ、炭素数2
〜12の広範囲のオレフィン及び硫化水素の反応に適用
できる触媒の探索である。
Therefore, in order to produce it industrially efficiently, the first challenge is to have a high active vA that can be used at normal pressure and low temperature, and a carbon number of 2.
This is a search for catalysts that can be applied to a wide range of reactions between ~12 olefins and hydrogen sulfide.

第2に更に転化率及び選択率を高める触媒調整法及び再
生法の開発が必要となり、第3にこのような触媒を使用
した連続的な製造プロセスの確立である。
Secondly, it is necessary to develop a catalyst preparation method and a regeneration method to further increase the conversion rate and selectivity, and thirdly, it is necessary to establish a continuous production process using such a catalyst.

〔問題点を解決するための手段〕イソブテンと硫化水素
の反応性について、高性能を示す触媒中で、取扱い容易
な活性アルミナ、シリカ−アルミナ系の触媒eこついて
巾広く探索した。その結果特定方法で得られた高純度の
球状アルミナ粒子を特定温度で熱処理した場合、常圧、
低温においても非常に高い転化率と第三ブチルメルカプ
タンへの選択率を示すことを見出して本発明に到達した
[Means for Solving the Problems] The reactivity of isobutene and hydrogen sulfide was extensively investigated using activated alumina and silica-alumina catalysts, which are easy to handle, among high-performance catalysts. As a result, when high-purity spherical alumina particles obtained by a specific method are heat-treated at a specific temperature, normal pressure,
We have arrived at the present invention by discovering that even at low temperatures, it shows a very high conversion rate and selectivity to tert-butyl mercaptan.

すなわち、水酸化アルミニウムの塩基性ゾルから球状ゲ
ルをつくり、熱処理してアルミナ含有率95%以上、酸
性度0.81Q/、  以上を有することを特徴とする
オレフィンと硫化水素からアルキルメルカプタンの合成
に使用するアルミナ触媒の調整法及びこのようにして得
られたアルミナ触媒の移動床にオレフィン及び硫化水素
を通すことを特徴とするアルキルメルカプタンの製法で
ある。以下本発明について詳しく説明する。
That is, a spherical gel is prepared from a basic sol of aluminum hydroxide, and heat-treated to synthesize an alkyl mercaptan from an olefin and hydrogen sulfide characterized by having an alumina content of 95% or more and an acidity of 0.81 Q/. A method for preparing the alumina catalyst used, and a method for producing alkyl mercaptan, which is characterized by passing an olefin and hydrogen sulfide through a moving bed of the alumina catalyst thus obtained. The present invention will be explained in detail below.

本発明に使用する水酸化アルミニウムの塩基性ゾルとは
、例えば硫酸アルミニウムの水溶液に水酸化ナトリウム
或いは炭酸ナトリウムのような塩基を加えて中性または
アルカリ性とした場合、水酸化アルミニウムが生成して
ゾル状となった液をいう。さらに触媒として望ましい形
状の粒子とするために、例えばヘキサメチレンテトラミ
ン液を。
The basic sol of aluminum hydroxide used in the present invention is, for example, when a base such as sodium hydroxide or sodium carbonate is added to an aqueous solution of aluminum sulfate to make it neutral or alkaline, aluminum hydroxide is generated and the sol is It refers to a liquid that has become a liquid. Furthermore, in order to make particles of a desired shape as a catalyst, for example, a hexamethylenetetramine solution is used.

加え、軽油のような水に溶けない油中に滴下して球状粒
子とし、そのまま分離して乾燥する。水酸化アルミニウ
ムまたは酸化アルミニウムを単1こ機械的に成形したも
のは含まない。
In addition, it is dropped into water-insoluble oil such as light oil to form spherical particles, which are then separated and dried. It does not include single mechanically formed pieces of aluminum hydroxide or aluminum oxide.

上記のような方法でそのまま乾燥して成形したものは著
しく高い触媒活性を示すのに対し、機械的に成形した場
合は高い活性を賦与する方法は見出せなかった。
When dried and molded as is by the method described above, it exhibits extremely high catalytic activity, whereas when molded mechanically, no method has been found to impart high activity.

ここで球形とは幾何学的に完全な球形のみを意味するも
のではな(、円板形、扁球形、卵形あるいは球を砕いた
形など球状以外の形をも包含する。
Here, spherical shape does not mean only a geometrically perfect spherical shape (it also includes shapes other than spherical, such as a disk shape, an oblate spheroid, an oval shape, and a crushed sphere shape.

次に乾燥した粒子を温度5000〜7000Cで熱処理
する必要がある。また硫酸根を含む場合は水洗して除去
する。触媒活性は温度800C18V ;120hr−
’ガス組成Nz;:az8;イソブテン= 20;50
:50のガスを触媒を充填した同一の反応管を通して転
化率及び選択率によりしらぺた。その結果、転化率、選
択率共に熱処理温度500°〜700° の範囲で、か
なり顕著なピークを示し、特に転化率は敏感な臨界性を
示す。熱処理温度と粒子表面積及び表面に生成している
ミクロポアーの平均直径の関係をみると、粒子表面積と
触媒活性は高い相関係を示すが、ミクロポアーの平均直
径は処理温度7000C以下では殆んど変らず、それ以
上になると急激に増大する傾向が見られる。また熱処理
による触媒の酸性度は500°〜700°Cの範囲で0
.83〜0.94圃9/2の極めて高い値を示し、それ
より低温でも高温でも急激に低下する。酸性度o、 s
 rrJI3q/、以との範囲では転化率は略一定とな
る。従って、触媒としては酸性度o、 s rneq今
以上が必要である。
The dried particles then need to be heat treated at a temperature of 5000-7000C. Also, if it contains sulfate roots, remove it by washing with water. Catalyst activity is at a temperature of 800C18V; 120hr-
'Gas composition Nz;:az8;isobutene=20;50
:50 gas was passed through the same reaction tube filled with catalyst to determine the conversion rate and selectivity. As a result, both the conversion rate and the selectivity showed a fairly significant peak in the heat treatment temperature range of 500° to 700°, and the conversion rate in particular showed a sensitive criticality. Looking at the relationship between heat treatment temperature, particle surface area, and average diameter of micropores formed on the surface, particle surface area and catalytic activity show a strong correlation, but the average diameter of micropores hardly changes at treatment temperatures below 7000C. , there is a tendency for it to increase rapidly if the value exceeds that value. In addition, the acidity of the catalyst due to heat treatment is 0 in the range of 500° to 700°C.
.. It shows an extremely high value of 83 to 0.94 field 9/2, and decreases rapidly at lower and higher temperatures. Acidity o, s
The conversion rate is approximately constant within the range of rrJI3q/. Therefore, the catalyst needs to have an acidity of o, s rneq or higher.

尚ここで、比表面積の測定はCarlo Erbaf社
製(イタリヤ)  8orptomatic 1800
を使用して、−196°Cにおける窒素吸着量より測定
した。また細孔分布はCarlo Erba  社製水
銀ボロシーメーターにより半径40〜360 X の範
囲について測定した。酸性度はドブチルアミン滴定法に
よった。
Here, the specific surface area was measured using an 8orptomatic 1800 manufactured by Carlo Erbaf (Italy).
The amount of nitrogen adsorption was measured at -196°C. Further, the pore distribution was measured in a radius range of 40 to 360× using a mercury borosiemeter manufactured by Carlo Erba. Acidity was determined by dobutylamine titration.

上記のような方法で触媒を調製した場合、アルミナの含
有率の低下によりイソブテン転化率、メルカプタンの選
択率及び触媒使用itこ対するメルカプタン生成量8T
Yは共に低下する。アルミナの他シリカ等の成分を含む
系について検討した結果、アルミナ含有率95%以下に
なると、転化率が漸減するのに対し、選択率は急激に低
下する。従って、STYも含有率95%以下では急激に
低下するため、触媒組成としてはアルミナ含有率95%
以とが必要である。
When the catalyst is prepared by the method described above, the isobutene conversion rate, mercaptan selectivity, and the amount of mercaptan produced per 8T of catalyst used are reduced due to the reduction of the alumina content.
Both Y decreases. As a result of studying systems containing components such as silica in addition to alumina, it was found that when the alumina content becomes 95% or less, the conversion rate gradually decreases, whereas the selectivity decreases rapidly. Therefore, since STY also decreases rapidly when the content is below 95%, the catalyst composition should be 95% alumina.
This is necessary.

上記のような方法で調整した触媒を使用してオレフィン
と硫化水素を反応させてメルカプタンを合成する場合、
炭素数2〜6の場合は気相反応となり、炭素数7〜12
のオレフィンでは液相反応゛となる。
When mercaptans are synthesized by reacting olefins with hydrogen sulfide using the catalyst prepared by the method described above,
If the number of carbon atoms is 2 to 6, it will be a gas phase reaction, and if the number of carbon atoms is 7 to 12
In the case of olefins, it is a liquid phase reaction.

究相反応の場合、不活性ガス例えば窒素ガス等をキャリ
ソーガスとして、常圧下で触[一層を流通させることに
より接触反応をする。キャリツーガスは不活性ガスなら
ば何れでもよいが、実際上窒素ガスが好適で16〜33
%位の範囲が好適である。
In the case of the ultimate phase reaction, a catalytic reaction is carried out by using an inert gas, such as nitrogen gas, as a carrier gas under normal pressure. The carrier gas may be any inert gas, but nitrogen gas is preferred in practice.
% range is suitable.

オレフィンに対する硫化水素の比率はオレフィンの炭素
数2〜4の場合は1.0〜1.5、炭素数5及び6の場
合は約3位が適当である。常圧下、8V120hr  
の反応条件のもとて最適温度はオレフィンの種類により
変るが、800〜200’Cの範囲が好適である。オレ
フィン転化率はエチレンが最も低く7〜8%、プロピレ
ン、2−ブテン及び1−ヘキセンが30〜50%である
が、その他の炭素数2〜6のオレフィンは97〜100
%に達している。
The appropriate ratio of hydrogen sulfide to olefin is 1.0 to 1.5 when the olefin has 2 to 4 carbon atoms, and about 3rd position when the olefin has 5 or 6 carbon atoms. Under normal pressure, 8V120hr
The optimum temperature under the reaction conditions varies depending on the type of olefin, but a range of 800 to 200'C is suitable. The olefin conversion rate is the lowest for ethylene, at 7-8%, and for propylene, 2-butene, and 1-hexene at 30-50%, but for other olefins with 2-6 carbon atoms, it is 97-100%.
% has been reached.

また選択率は1−ブテンの場合約42%であるが、その
細大部分のオレフィンは95〜100%のような高率を
示している。
In addition, the selectivity for 1-butene is about 42%, but the selectivity for the majority of olefins is as high as 95-100%.

液相反応の場合、常圧で液相オレフィン中に触媒を入れ
攪拌して触媒粒子を流動させながら硫化水素を吹込んで
反応させる。触媒量はオレフィン100−に対し約38
2の割合で加えておき、反応温度500〜2000Cテ
、硫イヒ水素)iff応液1O0tnI!)n対し、1
30”/−で吹込み、4 hr  反応させた。オレフ
ィン転化率は炭素数12のプロピレンテトラマーの場合
約20%、選択率は約87%であった。
In the case of a liquid-phase reaction, a catalyst is placed in a liquid-phase olefin at normal pressure, and hydrogen sulfide is blown into the olefin while stirring to fluidize the catalyst particles. The amount of catalyst is approximately 38% per 100% of olefin.
2, reaction temperature 500-2000C, hydrogen sulfur) if reaction solution 100tnI! ) for n, 1
The reaction was carried out for 4 hours by blowing at 30"/-. The olefin conversion rate was about 20% in the case of propylene tetramer having 12 carbon atoms, and the selectivity was about 87%.

触媒は使用時間の経過と共に活性が低下し、転化率が減
少するが、廃触媒は空気中500’Cで、約2 hr 
 焼くことにより活性が回復し、繰返し再使用が可能と
なる。
The activity of the catalyst decreases with the passage of time and the conversion rate decreases, but the spent catalyst can be used for about 2 hours at 500'C in air.
Baking restores the activity and allows repeated reuse.

しかし、固定床による気相反応では触媒の劣化に伴ない
収率が低下する欠点があるため、移動床を使用して常に
一定の反応条件及び生成量を維持できるような方式につ
いて検討した。ここで移動床とは激しく流動させず、略
層流的に連続移動させる方式である。移動床方式によれ
ば触媒を常に高活性の状態に維持できるから8■を高く
してもオレフィンの転化率が低下せず、8TYを高める
ことができる。尚液相反応の場合は移動床は採用できな
い。
However, gas-phase reactions using fixed beds have the disadvantage that the yield decreases as the catalyst deteriorates, so we investigated a method that uses a moving bed to maintain constant reaction conditions and production amounts. Here, the moving bed is a system in which the fluid is not violently fluidized, but is moved continuously in a substantially laminar flow. According to the moving bed method, the catalyst can be maintained in a highly active state at all times, so even if 8■ is increased, the olefin conversion rate does not decrease, and 8TY can be increased. In the case of a liquid phase reaction, a moving bed cannot be used.

〔作用・効果〕都市ガスの付臭剤としてメルカプタン類
の中で最も需要が多いものの1つである第三ブチルメル
カプタンをイソブテンを原料として移動床方式で合成し
、次のような結果を得た。
[Action/Effect] Tertiary-butyl mercaptan, one of the mercaptans most in demand as an odorant for city gas, was synthesized using a moving bed method using isobutene as a raw material, and the following results were obtained. .

(1)触媒は水酸化アルミニウムの塩基性ゾルから球状
ゲルをつくり、500°〜700°Cで熱処理した後、
水洗して硫酸根などを除去したものが最も高い活性を示
した。このようにして得られた触媒のアルミナ含有率は
99%以上、酸性度はo、 s r!!w!q y y
  以上であった。
(1) For the catalyst, a spherical gel is made from a basic sol of aluminum hydroxide, and after heat treatment at 500° to 700°C,
The one that had been washed with water to remove sulfate roots etc. showed the highest activity. The alumina content of the catalyst thus obtained was over 99%, and the acidity was o, s r! ! Lol! q y y
That was it.

(2)反応条件は収率な最大とする場合、吹込ガス組成
、窒素ガス;硫化水素;イソブテン= 20: 60 
: 40で、温度800C18v120hr  である
が、生成量を考慮した場合、8v約960で8TYは最
大となる。しかしこれ以上Svを上げると転化率が著し
く低下し、副生物がやや増加する傾向を示すため、8T
Yは却って低下する。
(2) When the reaction conditions are to maximize the yield, the blowing gas composition is nitrogen gas; hydrogen sulfide; isobutene = 20: 60.
: 40, the temperature is 800C, 18v, 120hr, but when considering the amount of generation, 8TY reaches its maximum at 8v, about 960. However, if the Sv is increased further, the conversion rate will drop significantly and by-products will tend to increase slightly, so 8T
On the contrary, Y decreases.

(3)最適条件におけるイソブテン転化率は99.3%
、選択率97.5%、収率96.8%に達する。
(3) Isobutene conversion rate under optimal conditions is 99.3%
, the selectivity reached 97.5% and the yield 96.8%.

(4)反応条件及び生成量を一定とするため触媒を移動
床として再生循環せしめる方式が工業的には好適である
(4) In order to keep the reaction conditions and production constant, a system in which the catalyst is regenerated and circulated as a moving bed is industrially preferred.

第三ブチルメルカプタンの生成量を高めるようにした場
合(sv : 960hr )、オレフィン転化率97
%、選択率92%、収率89%、STY 1.25 ’
/me−hrとなる。
When the production amount of tert-butyl mercaptan was increased (sv: 960 hr), the olefin conversion rate was 97.
%, selectivity 92%, yield 89%, STY 1.25'
/me-hr.

反応は移動床方式で行なうため、触媒の取出、再生、仕
込が連続的となるため長期連続運転が可能となる。反応
条件は常圧、低温であり、また収率も非常に高いため設
備費も安価となる。メルカプタンの中、都市ガスの付臭
剤として需要量が多い第三ブチルメルカプタンの工業的
製法として特に有用と考えられる。
Since the reaction is carried out using a moving bed method, the removal, regeneration, and charging of the catalyst are continuous, making long-term continuous operation possible. The reaction conditions are normal pressure and low temperature, and the yield is very high, so the equipment cost is low. Among mercaptans, this method is considered to be particularly useful as an industrial method for producing tertiary-butyl mercaptan, which is in high demand as an odorant for city gas.

〔実施例〕〔Example〕

以下実施例を掲げ、本発明を更に具体的に説明するが、
本発明はこれにより限定されるものではない。
The present invention will be explained in more detail with reference to Examples below.
The present invention is not limited thereby.

〔実施例1〕 硫酸アルミニウム溶液に炭酸ナトリウム溶液を加え、ア
ルカリ性として、水酸化アルミニウムのゾルをつくり、
等容の15%へキサメチレンテトラミン溶液を加えて攪
拌した後、軽油中に滴下して、球状ゲルをつくり、分離
乾燥した後、300゜〜1100°Cの範囲内の種々の
温度で2時間熱処理し、水洗して硫酸根を除去・乾燥し
、14〜32メツシユの触媒を調整した。触媒活性をし
らべるため、ガス組成、窒素ガス;硫化水素;イソブテ
ン=20;50’、50のガスを常圧、800Cで、こ
れらの触媒を充填した反応管を8V 120 hr  
で通してイソブテン転化率及び第三ブチルメルカプタン
の選択率を測定した。更に触媒粒子表面のミクロポアー
直径及び酸性度を定量した。その結果を第1表に示す。
[Example 1] A sodium carbonate solution was added to an aluminum sulfate solution to make it alkaline, and a sol of aluminum hydroxide was prepared.
An equal volume of 15% hexamethylenetetramine solution was added and stirred, then dropped into light oil to form a spherical gel, separated and dried, and then heated at various temperatures within the range of 300° to 1100°C for 2 hours. The catalyst was heat-treated, washed with water to remove sulfate groups, and dried to prepare a catalyst having 14 to 32 meshes. In order to examine the catalyst activity, a reaction tube filled with these catalysts was heated at normal pressure and 800C with gas composition: nitrogen gas; hydrogen sulfide; isobutene = 20; 50';
The isobutene conversion rate and tert-butyl mercaptan selectivity were measured. Furthermore, the micropore diameter and acidity on the surface of the catalyst particles were determined. The results are shown in Table 1.

第   1   表 尚40A以上の細孔分布はCarlo Erba社(イ
タリヤ)製水銀ポロシメーター220型により100八
以下の細孔分布と表面積は同じ(0arlo Erba
社製8orpto+natic 1800により測定し
た。また酸性度はベンゼン中の固体酸をDimethy
l yellow (P −di*nethyl am
ino −azobenzene )を指示薬としてQ
、 l N −n −buthylamine  で滴
定したものである。
In Table 1, the pore distribution of 40A or more was measured using a mercury porosimeter type 220 manufactured by Carlo Erba (Italy), and the surface area was the same as the pore distribution of 100A or less (0arlo Erba
It was measured using 8ORPTO+NATIC 1800 manufactured by Co., Ltd. Also, the acidity is the solid acid in benzene.
l yellow (P-di*netyl am
ino-azobenzene) as an indicator.
, lN-n-butylamine.

この指示薬は固体酸上に吸着すると赤色を示す。This indicator exhibits a red color when adsorbed onto a solid acid.

赤色が黄色にもどるまでに要したQ、IN−n−but
hylaminsの滴下量によって酸性度を計算した。
Q required for red to return to yellow, IN-n-but
Acidity was calculated based on the amount of hylamins added.

これより500°〜700°Cの中間温度で熱処理し酸
性度がo、 s 1q/、以上の場合に高い活性度を示
すことがわかる。
From this, it can be seen that high activity is exhibited when heat treatment is performed at an intermediate temperature of 500° to 700°C and the acidity is 0, s 1q/ or more.

〔実施例2〕 直径20鱈の垂直のガラス管を反応器として使用した。[Example 2] A vertical glass tube with a diameter of 20 mm was used as the reactor.

触媒の仕込と取出しが連続的にできるような構造になっ
ており、オイルバスに浸漬して、内部を一定の温度に保
持した。反応器には窒素置換後実施例1で得られたム4
の触媒60−を封入した。
The structure was such that the catalyst could be loaded and taken out continuously, and the inside was kept at a constant temperature by immersing it in an oil bath. The reactor was filled with the mucilage 4 obtained in Example 1 after being replaced with nitrogen.
A catalyst 60- was enclosed.

オレフィンと硫化水素は混合ガス予熱器で予熱され反応
器の下部より吹込まれ、反応器より出た反応ガスは凝縮
器で冷却して捕集し、その組成をガスクロマトグラフで
分析した。
Olefin and hydrogen sulfide were preheated in a mixed gas preheater and blown into the bottom of the reactor, and the reaction gas exiting the reactor was cooled and collected in a condenser, and its composition was analyzed using a gas chromatograph.

尚触媒は20”/hrの割合で連続的に仕込み、取出し
ながら運転した。反応条件及びオレフィン転化率、メル
カプタン選択率を第2表に示す。
The catalyst was continuously charged and taken out at a rate of 20"/hr. The reaction conditions, olefin conversion rate, and mercaptan selectivity are shown in Table 2.

第   2   表          注)注) M
ar kawni iof f 付加反応で得られたメ
ルカプタンの選択率を示す。
Table 2 Note) Note) M
ar kawni iof f shows the selectivity of mercaptan obtained by addition reaction.

上記反応条件は何れも常圧で、反応温度もオレフィンの
種類によっては100°C以下のマイルドな条件である
。それにも拘らず、オレフィンの炭素数及び構造により
オレフィン転化率及びメルカプタン選択率は成程度変動
しているが、オレフィン転化率はエチレンを除いてかな
り高い値を示し、またメルカプタン選択率は何れも非常
に高い。
The above reaction conditions are all under normal pressure, and the reaction temperature is also a mild condition of 100°C or less depending on the type of olefin. Despite this, the olefin conversion rate and mercaptan selectivity vary depending on the carbon number and structure of the olefin, but the olefin conversion rate shows quite high values except for ethylene, and the mercaptan selectivity is extremely high. expensive.

取出した廃触媒は空気中で2時間熱処理して再生した後
再生触媒により上記と同様な合成試験をしたが、略同じ
転化率及び選択率を示した。
The taken out waste catalyst was regenerated by heat treatment in air for 2 hours, and then the same synthesis test as above was performed using the regenerated catalyst, and it showed substantially the same conversion rate and selectivity.

〔実施例3〕 反応器として冷却器を付した100−の角フラスコを使
用しプロピレンテトラマーと実施例1、ム4で得られた
触媒粒子を150メツシユ以下に微粉砕したもの11.
4pを投入しオイルパス中で一定の温度に保持できるよ
うにしている。反応器を10000に保持して硫化水素
を4omleで4時間バブリングさせて反応させた後、
沖過して反応液を分離し、ガスクロマトグラフで分析し
た。その結果を第3表に示す。
[Example 3] Propylene tetramer and the catalyst particles obtained in Example 1 and Example 4 were finely pulverized to 150 mesh or less using a 100 mm square flask equipped with a condenser as a reactor.11.
4P is added to keep the temperature constant in the oil path. After keeping the reactor at 10,000 and bubbling hydrogen sulfide at 4 ml for 4 hours to react,
The reaction solution was separated by filtration and analyzed using a gas chromatograph. The results are shown in Table 3.

第   3   表 オレフィンの炭素数が増加した場合、液状となるためE
記のような反応形態となるが、液相反応においても選択
率は相当高い値を示して齢る。
Table 3 When the number of carbon atoms in an olefin increases, it becomes liquid, so E
Although the reaction pattern is as shown below, the selectivity shows a considerably high value even in the liquid phase reaction.

〔実施例4〕 実施例2の装置及び同一の触媒を使用し、オレフィンと
してイソブテンを使用して吹込ガス組成、反応温度、8
vを変化させて第3ブチルメルカプタンを合成した。反
応条件及び得られた結果を第4表に示す。
[Example 4] Using the apparatus and the same catalyst as in Example 2, using isobutene as the olefin, blowing gas composition, reaction temperature, 8
Tertiary butyl mercaptan was synthesized by varying v. The reaction conditions and the results obtained are shown in Table 4.

第   4   表 相当広範囲な条件において高収率で第三ブチルメルカプ
タンが得られ、副生物も僅少である。工業生産を考慮し
て生成量を高める場合は8V960hr  、転化率9
7%、選択率92.6%テ、STY艮、32 となり相
当高い生産性を有する。
Tert-butyl mercaptan can be obtained in high yield under a wide range of conditions as shown in Table 4, with very little by-products. When increasing the production amount considering industrial production, 8V960hr, conversion rate 9
7%, selectivity 92.6%, STY Ai, 32, and has considerably high productivity.

〔実施例5〕 実施例IA4で得られた触媒を使用して、窒素ガス:硫
化水素:イソブテンの混合ガスをガス組成が160 :
 420 : 380の比率になるように8v960h
r−’、反応温度80°Cで触媒を充填した反応管に吹
込んだ。反応管は径20m長さ250m+の垂直管で内
部に60−の触媒を充填し、1時間毎間欠的に上部より
新触媒20fnlを仕込み、下部より2〇−取出すよう
にして連続運転をした。その結果、イソブテン転化率9
7%、第3ブチルメルカプタン選択率92%、8TY 
1.25’/m/−hr ノ略安定した状態が維持でき
た。尚20時間経過後は再生触媒を使用しているが、新
触媒の場合と同様であった。第1図に反応管各部の温度
、第2図にイソブテンの転化率及び選択率の推移を示す
[Example 5] Using the catalyst obtained in Example IA4, a mixed gas of nitrogen gas: hydrogen sulfide: isobutene was prepared with a gas composition of 160:
8v960h so that the ratio is 420:380
r-', the reaction temperature was 80°C, and the catalyst was blown into a reaction tube filled with the catalyst. The reaction tube was a vertical tube with a diameter of 20 m and a length of 250 m+, and the inside was filled with 60 liters of catalyst, and 20 fnl of new catalyst was intermittently charged from the upper part every hour, and 20 liters of fresh catalyst was taken out from the lower part for continuous operation. As a result, the isobutene conversion rate was 9
7%, tert-butyl mercaptan selectivity 92%, 8TY
A substantially stable state of 1.25'/m/-hr was maintained. Note that after 20 hours, the regenerated catalyst was used, but the results were the same as in the case of a new catalyst. FIG. 1 shows the temperature at each part of the reaction tube, and FIG. 2 shows the changes in isobutene conversion and selectivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例5における、反応時間と反応管各部の温
度の関係を示す。第2図は反応時間とイソブテンの転化
率と第三ブチルメルカプタンの選択率の関係を示す。
FIG. 1 shows the relationship between the reaction time and the temperature of each part of the reaction tube in Example 5. FIG. 2 shows the relationship between reaction time, conversion of isobutene, and selectivity of tert-butyl mercaptan.

Claims (3)

【特許請求の範囲】[Claims] (1)水酸化アルミニウムの塩基性ゾルから球状ゲルを
つくり、熱処理してアルミナ含有率95%以上、酸性度
0.8^m^・^e^q/g以上を有することを特徴と
するオレフィンと硫化水素からアルキルメルカプタンの
合成に使用するアルミナ触媒。
(1) An olefin characterized by making a spherical gel from a basic sol of aluminum hydroxide and heat-treating it to have an alumina content of 95% or more and an acidity of 0.8^m^・^e^q/g or more. and an alumina catalyst used in the synthesis of alkyl mercaptans from hydrogen sulfide.
(2)水酸化アルミニウムの塩基性ゾルから球状ゲルを
つくり、熱処理してアルミナ含有率95%以上、酸性度
0.8^m^・^e^q/g以上を有するアルミナ触媒
の移動床にオレフィン及び硫化水素を通すことを特徴と
するアルキルメルカプタンの製法。
(2) Create a spherical gel from a basic sol of aluminum hydroxide and heat treat it to create a moving bed of alumina catalyst with an alumina content of 95% or more and an acidity of 0.8^m^・^e^q/g or more. A method for producing an alkyl mercaptan characterized by passing an olefin and hydrogen sulfide.
(3)オレフィンがイソブテンであり、アルキルメルカ
プタンが第三ブチルメルカプタンである特許請求の範囲
第2項記載のアルキルメルカプタンの製法。
(3) The method for producing an alkyl mercaptan according to claim 2, wherein the olefin is isobutene and the alkyl mercaptan is tert-butyl mercaptan.
JP60257389A 1985-11-15 1985-11-15 Production of alkyl mercaptan Granted JPS62116556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60257389A JPS62116556A (en) 1985-11-15 1985-11-15 Production of alkyl mercaptan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60257389A JPS62116556A (en) 1985-11-15 1985-11-15 Production of alkyl mercaptan

Publications (2)

Publication Number Publication Date
JPS62116556A true JPS62116556A (en) 1987-05-28
JPH0425945B2 JPH0425945B2 (en) 1992-05-06

Family

ID=17305708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60257389A Granted JPS62116556A (en) 1985-11-15 1985-11-15 Production of alkyl mercaptan

Country Status (1)

Country Link
JP (1) JPS62116556A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0706998A1 (en) * 1994-10-11 1996-04-17 Elf Atochem North America, Inc. Process for the manufacture of high purity linear c4+ alkyl mercaptans
EP0796656A1 (en) * 1996-03-22 1997-09-24 Phillips Petroleum Company Compositions comprising inorganic oxide and process for producing mercaptans

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0706998A1 (en) * 1994-10-11 1996-04-17 Elf Atochem North America, Inc. Process for the manufacture of high purity linear c4+ alkyl mercaptans
EP0796656A1 (en) * 1996-03-22 1997-09-24 Phillips Petroleum Company Compositions comprising inorganic oxide and process for producing mercaptans

Also Published As

Publication number Publication date
JPH0425945B2 (en) 1992-05-06

Similar Documents

Publication Publication Date Title
CA1273001A (en) Chemical process and catalyst
WO2010010879A1 (en) Catalyst for ethylene oligomerization and use thereof
RU2191069C2 (en) Methylmercaptane synthesis catalyst and method of preparation thereof
CN108529642A (en) A kind of preparation method of Cu-SSZ-13 molecular sieves
JPH0242032A (en) Production of methacrylic acid and/or methacrolein
JPH05103995A (en) Catalyst for disproportionating olefin and olefin disproportionation method using the same
MXPA96003913A (en) Alkanes and alkenos amoxidation.
US4310717A (en) Oxidative dehydrogenation and catalyst
US4918249A (en) Silicometallate molecular sieves and their use as catalysts in oxidation of alkanes
JP3136492B2 (en) Method for oligomerization of propylene
JPS62116556A (en) Production of alkyl mercaptan
FI86298B (en) METATESPROCESS FOER OLEFINER OCH KATALYSATOR FOER TILLAEMPNING AV DENNA.
CA1191824A (en) Aluminosilicates and silica gels having a low content of transition elements, a process for their manufacture and their use
JP2003326169A (en) Oligomerization catalyst and manufacturing method for oligomer using the same
JP4243360B2 (en) Method for producing amine
JP4092741B2 (en) Amine production method
JP3918048B2 (en) Method for producing lower alkene
US3987104A (en) Process for preparing saturated ketones and a catalyst for realizing the process
US3501549A (en) Basic precipitation with nickel phosphate catalyst
US3412134A (en) Process for the preparation of unsaturated nitriles
Taniguchi et al. Preparation of zeolites incorporating molybdenum sulfide clusters with high C2 hydrocarbon selectivity in Co–H2 reactions
JP2832047B2 (en) Propylene production method
CN111250153B (en) Al (aluminum)2O3Preparation method of Mo-loaded catalytic material of hierarchical pore molecular sieve and application of Mo-loaded catalytic material in preparation of propylene through disproportionation
JP7060994B2 (en) Manufacturing method of p-xylene
US4707500A (en) Synthetic crystalline ferroborosilicate compositions, the preparation thereof and their use in the conversion of synthesis gas to low molecular weight hydrocarbons