JPS62116226A - Infrared thermometer - Google Patents

Infrared thermometer

Info

Publication number
JPS62116226A
JPS62116226A JP60257312A JP25731285A JPS62116226A JP S62116226 A JPS62116226 A JP S62116226A JP 60257312 A JP60257312 A JP 60257312A JP 25731285 A JP25731285 A JP 25731285A JP S62116226 A JPS62116226 A JP S62116226A
Authority
JP
Japan
Prior art keywords
black body
signal
correction
temperature
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60257312A
Other languages
Japanese (ja)
Inventor
Takashi Tsuda
津田 敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60257312A priority Critical patent/JPS62116226A/en
Publication of JPS62116226A publication Critical patent/JPS62116226A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable accurate measurement without being under the effect of environmental temp. at the time of measurement, by reading a correction level corresponding to a change in environmental temp. preliminarily stored in a memory part and correcting the signal level of a measuring object on the basis of said correction level. CONSTITUTION:A black body signal level detection circuit 12 extracting both signals of a first black body 9 and a second black body 10 to detect the level difference between both signals, a memory part 13 and a correction circuit 14 are provided. The correction signal corresponding to the detection signal level difference between the black bodies 9, 10 generated by the change of environmental temp. is preliminarily stored in the memory part 13. Scanning is repeatedly performed in series in the order of the black body 9, the black body 10 and a measuring object 1 and the detection level difference between the black body 9 and the black body 10 is detected at every repeated cycle to be stored in the memory part 13 and the correction signal corresponding to the detection level difference stored in the memory part 13 is read to be outputted to the circuit 14. The signal level of the object 1 is corrected on the basis of the correction signal in the circuit 14 to correct the measuring error of the object 1 generated by environmental temp.

Description

【発明の詳細な説明】 〔概要〕 赤外温度計であって、所定の温度差を持った2個の黒体
の温度差を検出してメモリ部に入力し、メモリ部に予め
格納されている測定時の環境温度に対応して変化する検
出温度の補正温度値を読み出して測定物体の検出温度を
補正するように構成し、測定時の環境温度に影響される
ことなく正確な測定物体の温度計測を可能としている。
[Detailed Description of the Invention] [Summary] This is an infrared thermometer that detects the temperature difference between two black bodies having a predetermined temperature difference and inputs the detected temperature difference to a memory unit, which is stored in advance in the memory unit. The structure is configured to read out the correction temperature value of the detected temperature that changes in response to the environmental temperature at the time of measurement, and correct the detected temperature of the measured object, so that it is possible to accurately measure the measured object without being affected by the environmental temperature at the time of measurement. It enables temperature measurement.

〔産業上の利用分野〕[Industrial application field]

本発明は赤外温度計に関し、特に測定時の環境温度に影
響されることなく正確な測定物体の温度計測ができるよ
う改良された赤外温度計に関するものである。
The present invention relates to an infrared thermometer, and more particularly to an infrared thermometer that has been improved so that it can accurately measure the temperature of an object without being affected by the environmental temperature at the time of measurement.

産業や医療の分野で距離を隔てた物体の温度や人体の温
度変化の測定に赤外温度計が広く用いられている。
Infrared thermometers are widely used in the industrial and medical fields to measure the temperature of objects over a distance and changes in the temperature of the human body.

赤外温度計は、規定の温度を発生する基準黒体の赤外線
量と、測定物体の赤外線量とを赤外線検知器で検知して
電気信号に変換し、基準黒体の電気信号レベルを規定の
温度に設定し、両電気信号レベルの差より物体の温度を
換算して表示していこの赤外温度計は、測定時に環境温
度が変化することによって、筐体より放射される赤外線
量の変化や、光学系の各構成要素からの輻射光量の変化
等により、赤外#IA検知器に入射する迷光量が増減し
て赤外線検知器の変換電気信号レベルが変動し、測定開
始時に設定していた基準黒体の温度と、基準黒体と測定
物体との電気信号レベル差に変動が生じ、正確な温度計
測ができないことが分かった。
An infrared thermometer uses an infrared detector to detect the amount of infrared rays from a reference black body that generates a specified temperature and the amount of infrared rays from the object to be measured, converting them into electrical signals, and then converting the electrical signal level of the reference black body to the specified temperature. This infrared thermometer converts and displays the temperature of the object based on the difference between the two electrical signal levels.This infrared thermometer detects changes in the amount of infrared rays emitted from the casing as the environmental temperature changes during measurement. Due to changes in the amount of radiant light from each component of the optical system, the amount of stray light incident on the infrared #IA detector increases or decreases, and the converted electrical signal level of the infrared detector fluctuates. It was found that the temperature of the reference black body and the electrical signal level difference between the reference black body and the measurement object fluctuated, making accurate temperature measurement impossible.

そこで、測定時の環境温度に影響されることなく、測定
物体の正確な塩度a1測ができる赤外温度計の出現が要
望されていた。
Therefore, there has been a demand for an infrared thermometer that can accurately measure the salinity a1 of an object without being affected by the environmental temperature at the time of measurement.

〔従来の技術〕[Conventional technology]

第3図は従来の赤外温度計のブロック図であり、規定の
温度を発生する基準黒体2と、測定物体1と基準黒体2
よりの放射赤外線を交互に検知するように制御する切換
部8を備えるとともに、切換部8の制御により測定物体
1と基I−1!黒体2を順次走査して両者の赤外線を捕
捉する走査鏡3−1と、捕捉した赤外線を集光、フィル
タして赤外線検知器4に導く集光系3−2、フィルタ3
−4およびレンズ3−3.3−5から成る走査光学系3
を備えている。
Figure 3 is a block diagram of a conventional infrared thermometer, which includes a reference blackbody 2 that generates a specified temperature, a measuring object 1, and a reference blackbody 2.
A switching unit 8 is provided for controlling the switching unit 8 to alternately detect the infrared rays emitted from the object 1 and the group I-1! A scanning mirror 3-1 that sequentially scans the black body 2 and captures both infrared rays, a condensing system 3-2 that collects and filters the captured infrared rays, and guides them to the infrared detector 4, and a filter 3.
-4 and scanning optical system 3 consisting of lens 3-3.3-5.
It is equipped with

また、走査光学系3で捕捉された基準黒体2と測定物体
lの赤外線を電気信号に変換する赤外線検知器4と、赤
外線検知器4で変換された両信号を増幅する増幅器5と
、増幅器5より出力される両交流信号を基準馬体2の信
号レベルでクランプし、両信号のレベル差を検出するク
ランプ回路6と、クランプ回路6でクランプされた基準
黒体2の規定温度を基準として検出されたレベル差で測
定物体の温度を換算して表示する温度表示部7とを設け
た構成としている。
Further, an infrared detector 4 converts the infrared rays of the reference black body 2 and the measurement object 1 captured by the scanning optical system 3 into electrical signals, an amplifier 5 that amplifies both signals converted by the infrared detector 4, and an amplifier 5. A clamp circuit 6 clamps both alternating current signals output from 5 at the signal level of the reference horse body 2 and detects the level difference between the two signals, and a specified temperature of the reference black body 2 clamped by the clamp circuit 6 is used as a reference. The structure includes a temperature display section 7 that converts and displays the temperature of the object to be measured based on the detected level difference.

その動作を第4図の信号波形図および第5図の赤外線検
知器の特性図を参照して説明する。
The operation will be explained with reference to the signal waveform diagram in FIG. 4 and the characteristic diagram of the infrared detector in FIG. 5.

走査鏡3−1は切換部8より出力される第4図Aの一定
周期を持った切換え信号AIによって制御され、第4図
Bに示すように、測定物体1と基準黒体2とを交互に走
査して両者よりの放射赤外線を捕捉し、集光系3−2、
フィルタ3−4#よびレンズ3−3.3−5を介して赤
外線検知器4に出力する。
The scanning mirror 3-1 is controlled by a switching signal AI having a constant period shown in FIG. 4A output from the switching unit 8, and alternately switches between the measurement object 1 and the reference black body 2 as shown in FIG. 4B. The infrared radiation emitted from both is captured by scanning, and the condensing system 3-2,
It is output to the infrared detector 4 via the filter 3-4# and lens 3-3.3-5.

赤外線検知器4は第5図の特性図に示すように、入力し
た測定物体の赤外線量P1および基準黒体の赤外線量P
2に対応したvlおよびν2の電気信号に変換し、増幅
回路5を介して所定の電圧に交流増幅してクランプ回路
6に出力する。
As shown in the characteristic diagram of FIG.
2, and AC amplify it to a predetermined voltage via the amplifier circuit 5 and output it to the clamp circuit 6.

クランプ回路6は、第4図Cに示すように入力されたν
2信号のレベルでクランプし、v2信号とv1信号のレ
ベル差ΔVを検出して温度表示部7に出力する。
The clamp circuit 6 receives the input ν as shown in FIG. 4C.
It clamps at the level of the two signals, detects the level difference ΔV between the v2 signal and the v1 signal, and outputs it to the temperature display section 7.

温度表示部7はv2信号レベルを基準黒体の規定温度と
し、両信号のレベル差ΔVを換算して測定物体の温度を
表示する。
The temperature display unit 7 uses the v2 signal level as the specified temperature of the reference black body, converts the level difference ΔV between both signals, and displays the temperature of the measured object.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この従来の温度d11方式では測定時の環境温度に変動
があると、筐体よりの放射赤外線の変化や走査光学系の
レンズ、フィルタ等から発生ずる放射赤外線の変化等に
よって赤外線検知器に入射される迷光量が変化し、第5
図の検知器特性によって測定物体1および基準黒体2の
変換信号v1およびv2信号レヘルが変動し、それに伴
なって両者の信号レベル差ΔVも変化する。
In this conventional temperature d11 method, if there is a change in the environmental temperature at the time of measurement, changes in the infrared radiation from the housing or changes in the infrared radiation generated from the lenses and filters of the scanning optical system will cause the infrared radiation to enter the infrared detector. The amount of stray light changes, and the fifth
The converted signals v1 and v2 of the measurement object 1 and the reference black body 2 vary depending on the detector characteristics shown in the figure, and the signal level difference ΔV between them also varies accordingly.

それがために、測定開始時点で設定された両信号のレベ
ル差ΔVが変化し、測定物体1の計測温度に誤差が発生
するといった問題がある。
Therefore, there is a problem in that the level difference ΔV between the two signals set at the start of measurement changes, and an error occurs in the measured temperature of the measurement object 1.

本発明はこのような点に鑑みて創作されたもので、測定
時の環境温度に影響なく正確な温度計測ができる赤外温
度計を提供することを目的としている。
The present invention was created in view of these points, and an object of the present invention is to provide an infrared thermometer that can accurately measure temperature without affecting the environmental temperature at the time of measurement.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明の赤外温度計のブロック図であり、従来
の赤外温度計に所定の温度差を有する第1の黒体9およ
び第2の黒体10を備えるとともに、測定物体1と第1
の黒体9と第2の黒体10より放射される赤外線を順次
切換えて検知するよう制御する切換部11を設けている
FIG. 1 is a block diagram of an infrared thermometer according to the present invention, which is a conventional infrared thermometer including a first black body 9 and a second black body 10 having a predetermined temperature difference, and a measuring object 1. and the first
A switching unit 11 is provided to sequentially switch and detect infrared rays emitted from the black body 9 and the second black body 10.

また、増幅器5の出力信号中より第1の馬体および第2
の黒体の両信号を抽出して両信号のレベル差を検出する
黒体信号レベル検出回路12と、黒体信号レベル検出回
路12の検出レベル差により、予め格納されている温度
補正レベルを出力するメモリ部13と、メモリ部13よ
り出力される温度補正レベルによって増幅器5より出力
される測定物体1の信号レベルを補正する補+1:、回
路14を付設した構成としている。
Also, from the output signal of the amplifier 5, the first horse body and the second horse body are detected.
A black body signal level detection circuit 12 extracts both signals of the black body and detects a level difference between the two signals, and a temperature correction level stored in advance is output based on the detection level difference between the black body signal level detection circuit 12. The temperature correction level output from the memory section 13 is used to correct the signal level of the measurement object 1 outputted from the amplifier 5.

〔作用〕[Effect]

メモリ部13には予め環境温度の変化によって発生する
第1と第2の黒体間の検知信号レベル差に対応した補正
信号が格納されている。
The memory unit 13 stores in advance a correction signal corresponding to a detection signal level difference between the first and second black bodies that occurs due to a change in environmental temperature.

第1の黒体9.第2の黒体10.測定物体1の順序で直
列状に繰り返し走査し、繰り返し周期毎に第1の黒体9
と第2の黒体10の検知信号レベル差を検出してメモリ
部13に入力し、メモリ部13に格納されている当該検
出レベル差に対応した補正信号を読み出して補正回路1
4に出力し、補正回路14において測定物体1の信号レ
ベルを補正信号で補正して、環境温度によって発生する
測定物体lの計測誤差を補正する。
First blackbody9. Second blackbody 10. Scanning is repeated in series in the order of the measurement object 1, and the first black body 9 is scanned at each repetition period.
The detection signal level difference between the second black body 10 and the second black body 10 is detected and inputted to the memory section 13, and a correction signal corresponding to the detection level difference stored in the memory section 13 is read out and corrected by the correction circuit 1.
4, and the correction circuit 14 corrects the signal level of the measurement object 1 with a correction signal to correct the measurement error of the measurement object 1 caused by the environmental temperature.

本発明では、メモリ部13に格納されている環境温度の
変化に対応した補正信号で測定物体の信号を補正するこ
とにより、環境温度に影響されることな(、正確な測定
物体1の温度計測が可能となる。
In the present invention, by correcting the signal of the measuring object with the correction signal corresponding to the change in the environmental temperature stored in the memory section 13, the temperature of the measuring object 1 can be accurately measured without being affected by the environmental temperature. becomes possible.

〔実施例〕〔Example〕

第1図は本発明の実施例の赤外温度計のブロック図であ
り、第3図と同一部位は同一符号をもって示している。
FIG. 1 is a block diagram of an infrared thermometer according to an embodiment of the present invention, and the same parts as in FIG. 3 are designated by the same symbols.

実施例の赤外温度計は、第3図に示す従来の赤外温度計
に所定の温度差を有する第1の黒体9および第2の黒体
10を備えるとともに、測定物体1と第1の黒体9と第
2の黒体10より放射される赤外線を順次切換えて検知
するよう制御する切換部11とを設けている。
The infrared thermometer of this embodiment is the same as the conventional infrared thermometer shown in FIG. A switching unit 11 is provided to sequentially switch and detect infrared rays emitted from the black body 9 and the second black body 10.

また、増幅器5の出力信号中より第1の黒体および第2
の馬体の両信号を抽出して両信号のレベル差を検出する
黒体信号レベル検出回路12と、黒体信号レベル検出回
路12の検出レベル差により、予め格納されている補正
信号を出力するメモリ部13と、メモリ部13より出力
される補正信号によって増幅器5より出力される測定物
体lの信号レベルを補正する補正回路14を付設した構
成としている。
Also, from the output signal of the amplifier 5, the first black body and the second black body are detected.
A black body signal level detection circuit 12 extracts both signals of the horse body and detects a level difference between both signals, and outputs a pre-stored correction signal based on the detection level difference between the black body signal level detection circuit 12. The configuration includes a memory section 13 and a correction circuit 14 that corrects the signal level of the measurement object l output from the amplifier 5 using the correction signal output from the memory section 13.

その動作を第2図の信号波形図を参照して説明する。The operation will be explained with reference to the signal waveform diagram in FIG.

切り換え部11より出力される第2図りに示す一定間隔
を持った切換え信号01. D2.D3によって走査光
学系3を制御し、第1の黒体9.第2の黒体10、測定
物体1の順序で、繰り返し走査し、前記3者よりの放射
赤外線を順次捕捉して赤外線検知器4に出力する。
The switching signal 01. which is output from the switching unit 11 and has a constant interval shown in the second diagram. D2. D3 controls the scanning optical system 3, and the first black body 9. The second black body 10 and the measurement object 1 are repeatedly scanned in this order, and the infrared rays radiated from the three bodies are sequentially captured and output to the infrared detector 4.

赤外線検知器4は順次入力する3者の赤外線を電気信号
に変換し、増幅器5により増幅して第2図已に示すよう
な、第1の黒体1の信号Elと第2の黒体10の信号E
2と測定物体1の信号[!3を形成して出力する。
The infrared detector 4 converts the infrared rays inputted sequentially from the three sources into electrical signals, which are then amplified by the amplifier 5 to produce a signal El from the first black body 1 and a signal El from the second black body 10 as shown in FIG. signal E
2 and the signal of measurement object 1 [! 3 is formed and output.

また、黒体信号レベル検出回路12は、第2図Fに示す
ように、増幅器5より出力される第1の黒体9と第2の
黒体10の信号Elと82を抽出し、抽出したEl信号
とE2信号のレベル差Δνを検出してメモリ部13に出
力する。
In addition, the black body signal level detection circuit 12 extracts the signals El and 82 of the first black body 9 and the second black body 10 output from the amplifier 5, as shown in FIG. The level difference Δν between the El signal and the E2 signal is detected and output to the memory section 13.

メモリ部13には予め環境温度の変化により発生するE
1信号と1!2信号のレベル差ΔVの変動に対応した補
正信号が格納されている。
The memory section 13 contains E, which is generated due to changes in environmental temperature, in advance.
A correction signal corresponding to a variation in the level difference ΔV between the 1 signal and the 1!2 signal is stored.

メモリ部13は、走査周期毎に入力するEl信号と[!
2信号のレベル差ΔVに当該する補正信号(第2図Gの
Gl、G2 )を読み出して補正回路14に出力する。
The memory unit 13 stores the El signal and [!
A correction signal (Gl, G2 in FIG. 2G) corresponding to the level difference ΔV between the two signals is read out and output to the correction circuit 14.

補正回路14は増幅器5より出力される周期毎の測定物
体lの信号E3のレベルをメモリ部13より出力される
周期毎の補正信号Gl、G2で補正してクランプ回路6
に出力する。
The correction circuit 14 corrects the level of the signal E3 of the measurement object L for each period outputted from the amplifier 5 with the correction signals Gl and G2 for each period outputted from the memory section 13, and outputs the signal E3 from the amplifier 5 to the clamp circuit 6.
Output to.

クランプ回路6は、第2図Hに示すように、第1の黒体
9又は第2の黒体10のいずれかの信号、例えば第2の
黒体10のE2信号レベルでクランプし、E2信号レヘ
ルと補正された測定物体1の旧信号しベルとの差Δv1
を検出して温度表示部7に出力する。
As shown in FIG. 2H, the clamp circuit 6 clamps the signal of either the first black body 9 or the second black body 10, for example, the E2 signal level of the second black body 10, and outputs the E2 signal. Difference Δv1 between the level and the old signal level of the corrected measurement object 1
is detected and output to the temperature display section 7.

温度表示部7は、レベル差Δv1より測定物体の温度表
示を行なう。
The temperature display section 7 displays the temperature of the measured object based on the level difference Δv1.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、予めメモリ部に格
納されている環境温度の変化に対応した補正レベルを読
み出し、該袖+Eレベルで測定物体の信号レベルを?#
 iEすることにより、環境ぬ度に影響されることなく
正確な測定物体の温度1測を可能としている。
As explained above, according to the present invention, the correction level corresponding to the change in the environmental temperature stored in the memory section is read out, and the signal level of the measurement object is determined using the +E level. #
By using iE, it is possible to accurately measure the temperature of an object without being affected by the environmental temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の赤外温度計のブロック図、 第2図は実hi例の動作説明のための信号波形図、第3
図は従来の赤外温度計のブロック図、第4図は従来の赤
外温度計の動作説明のための信号波形図、 第5図は赤外線検知器の特性図である。 図において、1は測定物体、2は基準馬体、3は走査光
学系、3−1は走査鏡、3−2は集光系、3−3.3−
5はレンズ、3−4はフィルタ、4は赤外線検知器、5
は増幅器、6はクランプ回路、7は温度表示部、8,1
1は切換部、9は第1の黒体、1()は第2の黒体、1
2は黒体信号レベル検出回路、13はメモリ部、14は
補正回路を示す。 11J     LL     Lり   工(i燵J
ピ/)I7LヌKL#y>7− ひv7m第3図 侯社F−? 7−ン硅#6Qtj刺↑よ地所、νの信号
i形回 赤7トき衆じpを知、%の、≠芋/L主G]w5  図 第 4 図
Figure 1 is a block diagram of an infrared thermometer according to an embodiment of the present invention, Figure 2 is a signal waveform diagram for explaining the operation of an actual example, and Figure 3 is a block diagram of an infrared thermometer according to an embodiment of the present invention.
Figure 4 is a block diagram of a conventional infrared thermometer, Figure 4 is a signal waveform diagram for explaining the operation of the conventional infrared thermometer, and Figure 5 is a characteristic diagram of an infrared detector. In the figure, 1 is the measurement object, 2 is the reference horse body, 3 is the scanning optical system, 3-1 is the scanning mirror, 3-2 is the condensing system, 3-3.3-
5 is a lens, 3-4 is a filter, 4 is an infrared detector, 5
is an amplifier, 6 is a clamp circuit, 7 is a temperature display section, 8,1
1 is a switching unit, 9 is a first black body, 1() is a second black body, 1
2 is a black body signal level detection circuit, 13 is a memory section, and 14 is a correction circuit. 11J LL り 工(i燵J
P/) I7Lnu KL#y>7- Hiv7m Figure 3 Housha F-? 7-n 硅 #6Qtj し た ↑ yo estate, ν's signal i-shaped times red 7 toki shuji p, %, ≠ Potato / L main G ] w 5 Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 物体よりの赤外線を検知して前記物体の温度を測定する
赤外温度計において、所定の温度差を発生する第1およ
び第2の黒体(9、10)を備え、前記両黒体の検知信
号を抽出して両信号のレベル差を検出する黒体信号レベ
ル検出回路(12)と、前記黒体信号レベル検出回路(
12)の出力を入力し、当該出力に対応して予め格納さ
れている温度補正信号を出力するメモリ部(13)と、
該メモリ部(13)の出力温度補正信号により前記物体
の検知信号を補正する補正回路(14)を設けて成るこ
とを特徴とする赤外温度計。
An infrared thermometer that measures the temperature of an object by detecting infrared rays from the object, comprising first and second black bodies (9, 10) that generate a predetermined temperature difference, and detecting the two black bodies. a blackbody signal level detection circuit (12) that extracts a signal and detects a level difference between both signals;
a memory unit (13) that inputs the output of 12) and outputs a temperature correction signal stored in advance corresponding to the output;
An infrared thermometer comprising a correction circuit (14) for correcting the detection signal of the object based on the output temperature correction signal of the memory section (13).
JP60257312A 1985-11-15 1985-11-15 Infrared thermometer Pending JPS62116226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60257312A JPS62116226A (en) 1985-11-15 1985-11-15 Infrared thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60257312A JPS62116226A (en) 1985-11-15 1985-11-15 Infrared thermometer

Publications (1)

Publication Number Publication Date
JPS62116226A true JPS62116226A (en) 1987-05-27

Family

ID=17304608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60257312A Pending JPS62116226A (en) 1985-11-15 1985-11-15 Infrared thermometer

Country Status (1)

Country Link
JP (1) JPS62116226A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6876412B2 (en) 2001-04-06 2005-04-05 Sony Corporation Guest-host liquid crystal element with removable polarizer
WO2022225156A1 (en) * 2021-04-22 2022-10-27 (주)이지템 Radiometer for microwave receiver and method for measuring temperature of probe thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6876412B2 (en) 2001-04-06 2005-04-05 Sony Corporation Guest-host liquid crystal element with removable polarizer
US7057683B2 (en) 2001-04-06 2006-06-06 Sony Corporation Guest-host liquid crystal element with removable polarizer
WO2022225156A1 (en) * 2021-04-22 2022-10-27 (주)이지템 Radiometer for microwave receiver and method for measuring temperature of probe thereof

Similar Documents

Publication Publication Date Title
KR100314438B1 (en) Temperature Measurement Circuit Using Thermopile Sensor
JPS62116226A (en) Infrared thermometer
JP2863758B2 (en) Input offset voltage compensator
JPH0213815A (en) Sensitivity correction system for photoconducting type infrared detector
JP3661278B2 (en) Optical displacement measuring device
JP2803966B2 (en) Correction method for zero error of torque sensor
JPH04286477A (en) Infrared image pickup device
JPH06109549A (en) Infrared imaging system
JP3100890B2 (en) Infrared detector
JPH05126867A (en) Controlling circuit of led of light-applied current-voltage sensor
JPS6040904A (en) Length measuring device
JPH03293585A (en) Heat ray type human body detector
SU661376A1 (en) Selective voltage meter
JPH0894443A (en) Infrared detection circuit
JPH05157642A (en) Measuring device
GB2165647A (en) Method of conducting measurement using an electro-mechanical transducer
JPH0843208A (en) Infrared detection circuit
JPH05180698A (en) Temperature measuring instrument
JPS623609A (en) Range finder
JPS61149883A (en) Range measuring instrument
JPS6184519A (en) Position signal detecting device
JPH0441290B2 (en)
JPH02118402A (en) High accuracy position measuring circuit
JPH07198483A (en) Infrared detection circuit
JPH07198497A (en) Room-temperature clamp-level correction circuit of infrared image apparatus