JPS6211594B2 - - Google Patents

Info

Publication number
JPS6211594B2
JPS6211594B2 JP58154923A JP15492383A JPS6211594B2 JP S6211594 B2 JPS6211594 B2 JP S6211594B2 JP 58154923 A JP58154923 A JP 58154923A JP 15492383 A JP15492383 A JP 15492383A JP S6211594 B2 JPS6211594 B2 JP S6211594B2
Authority
JP
Japan
Prior art keywords
carrier particles
microorganisms
base material
carrier
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58154923A
Other languages
Japanese (ja)
Other versions
JPS6047673A (en
Inventor
Yoshinori Yushina
Masaaki Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP58154923A priority Critical patent/JPS6047673A/en
Publication of JPS6047673A publication Critical patent/JPS6047673A/en
Publication of JPS6211594B2 publication Critical patent/JPS6211594B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Biological Treatment Of Waste Water (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は発酵生産や水処理などに使用される生
物反応装置(バイオリアクター)内に微生物や酵
素(以下、単に「微生物等」という。)を高濃度
に保持することができる担体粒子に関するもので
ある。 最近、バイオリアクターに微生物等を固定化し
て連続反応を行なう方法が多く採用されるに至つ
ている。微生物等を固定化する方法は勿論のこ
と、固定化用担体についても種々の提案がなされ
ている。 バイオリアクターを効率よく、かつ安定的に運
転するためには、微生物等を固定化するために用
いる担体が極めて重要な役割を占める。この担体
について重要なことは微生物等を高濃度に固定
化できること固定化された微生物等が最大限に
反応に関与できること連続運転に際して微生物
等の活性を保持できること等である。 本発明の目的は上記のような要求を満足する担
体粒子を提供することである。すなわち本発明
は、外表面に切欠き部を有する合成樹脂基材に糸
または繊維を巻着してなる担体粒子に関するもの
である。 微生物等を表面に付着させた担体粒子を生物反
応装置に使用する場合の使用形態としては固定
床、流動床、混合床等があるが、いずれの場合で
あつても担体表面に微生物等が付着し易く、かつ
付着する微生物等のうち増殖などによる余剰なも
のは剥離されても必要な微生物膜厚さは常に維持
されることが重要である。 本発明の担体粒子の製造に用いる合成樹脂につ
いては特に制限はなく熱可塑性樹脂、熱硬化性樹
脂のいずれでもよく、たとえばポリエチレン、ポ
リプロピレン、ポリスチレン、ABS樹脂、ポリ
ウレタン、ポリ塩化ビニル樹脂、、メチルペンテ
ポリマー等がある。 合成樹脂基材の形状については任意であるが、
望ましくは棒状、円柱状もしくは円筒状で、その
外表面に後述の切欠き部を有するもの、またその
寸法については比表面積の点からは小さいものが
望まれるが、製造技術上の立場から制約され、一
般的には長さ、径ともに1〜50mm、好ましくは2
〜10mmが適当である。また、合成樹脂基材は外表
面に切欠き部を有することが必要であるが、該切
欠き部の構造については任意であり、連続的な切
欠き、または断続的な切欠きを有するもの、たと
えば第1図a〜fに示した断面形状を有するもの
はその実施例である。このような切欠き部を有す
る基材の他の例としては断続的に線状、点状等の
切欠きを設けたもの、および引掻き傷等の粗面化
処理を行なつて切欠きを設けたものなどがある。
さらに、第1図a〜fに示したような基材の表面
を機械的手段により引掻き傷等の粗面化処理した
ものも本発明の基材に含まれる。 次に、糸または繊維については天然のもの合成
のもののいずれであつてもよいが、繊維の場合は
0.1ミクロンから数十ミクロンの糸で織られた繊
維で、望ましくはテープ状またはシート状のも
の、また糸の場合は数十から数百ミクロン以上が
引張強度の点から適当である。糸の場合の最大の
太さについては担体粒子長さの1/5以下が適当で
あり、担体粒子の好ましい長さ、径とも2〜10mm
であるので、好ましい最大の太さは2mmとなる。
太さが下限未満であると、基材に巻着する際に切
断したり、あるいは密に巻着した場合には微生物
等が内部に侵入し難いものとなる。また、太さが
上限を超えると、粒子製造時に二重巻きとなり粒
子の比重の変動が大きくなる欠点がある。 上記糸または繊維にはカーボン繊維なども含ま
れる。また、糸や繊維の素材は合成樹脂基材のそ
れと同じであつても異なるものであつてもよい。 基材に糸または繊維を巻着するには機械的手段
により行うことが望ましく、微生物等の侵入、侵
出が可能な間隔(ピツチ)にて巻きつけるべきで
あり、巻着量などは使用目的を考慮して決定すれ
ばよい。また、巻着した糸や繊維は接着剤を用い
て基材に固着せしめたり、あるいは加熱すること
により基材に点溶接する。糸あるいは繊維を巻着
した長尺物の基材は必要に応じ冷却したのち適当
な寸法に切断して本発明の担体粒子を得る。第2
図はその1実施例を示す見取図で、合成樹脂、た
とえばポリエチレンを約150℃に加熱して第1図
aに示すa=2mm、b=1.5mmの十字形ノズルよ
り押出し、得られた十字型合成樹脂基材に合成繊
維、たとえばポリエステルの太さ数ミクロンの繊
維を螺旋状に巻付ける。この際、両者の接触部に
150〜180℃の熱を加えて点溶接を行なう。繊維が
巻着された基材は、次に常温の水道水が貯留され
る水槽内を通りこの間冷却されたのちカツター部
に入り、長さ5mmにカツトされ担体粒子が連続的
に製造される。 本発明の担体粒子の比重を調整するためには、
基材に無機あるいは有機の充填材(たとえば炭酸
カルシウム、クレー、タルクなど)を適量混入し
て比重を増加させたり、あるいは発泡剤を用いて
合成樹脂を発泡させて比重を低下させる等の手段
を適宜採用することができる。しかも、これら充
填材の添加や発泡は基材表面の粗面化、親水性化
を促進し、初期微生物付着性能の向上に資するこ
とができる。 本発明の担体粒子に微生物等を付着させるには
常法によつて行なえばよく、たとえば微生物の場
合は、生物反応装置その他の容器に担体粒子を微
生物および該微生物の増殖に適した栄養分と共に
投入することによつて担体粒子へ微生物を付着さ
せる。また、酵母などの特定の微生物にあつては
予め基材の切欠き部などに導入したのち糸あるい
は繊維を巻着する方法を採用できることがある。
一方、酵素を担体粒子に付着させるには適当な容
器に酵素溶液を入れ、この溶液に担体を浸漬する
方法などがあり、この場合に粘着性物質などを加
えることにより付着性を向上することができる。 微生物等を担持させた本発明の担体粒子を生物
反応装置に使用すると、定常状態では第3図aに
示したように基材表面、糸あるいは繊維表面、さ
らにはこれらの中間部に多量の微生物等が付着・
保持されていることが観察される。なお、増殖に
伴ない余剰の微生物は糸や繊維間の隙間から外部
に出てくることがある。 このような微生物等を付着させた担体粒子群を
流動させたり激しく混合すると、余剰の微生物等
が剥離するが、内部に保持されているものは担体
粒子への付着性が極めて強く、このような状態に
おいても剥離しない。そのため、本発明の担体粒
子を使用することにより、発酵生産や水処理など
の生物反応を安定的に行なうことができ、とりわ
け流動床、混合床などの使用形態に適している。
また、固定床として使用した場合は、目詰まりが
著しくなつた段階で洗浄を行なえばよい。そのほ
か、本発明の担体粒子は連続的かつ安価に製造す
ることができるという利点がある。 次に、本発明を実施例により詳しく説明する。 実施例 1 担体粒子の構造と微生物付着度との関係につい
て検討するため、下記の3種類の担体粒子にグル
タミン酸生産菌を付着させたものを用いてグルタ
ミン酸発酵を行なつた。 担体粒子としてポリプロピレンを素材とした
長さ5mm、径5mmの断面円柱状であり、表面が円
滑な比重0.90であるもの(担体粒子1)、ポリ
プロピレンを素材とし、発泡成形した長さ5mm、
径5mmの断面円柱状であり、表面が粗である比重
0.81のもの(担体粒子2)および担体粒子2に
切欠き部を設けて断面形状が第1図aの如き十字
状とした基材にポリプロピレン繊維を巻着したも
のであつた、比重0.82のもの(担体粒子3)を使
用した。 グルタミン酸発酵用の実験装置として第4図に
示したようなガラス製の径15cm、高さ30cm、有効
反応槽容積約4のものを3台使用し、上記3種
類の担体粒子をそれぞれ2充てんし、下向流流
動床にて実験を行なつた。なお、実験に際しては
実験装置、培地供給ライン等はすべて滅菌処理を
行なつた。 炭素源としてグルコース3重量%を含む培地を
150ml/hrの速度で供給ライン1よりポンプ2に
より実験装置3内のデイストリビユーター4に導
入した。また各実験装置にはコリネバクテリウ
ム・グルタミクム(Corinebacterium
glutamicum)ATCC 13032を約0.5%濃度で含む
種菌液500mlを加えた。好気性反応に必要な酸素
は空気供給管7より空気を供給してドラフトチユ
ーブ6内で培地に溶解せしめた。培地はドラフト
チユーブ6と担体粒子5の存在する反応部を循環
させ、生成したグルタミン酸を含む培養液は排出
管8より抜出した。また、装置内の空気の排出は
排出管9を通して行なつた。 微生物を付着した担体粒子5は空気の供給停止
時には装置3の上部であつてデイストリビユータ
ー4の下部に浮上、静止するが、空気の供給によ
り培地が循環すると、担体粒子充填層は膨張す
る。本実験では膨張率を最大2倍として行なつ
た。 実験開始より2ケ月後に装置内の担体粒子を全
量取出し、該粒子に付着している微生物重量を乾
燥重量として求め、担体粒子容積当りの付着微生
物濃度を算出して微生物付着性の優劣を評価し
た。なお、担体粒子に付着した微生物の重量は
105℃で24時間乾燥したものの重量を求めた。結
果を第1表に示す。
The present invention relates to carrier particles that can hold microorganisms and enzymes (hereinafter simply referred to as "microorganisms, etc.") at high concentrations in biological reaction devices (bioreactors) used for fermentation production, water treatment, etc. be. Recently, a method of immobilizing microorganisms and the like in a bioreactor and performing continuous reactions has come into widespread use. Various proposals have been made not only for methods of immobilizing microorganisms, but also for immobilization carriers. In order to operate a bioreactor efficiently and stably, the carrier used to immobilize microorganisms plays an extremely important role. The important things about this carrier are that microorganisms can be immobilized at a high concentration, that the immobilized microorganisms can participate in the reaction to the maximum extent, and that the activity of the microorganisms can be maintained during continuous operation. An object of the present invention is to provide carrier particles that satisfy the above requirements. That is, the present invention relates to carrier particles formed by winding threads or fibers around a synthetic resin base material having notches on the outer surface. When carrier particles with microorganisms etc. attached to the surface are used in a biological reaction device, there are fixed bed, fluidized bed, mixed bed, etc., but in any case, microorganisms etc. are attached to the carrier surface. It is important that the necessary microbial film thickness is always maintained, even if surplus microorganisms that tend to adhere and grow due to proliferation are removed. The synthetic resin used for producing the carrier particles of the present invention is not particularly limited and may be either a thermoplastic resin or a thermosetting resin, such as polyethylene, polypropylene, polystyrene, ABS resin, polyurethane, polyvinyl chloride resin, methyl pentane resin, etc. There are polymers, etc. Although the shape of the synthetic resin base material is arbitrary,
Preferably, it is rod-shaped, cylindrical, or cylindrical in shape, and has a notch on its outer surface as described below, and its dimensions are preferably small in terms of specific surface area, but there are restrictions from a manufacturing technology standpoint. , generally both length and diameter are 1 to 50 mm, preferably 2
~10mm is appropriate. Furthermore, although it is necessary for the synthetic resin base material to have a notch on the outer surface, the structure of the notch is arbitrary, and it may have a continuous notch or an intermittent notch, For example, those having the cross-sectional shapes shown in FIGS. 1a to 1f are examples thereof. Other examples of base materials having such notches include those with intermittent linear or dotted notches, and those with cutouts formed by roughening the surface such as scratches. There are things like that.
Furthermore, the substrates of the present invention also include substrates whose surfaces have been subjected to surface roughening treatment such as scratching by mechanical means as shown in FIGS. 1a to 1f. Next, threads or fibers can be either natural or synthetic, but in the case of fibers,
The fiber is woven from threads of 0.1 micron to several tens of microns, preferably in the form of a tape or sheet, and in the case of threads, tens to hundreds of microns or more is suitable from the viewpoint of tensile strength. In the case of thread, the appropriate maximum thickness is 1/5 or less of the length of the carrier particles, and the preferred length and diameter of the carrier particles are 2 to 10 mm.
Therefore, the preferred maximum thickness is 2 mm.
If the thickness is less than the lower limit, it will be difficult for microorganisms and the like to enter the inside if it is cut when being wrapped around the base material or if it is tightly wrapped. Furthermore, if the thickness exceeds the upper limit, there is a drawback that double winding occurs during particle production, resulting in large fluctuations in the specific gravity of the particles. The above yarns or fibers also include carbon fibers. Furthermore, the material of the thread or fiber may be the same as or different from that of the synthetic resin base material. It is preferable to wrap threads or fibers around the base material by mechanical means, and the wrapping should be done at intervals (pitch) that allow microorganisms to enter and exfiltrate, and the amount of wrapping should be determined depending on the intended use. The decision should be made taking into consideration. Further, the wound thread or fiber is fixed to the base material using an adhesive, or spot welded to the base material by heating. The long base material around which the yarn or fibers are wound is cooled if necessary and then cut into appropriate sizes to obtain the carrier particles of the present invention. Second
The figure is a sketch showing one example of the process, in which a synthetic resin such as polyethylene is heated to about 150°C and extruded through a cross-shaped nozzle with a = 2 mm and b = 1.5 mm as shown in Figure 1a. Synthetic fibers, such as polyester fibers several microns in thickness, are spirally wound around a synthetic resin base material. At this time, the contact area between the two
Spot welding is performed by applying heat of 150 to 180℃. The base material with the fibers wound thereon then passes through a water tank in which tap water at room temperature is stored, during which time it is cooled, and then enters the cutter section where it is cut to a length of 5 mm to continuously produce carrier particles. In order to adjust the specific gravity of the carrier particles of the present invention,
Measures such as mixing an appropriate amount of inorganic or organic filler (for example, calcium carbonate, clay, talc, etc.) into the base material to increase the specific gravity, or foaming the synthetic resin using a foaming agent to lower the specific gravity, etc. Can be adopted as appropriate. Moreover, the addition of these fillers and foaming can promote roughening and hydrophilicity of the surface of the base material, and can contribute to improving the initial microbial adhesion performance. The attachment of microorganisms, etc. to the carrier particles of the present invention may be carried out by a conventional method. For example, in the case of microorganisms, the carrier particles are placed in a biological reaction device or other container together with the microorganisms and nutrients suitable for the growth of the microorganisms. By doing so, the microorganisms are attached to the carrier particles. Furthermore, in the case of specific microorganisms such as yeast, it may be possible to adopt a method in which the microorganisms are introduced in advance into a notch in the base material and then wrapped around threads or fibers.
On the other hand, in order to attach enzymes to carrier particles, there is a method of placing an enzyme solution in a suitable container and immersing the carrier in this solution.In this case, it is possible to improve the adhesion by adding an adhesive substance etc. can. When the carrier particles of the present invention carrying microorganisms, etc. are used in a biological reaction device, in a steady state, as shown in Figure 3a, a large amount of microorganisms is deposited on the surface of the base material, on the surface of threads or fibers, and even on the intermediate part thereof. etc. attached/
observed to be retained. In addition, surplus microorganisms accompanying proliferation may come out from the gaps between the threads and fibers. When carrier particles with such microorganisms attached to them are fluidized or mixed vigorously, excess microorganisms are detached, but the ones retained inside have extremely strong adhesion to the carrier particles. It does not peel off even under conditions. Therefore, by using the carrier particles of the present invention, biological reactions such as fermentation production and water treatment can be carried out stably, and are particularly suitable for use in fluidized beds, mixed beds, and the like.
Furthermore, when used as a fixed bed, cleaning may be performed when the clogging becomes significant. In addition, the carrier particles of the present invention have the advantage that they can be manufactured continuously and at low cost. Next, the present invention will be explained in detail with reference to examples. Example 1 In order to study the relationship between the structure of carrier particles and the degree of microbial adhesion, glutamic acid fermentation was carried out using the following three types of carrier particles to which glutamic acid producing bacteria were attached. Carrier particles are made of polypropylene and have a cylindrical cross-section with a length of 5 mm and a diameter of 5 mm, and have a smooth surface and a specific gravity of 0.90 (carrier particles 1); made of polypropylene and foam-molded with a length of 5 mm;
Specific gravity with a cylindrical cross section with a diameter of 5 mm and a rough surface.
One with a specific gravity of 0.81 (carrier particle 2) and one with a specific gravity of 0.82, which was made by winding polypropylene fibers around a base material in which a notch was provided in the carrier particle 2 so that the cross-sectional shape was cross-shaped as shown in Figure 1 a. (Carrier particles 3) was used. As experimental equipment for glutamic acid fermentation, we used three glass vessels with a diameter of 15 cm, a height of 30 cm, and an effective reaction volume of approximately 4, as shown in Figure 4, and filled with two of each of the three types of carrier particles mentioned above. , experiments were conducted in a downward flow fluidized bed. In addition, during the experiment, all experimental equipment, culture medium supply lines, etc. were sterilized. A medium containing 3% by weight of glucose as a carbon source
It was introduced into the distributor 4 in the experimental apparatus 3 from the supply line 1 by the pump 2 at a rate of 150 ml/hr. Each experimental device also contains Corinebacterium glutamicum (Corinebacterium glutamicum).
glutamicum) ATCC 13032 at a concentration of approximately 0.5% was added. Oxygen required for the aerobic reaction was dissolved in the medium in the draft tube 6 by supplying air from the air supply pipe 7. The culture medium was circulated through the draft tube 6 and the reaction section where the carrier particles 5 were present, and the culture solution containing the produced glutamic acid was extracted from the discharge tube 8. Further, the air inside the device was discharged through the discharge pipe 9. When the air supply is stopped, the carrier particles 5 with the microorganisms attached float to the upper part of the device 3 and the lower part of the distributor 4 and remain stationary, but when the medium is circulated by the air supply, the carrier particle packed bed expands. . In this experiment, the expansion rate was set to 2 times the maximum. Two months after the start of the experiment, all carrier particles in the device were taken out, the weight of microorganisms attached to the particles was determined as dry weight, and the concentration of attached microorganisms per volume of carrier particles was calculated to evaluate the superiority or inferiority of microbial adhesion. . Furthermore, the weight of microorganisms attached to carrier particles is
After drying at 105°C for 24 hours, the weight was determined. The results are shown in Table 1.

【表】 表から明らかなように、表面が円滑な担体粒子
1は担体粒子の流動により微生物はあまり付着し
ないが、表面が粗である担体粒子2は比較的高濃
度の微生物が付着する。さらに、本発明の担体粒
子3の場合は担体粒子2よりも著しく多量の微生
物が付着、保持される。 実施例 2 担体粒子として実施例1における担体粒子3を
用い、実施例1に示した装置で培地のグルコール
濃度を5重量%、PHを7〜8とし、培養温度を32
℃としたこと以外は実施例1と同様の条件で2ケ
月間連続的にグルタミン酸発酵を行なつた。その
結果、平均2.25重量%の割合でグルタミン酸の生
成が認められた。 実施例 3 実施例1の担体粒子3に市販パン酵母(サツカ
ロミセス・セレビシエ)を付着せしめてグルコー
スを炭素源とする培地に加えて培養し、エタノー
ルの生産を行なつた。 実験装置として第5図に示したガラス製の装置
(径15cm、高さ30cm、有効反応槽容積約4)を
用い、かつ循環用ポンプ11により装置内の液体
をライン12を通して循環させて下向流となし、
培養液の一部をライン8より抜出した。また、生
成ガスは9より排出させた。図中、1は培地の供
給ライン、2はポンプ、3は装置、5は担体粒子
である。 実験は下記の条件で2ケ月連続して行なつた。 温 度 30℃ PH 約5.5 グルコース濃度 20重量% 培地供給速度 1.4/hr 担体粒子充てん量 2 培養液循環速度 50〜200/hr その結果、培養液中のエタノールの平均濃度は
6.4重量%であり、単位体積当りの反応速度は22
gエタノール/・hrであつた。また、担体粒子
に付着した酵母は担体粒子1当り26gであつ
た。
[Table] As is clear from the table, carrier particles 1 with a smooth surface do not attract much microorganisms due to the flow of the carrier particles, whereas carrier particles 2 with a rough surface attract a relatively high concentration of microorganisms. Furthermore, in the case of the carrier particles 3 of the present invention, significantly more microorganisms are attached and retained than in the carrier particles 2. Example 2 Using the carrier particles 3 in Example 1 as carrier particles, the culture medium was cultured at a culture temperature of 32% by weight, with a glucose concentration of 5% by weight, a pH of 7 to 8, and a culture medium using the apparatus shown in Example 1.
Glutamic acid fermentation was carried out continuously for two months under the same conditions as in Example 1 except that the temperature was changed to .degree. As a result, production of glutamic acid was observed at an average rate of 2.25% by weight. Example 3 Commercially available baker's yeast (Saccharomyces cerevisiae) was attached to the carrier particles 3 of Example 1, and cultured in a medium containing glucose as a carbon source to produce ethanol. A glass device (diameter 15 cm, height 30 cm, effective reaction tank volume approximately 4) shown in Fig. 5 was used as the experimental device, and the liquid inside the device was circulated through line 12 by circulation pump 11 and was pumped downward. flow and direction,
A portion of the culture solution was extracted from line 8. Further, the produced gas was discharged from 9. In the figure, 1 is a medium supply line, 2 is a pump, 3 is a device, and 5 is a carrier particle. The experiment was conducted for two consecutive months under the following conditions. Temperature: 30℃ PH: Approx. 5.5 Glucose concentration: 20% by weight Medium supply rate: 1.4/hr Carrier particle filling amount: 2 Culture medium circulation rate: 50-200/hr As a result, the average concentration of ethanol in the culture medium is
6.4% by weight, and the reaction rate per unit volume is 22
g ethanol/・hr. Further, the amount of yeast attached to the carrier particles was 26 g per carrier particle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜fは本発明の担体粒子を構成する基
材の態様を示す断面図、第2図は本発明の担体粒
子の実施例を示す見取図、第3図a,bは担体粒
子に微生物が付着した状態の説明図であり、aは
流動もしくは混合前の状態、bは流動もしくは混
合後の状態を示す。第4図および第5図は実施例
に用いた実験装置の説明図である。
Figures 1 a to f are cross-sectional views showing aspects of the base material constituting the carrier particles of the present invention, Figure 2 is a sketch diagram showing examples of the carrier particles of the present invention, and Figures 3 a and b are cross-sectional views showing aspects of the base material constituting the carrier particles of the present invention. It is an explanatory view of a state where microorganisms are attached, where a shows the state before flowing or mixing, and b shows the state after flowing or mixing. FIG. 4 and FIG. 5 are explanatory diagrams of the experimental apparatus used in the example.

Claims (1)

【特許請求の範囲】 1 外表面に切欠き部を有する合成樹脂基材に糸
または繊維を巻着してなる担体粒子。 2 合成樹脂基材が長さ1〜50mm、径1〜50mmの
ものである特許請求の範囲第1項記載の担体粒
子。
[Scope of Claims] 1. Carrier particles formed by winding threads or fibers around a synthetic resin base material having notches on the outer surface. 2. The carrier particles according to claim 1, wherein the synthetic resin base material has a length of 1 to 50 mm and a diameter of 1 to 50 mm.
JP58154923A 1983-08-26 1983-08-26 Carrier particle Granted JPS6047673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58154923A JPS6047673A (en) 1983-08-26 1983-08-26 Carrier particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58154923A JPS6047673A (en) 1983-08-26 1983-08-26 Carrier particle

Publications (2)

Publication Number Publication Date
JPS6047673A JPS6047673A (en) 1985-03-15
JPS6211594B2 true JPS6211594B2 (en) 1987-03-13

Family

ID=15594900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58154923A Granted JPS6047673A (en) 1983-08-26 1983-08-26 Carrier particle

Country Status (1)

Country Link
JP (1) JPS6047673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104071901A (en) * 2013-03-25 2014-10-01 北京工业大学 Bacterium embedded immobilized active carrier filling material and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5662771B2 (en) * 2010-11-26 2015-02-04 株式会社川瀬製作所 Purification device
JP5825807B2 (en) * 2011-03-14 2015-12-02 株式会社アイ・エヌ・シー・エンジニアリング Waste water treatment apparatus and waste water treatment method
JP7175094B2 (en) * 2018-03-27 2022-11-18 三機工業株式会社 Water purification element and water purification device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104071901A (en) * 2013-03-25 2014-10-01 北京工业大学 Bacterium embedded immobilized active carrier filling material and preparation method thereof

Also Published As

Publication number Publication date
JPS6047673A (en) 1985-03-15

Similar Documents

Publication Publication Date Title
JPS61149085A (en) Material holding microorganism
US6900055B1 (en) Preparation of porous silicone rubber for growing cells or living tissue
JP2706075B2 (en) Method of performing bioreaction using sintered carrier
JPH0463584A (en) Bioreactor equipment
JPH03164169A (en) Cell culture
BRPI0709013A2 (en) Method for the industrial production of biocatalysts with bioactive material in the form of immobilized enzymes, or microorganisms immobilized on polyvinyl alcohol gel, and their use, and devices for their production
US5385836A (en) Nonwoven fabric coated with a mixture of silk fibroin, gelatin and insolubilized chitosan for use as a carrier for animal cells
EP1057787B1 (en) Method of water treatment using a denitrification promoter
US5256570A (en) Bioreactor configured for various permeable cell supports and culture media
JPS6211594B2 (en)
JPS61227892A (en) Method and apparatus for performing microbial fermentation
JPH0375237B2 (en)
JPS5813391A (en) Membrane of immobilized microorganism
EP0160681B1 (en) Aerobic microbiological method
JP3041378B2 (en) Packed bed type culture apparatus and culture method
JPS6349999B2 (en)
CN109642196B (en) Solid state fermentation reactor equipped with active support material
JPH0516320B2 (en)
JPH0417632B2 (en)
JPS6214779A (en) Fermentation apparatus
JPH048799Y2 (en)
Ogbonna Atomisation techniques for immobilisation of cells in micro gel beads
JPH0324074Y2 (en)
BE1004042A5 (en) Method and equipment for the simultaneous suspension of a liquid phase anda gaseous fluid with an immobilised biomass
ES2204316A1 (en) Method of obtaining yeast biocapsules, biocapsules thus obtained and applications of same