JPS6047673A - Carrier particle - Google Patents

Carrier particle

Info

Publication number
JPS6047673A
JPS6047673A JP58154923A JP15492383A JPS6047673A JP S6047673 A JPS6047673 A JP S6047673A JP 58154923 A JP58154923 A JP 58154923A JP 15492383 A JP15492383 A JP 15492383A JP S6047673 A JPS6047673 A JP S6047673A
Authority
JP
Japan
Prior art keywords
microorganisms
carrier
carrier particles
yarn
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58154923A
Other languages
Japanese (ja)
Other versions
JPS6211594B2 (en
Inventor
Yoshinori Yushina
油科 嘉則
Masaaki Noguchi
野口 雅章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP58154923A priority Critical patent/JPS6047673A/en
Publication of JPS6047673A publication Critical patent/JPS6047673A/en
Publication of JPS6211594B2 publication Critical patent/JPS6211594B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To provide a carrier particle producible continuously at a low cost, capable of immobilizing microorganisms in high concentration, and useful for the stable bioreaction such as fermentation and water-treatment, etc., by winding a yarn or fiber around a plastic substrate having notches at the outer surface. CONSTITUTION:A yarn or fiber (natural or synthetic fiber, preferably a tape or sheet woven by filament of 0.1- several tens mu diameter or a yarn having a thickness of several tens - several hundreds mu in view of tensile strength) is wound around a plastic substrate having notches at the outer surface (a thermoplastic resin or thermosetting resin such as PE, PS, polyurethane, etc. preferably having a length and diameter of 1-50mm.), to obtain the objective carrier. It can immobilize microorganisms, etc. in high concentration. Although excess microorganisms are sometimes released from the gap between the yarns and fibers according to the progress of proliferation, and dissipated from the system by the flow and vigorous agitation of the carrier particles, however, the microorganisms retained in the inside of the carrier are resistant to the release. Accordingly, the carrier is suitable to use in the form of fluidized bed or mixed bed, etc.

Description

【発明の詳細な説明】 本発明は発酵生産や水処理などに使用される生物反応装
置(バイオリアクター)内に微生物や酵素(以下、単に
「微生物等」という。)を高濃度に保持することができ
る担体粒子に関するものである。
[Detailed Description of the Invention] The present invention provides a method for maintaining microorganisms and enzymes (hereinafter simply referred to as "microorganisms, etc.") at a high concentration in a biological reaction device (bioreactor) used for fermentation production, water treatment, etc. It relates to carrier particles that can

最近、バイオリアクターに微生物等を固定化して連続反
応を行なう方法が多く採用されるに至っている。微生物
等を固定化する方法は勿論のこと、固定化用担体につい
ても種々の提案がなされて(・る。
Recently, a method of immobilizing microorganisms and the like in a bioreactor and performing continuous reactions has come to be widely adopted. Various proposals have been made not only for methods of immobilizing microorganisms, but also for immobilization carriers.

バイオリアクターを効率よく、かつ安定的に運転するた
めには、微生物等を固定化するために用いる担体が極め
て重要な役割を占める。この担体について重要なことは
■微生物等を高濃度に固定化できるとと■固定化された
微生物等が最大限に反応に関与できるとと■連続運転に
際して微生物等の活性を保持できること等である。
In order to operate a bioreactor efficiently and stably, the carrier used to immobilize microorganisms plays an extremely important role. The important things about this carrier are: 1) It can immobilize microorganisms at a high concentration, 2) The immobilized microorganisms can participate in the reaction to the maximum extent, and 2) It can maintain the activity of microorganisms during continuous operation. .

本発明の目的は上記のような要求を満足する担体粒子を
提供することである。すなわち本発明は、外表面に切欠
き部を有する合成樹脂基材に糸または繊維を巻着してな
る担体粒子に関するものである。
An object of the present invention is to provide carrier particles that satisfy the above requirements. That is, the present invention relates to carrier particles formed by winding threads or fibers around a synthetic resin base material having notches on the outer surface.

微生物等を表面に付着させた担体粒子を生物反応装置に
使用する場合の使用形態としては固定床。
When carrier particles with microorganisms etc. attached to the surface are used in a biological reaction device, a fixed bed is used.

流動床、混合床等があるが、いずれの場合であっても担
体表面に微生物等が付着し易く、かつ付着する微生物等
のうち増殖などによる余剰なものは剥離されても必要な
微生物膜厚さは常に維持されることが重要である。
There are fluidized beds, mixed beds, etc., but in either case, microorganisms, etc. tend to adhere to the carrier surface, and even if the excess microorganisms, etc. that adhere to it due to proliferation etc. are peeled off, the necessary microbial film thickness will still be required. It is important that this is maintained at all times.

本発明の担体粒子の製造に用いる合成樹脂については特
に制限はなく熱可塑性樹脂、熱可塑性樹脂のいずれでも
よく、たとえばポリエチレン、ボリグロピレン、ポリス
チレン、 AES樹脂、ポリウレタン、ポリ塩化ビニル
樹脂、メチルペンテンポリマー等がある。
The synthetic resin used for producing the carrier particles of the present invention is not particularly limited and may be any thermoplastic resin, such as polyethylene, polyglopylene, polystyrene, AES resin, polyurethane, polyvinyl chloride resin, methylpentene polymer, etc. There is.

合成樹脂基材の形状については任意であるが、望ましく
は棒状1円柱状もしくは円筒状で、その外表面に後述の
切欠き部を有するもの、またその寸法については比表面
積の点からは小さいものが望まれるが、製造技術上の立
場から制約され、一般的には長さ、径ともに1〜50朋
、好ましくは2〜10.、が適当である。また、合成樹
脂基材は外表面に切欠き部を有することが必要であるが
、該切欠き部の構造については任意であり、連続的な切
欠き、−1:たは断続的な切欠きを有するもの、たとえ
ばm l 図a −fに示した断面形状を有するものは
その実t・m例である。このような切欠き部を有する基
材の他の例としては断続的に線状1点状等の切欠きを設
けたもの、および引掻き傷等の粗面化処理を行なって切
欠きを設げたものなどがある。さらに、第1図a−fに
示したような2!li:4jの表面を機械的手段により
引掻き傷等の粗面住処」lしたものも本発明の基材に含
まれる。
The shape of the synthetic resin base material is arbitrary, but it is preferably rod-shaped, cylindrical, or cylindrical, and has a notch as described below on its outer surface, and its dimensions are small in terms of specific surface area. However, it is limited from the viewpoint of manufacturing technology, and generally both length and diameter are 1 to 50 mm, preferably 2 to 10 mm. , is appropriate. Furthermore, although it is necessary for the synthetic resin base material to have a notch on the outer surface, the structure of the notch is arbitrary, and may be a continuous notch, -1: or an intermittent notch. For example, those having the cross-sectional shapes shown in Figures a-f are actual examples of t and m. Other examples of base materials having such notches include those with intermittent linear single-point notches, and those with roughening treatments such as scratches to provide the notches. There are things etc. Furthermore, 2! as shown in FIG. 1 a-f! Substrates of the present invention also include substrates in which the surface of li:4j has been subjected to roughening such as scratches by mechanical means.

次に、糸または繊維については天然のもの合成のものの
いずれであってもよいが、繊維の場合は0.1ミクロン
から数十ミクロンの糸で織られた繊維で、望ましくはテ
ープ状またはシート状のもの、また糸の場合は数十から
数百ミクロン以上が引張強度の点から適当である。糸の
場合の最大の太さについては担体粒子長さの115以下
が適当であり、担体粒子の好ましい長さ、径とも2〜1
0mmであるので、好ましい最大の太さは2πmとなる
。太さが下限未満であると、基材に巻着する際に切断し
たり、あるいは密に巻着した場合には微生物等が内部に
侵入し難いものとなる。また、太さが上限を超えると、
粒子製造時に二重巻きとなり粒子の比重の変動が大きく
なる欠点がある。
Next, the threads or fibers may be either natural or synthetic, but in the case of fibers, they are woven from threads of 0.1 micron to several tens of microns, preferably in the form of a tape or sheet. In the case of yarn, tens to hundreds of microns or more is appropriate from the viewpoint of tensile strength. In the case of thread, the maximum thickness is suitably 115 or less of the length of the carrier particles, and the preferred length and diameter of the carrier particles are both 2 to 1.
Since it is 0 mm, the preferable maximum thickness is 2πm. If the thickness is less than the lower limit, it will be difficult for microorganisms and the like to enter the inside if it is cut when being wrapped around the base material or if it is tightly wrapped. Also, if the thickness exceeds the upper limit,
There is a drawback that double winding occurs during particle production, resulting in large fluctuations in the specific gravity of the particles.

上記糸または繊維にはカーボン繊維なども含まれる。ま
た、糸や繊維の素材は合成樹脂基材のそれと同じであっ
ても異なるものであってもよい。
The above yarns or fibers also include carbon fibers. Further, the material of the thread or fiber may be the same as or different from that of the synthetic resin base material.

基材に糸または繊維を巻着するには機械的手段により行
なうことが望ましく、微生物や酵素などの侵入、侵出が
可能な間隔(ピッチ〕にて巻きつけるべきであり、巻着
量などは使用目的を考慮して決定すればよい。また、巻
着した糸や繊維は接着剤を用いて左利に固着せしめたり
、あるいは加熱することにより基材に点溶接する。糸あ
るいはpA維を巻着しだ長尺物の基材は必要に応じ冷却
したのち適当な寸法に切断して本発明の担体粒子を得る
。M2図はその1実施例を示す見取図で、合成樹脂、た
とえばポリエチレンを約150℃に加熱して第1図(a
)に丞すa = 2 myi−b = i、s min
の十字形ノズルより押出し、得られた十字型合成樹脂、
l!I¥拐に合成繊維、たとえばポリエステルの太さ数
ミクロンの繊維を螺旋状に巻付ける。この際、両者の接
触部に150〜180’Cの熱を加えて点溶接を行なう
。繊維が巻着された基材は、次に常温の水道水が貯留さ
れる水ti内を通りこの間冷却されたのちカッタ一部に
入り、長さ5 tlTLにカットされ担体粒子が連続的
に製造される。
It is preferable to wind threads or fibers around the base material by mechanical means, and the winding should be done at a pitch that allows microorganisms, enzymes, etc. to enter and exfiltrate, and the amount of winding should be The decision should be made taking into consideration the purpose of use.In addition, the wound yarn or fiber can be fixed to the left hand using an adhesive, or it can be spot welded to the base material by heating. The adhered elongated base material is cooled if necessary and then cut into appropriate dimensions to obtain the carrier particles of the present invention. Figure M2 is a sketch showing one example of this, in which a synthetic resin such as polyethylene is After heating to 150℃,
) to a = 2 myi-b = i, s min
The cross-shaped synthetic resin obtained by extrusion from the cross-shaped nozzle of
l! Synthetic fibers, such as polyester fibers several microns in thickness, are wound spirally around the fabric. At this time, spot welding is performed by applying heat of 150 to 180'C to the contact portion between the two. The base material with the fibers wound thereon is cooled during this time by passing through a water tank where tap water at room temperature is stored, and then enters a part of the cutter where it is cut into a length of 5 TL and carrier particles are continuously produced. be done.

本発明の担体粒子の比重を調整するため罠は、基材に無
機あるいは有機の充填材(たとえば炭酸カルシウム、ク
レー、タルクなと)を適量混入して比重を増加させたり
、あるいは発泡剤を用いて合成樹脂を発泡させて比重を
低下させる等の手段を適宜採用することができる。しか
も、これら充填材の添加や発泡は基材表面の粗面化、親
水性化を促進し、初期微生物付着性能の向上に買するこ
とができる。
In order to adjust the specific gravity of the carrier particles of the present invention, traps can be prepared by mixing an appropriate amount of inorganic or organic filler (for example, calcium carbonate, clay, talc, etc.) into the base material to increase the specific gravity, or by using a blowing agent. Means such as foaming the synthetic resin to lower the specific gravity can be adopted as appropriate. Moreover, the addition of these fillers and foaming promote roughening and hydrophilicity of the surface of the base material, which can help improve the initial microbial adhesion performance.

本発明の担体粒子に微生物やr!?:素などを付着させ
る罠は常法によって行ブよえばよく、たとえば微生物の
場合は、生物反応装置その他の容器に担体粒子を微生物
および該微生物の増殖に適した栄養分と共に投入するこ
とによって担体粒子−5微生物を倒動させろ。また、酵
母などの特定の微生物にあっては予め左利の切欠き部7
1どに導入したのち糸あるいは繊維を巻着する方法を採
用できることがある。一方、酵素を担体粒子に+1着さ
七るには適当な容器に酵素溶液を入れ、この溶液に担体
を浸漬する方法などがあり、この場合に粘着性物質など
を加えることにより付着性を向上することができる。
Microorganisms and r! ? : The trap for attaching elements, etc. can be carried out by a conventional method. For example, in the case of microorganisms, the carrier particles are placed in a biological reaction device or other container together with the microorganisms and nutrients suitable for the growth of the microorganisms. -5 Kill the microorganisms. In addition, in the case of specific microorganisms such as yeast, the left-handed notch 7
In some cases, it may be possible to adopt a method in which the thread or fiber is wound after the fiber is introduced into the fiber. On the other hand, in order to make the enzyme adhere to the carrier particles by +1, there is a method in which an enzyme solution is placed in a suitable container and the carrier is immersed in this solution.In this case, adhesion is improved by adding an adhesive substance, etc. can do.

微生物等を担持させた本発明の担体粒子を生物反応装置
に使用すると、定常状態では第3図aに示したように基
材表面、糸あるいは繊維表面、さらにはこれらの中間部
に多量の微生物等が付着・保持されていることが観察さ
れる。なお、増殖に伴ない余剰の微生物は糸や繊維間の
隙間から外部に出てくることがある。
When the carrier particles of the present invention carrying microorganisms, etc. are used in a biological reaction device, in a steady state, as shown in Figure 3a, a large amount of microorganisms is deposited on the surface of the base material, the surface of threads or fibers, and even on the intermediate part thereof. It is observed that the following substances are attached and retained. In addition, surplus microorganisms accompanying proliferation may come out from the gaps between the threads and fibers.

このような微生物等を付着させた担体粒子群を流動させ
たり激しく混合すると、余剰の微生物等が剥離するが、
内部に保持されているものは担体粒子への付着性が極め
て強く、このような状態においても剥離しない。そのた
め、本発明の担体粒子を使用することにより、発酵生産
や水処理などの生物反応を安定的に行なうことができ、
とりわけ流動床、混合床などの使用形態に適している。
If the carrier particles to which such microorganisms are attached are fluidized or mixed vigorously, excess microorganisms will be detached, but
What is held inside has extremely strong adhesion to the carrier particles and does not peel off even under such conditions. Therefore, by using the carrier particles of the present invention, biological reactions such as fermentation production and water treatment can be carried out stably.
It is especially suitable for use in fluidized beds, mixed beds, etc.

また、固定床として使用した場合は、目詰まりが著しく
1よった段階で洗浄を行なえばよい。そのほか、本発明
の担体粒子は連続的かつ安価に製造することができると
いう利点がある。
Further, when used as a fixed bed, cleaning may be carried out when the clogging becomes significant. In addition, the carrier particles of the present invention have the advantage that they can be manufactured continuously and at low cost.

次に、本発明を実施例により詳しく説明する。Next, the present invention will be explained in detail with reference to examples.

実施例1 担体粒子の構造と微生物付着塵との関係について検討す
るため、下記の3種類の担体粒子にグルタミン酸生産菌
を付着させたものを用℃・てグルタミン酸発酵を行なっ
た。
Example 1 In order to study the relationship between the structure of carrier particles and microbial-adhered dust, glutamic acid fermentation was carried out at ℃ using the following three types of carrier particles to which glutamic acid producing bacteria were attached.

担体粒子として■ポリプロピレンを素利トした長さ5朋
、径5龍の断面円柱状であり、表面が円滑な比重0.9
0であるもの(担体粒子])、■ポリプロピレンを素材
とし、発泡成形(−だ長さ5間。
As a carrier particle ■ Made of polypropylene, it has a cylindrical cross section with a length of 5 mm and a diameter of 5 mm, and a smooth surface with a specific gravity of 0.9.
0 (carrier particles)), (1) Made of polypropylene, foam molded (-5 length).

径5龍の断面円柱状であり、表面が粗である比重0.8
1のもの(担体粒子2)および■担体粒子2に切欠き部
を設けて断面形状が第1図aの如き十字状とした基材に
ポリプロピレン繊維を巻着したものであって、比重0.
82のもの(担体粒子3)を使用した。
It has a cylindrical cross section with a diameter of 5 dragons, and a rough surface.Specific gravity of 0.8.
1 (carrier particles 2) and 2) carrier particles 2 are provided with notches so that the cross-sectional shape is cross-shaped as shown in FIG.
No. 82 (carrier particles 3) was used.

グルタミン酸発酵用の実験装置として第4図に示したよ
うなガラス製の径15ぼ、高さ30c111゜有効反応
槽容積約41のものを3台使用し、上記3種類の担体粒
子をそれぞれ21充てんし、下向流流動床にて実験を行
なった。なお、実験に際しては実験装置、培地供給ライ
ン等はすべて滅菌処理を行なった。
As experimental equipment for glutamic acid fermentation, we used three glass-made vessels with a diameter of 15 mm, a height of 30 cm and 111 degrees, and an effective reaction volume of approximately 41 as shown in Figure 4, each of which was filled with 21 of each of the three types of carrier particles mentioned above. The experiment was conducted in a downward flow fluidized bed. In addition, during the experiment, all experimental equipment, culture medium supply lines, etc. were sterilized.

炭素源としてグルコース3重量%を含む培地を1、50
 rILl/hrの速度で供給ライン1よりポンプ2に
より実験装置3内のディストリビュータ−4に導入した
。また、各実験装置にはコリネバクテリウム−グルタミ
クム(Oorinebacterium gluta−
micum ) ATCC13032を約0.5%儂度
で含む腫閑液500 mlを加えた。好気性反応罠必要
な酸素は空気供給管7より空気を供給してドラフトチュ
ーブ6内で培地に溶解せしめた。培地はドラフトチュー
ブ6と相体粒子5の存在する反応部を循環させ、生成し
たグルタミン酸を含む培養液は排出管8より抜出した。
1,50% of a medium containing 3% by weight of glucose as a carbon source
It was introduced into the distributor 4 in the experimental apparatus 3 from the supply line 1 by the pump 2 at a rate of rILl/hr. In addition, each experimental device was equipped with Corynebacterium glutamicum (Oorinebacterium glutamicum).
500 ml of tumor fluid containing about 0.5% ATCC13032 was added. Aerobic reaction trap Necessary oxygen was dissolved in the culture medium in the draft tube 6 by supplying air from the air supply pipe 7. The culture medium was circulated through the draft tube 6 and the reaction section where the phase particles 5 were present, and the culture solution containing the produced glutamic acid was extracted from the discharge pipe 8.

また、装置内の空気の排出は排出管9を通し1行なった
Furthermore, the air inside the apparatus was discharged once through the discharge pipe 9.

微生物を付着した担体粒子5は空気の供給停止時には装
置3の上部であってディストリビュータ−4の下部に浮
上、静止するが、空気の供給により培地が循環すると、
担体粒子充填層は膨張する。
When the air supply is stopped, the carrier particles 5 with the microorganisms attached float to the upper part of the device 3 and remain at the lower part of the distributor 4, but when the medium is circulated by the air supply,
The carrier particle packed bed expands.

本実験では膨張率を最大2倍として行なった。In this experiment, the expansion rate was set to 2 times the maximum.

実験開始より2ケ月後に装置内の担体粒子を全量取出し
、該粒子に付着している微生物型Elを乾燥重量として
め、担体粒子容積当りの付着微生物儂度を算出して微生
物付着性の優劣を評価した。
Two months after the start of the experiment, all the carrier particles in the device were taken out, the microbial type El attached to the particles was determined as a dry weight, and the degree of attached microorganisms per volume of carrier particles was calculated to determine the superiority or inferiority of microbial adhesion. evaluated.

なお、担体粒子に付着した微生物の重量は105℃で2
4時間乾燥したものの重量をめた。結果を第1表に示す
Note that the weight of microorganisms attached to carrier particles is 2 at 105°C.
After drying for 4 hours, the weight was determined. The results are shown in Table 1.

第1表 1 811.1 812゜5 1,4 7002 72
0.3 731.8 1f、5 57503 661.
4 686,7 25.3 1.2650(重量は21
担体粒子当り) 表から明らかなよ5K、表面が円滑な担体粒子1は担体
粒子の流動により微生物はあまり付着しないが、表面が
粗である担体粒子21ま比較的高儂度′−・微生物が付
着する。さらに、本発明の担体粒子3の場合は担体粒子
2よりも著しく多量の微生物が付着、保持される。
Table 1 1 811.1 812゜5 1,4 7002 72
0.3 731.8 1f, 5 57503 661.
4 686,7 25.3 1.2650 (weight is 21
5K per carrier particle) From the table, it is clear that carrier particles 1 with a smooth surface do not attract much microorganisms due to the flow of the carrier particles, but carrier particles 21 with a rough surface have a relatively high degree of microorganisms. adhere to. Furthermore, in the case of the carrier particles 3 of the present invention, significantly more microorganisms are attached and retained than in the carrier particles 2.

実施例2 担体粒子として実施例1における担体粒子3を用い、実
施例1に示した装置で培地のゲルコール濃度を5重量%
、 pHを7〜8とし、培養温度を32°Cとしたこと
以外は実施例1と同様の条件で2ケ月間連続的にグルタ
ミンQ発酵を行なった。
Example 2 Using carrier particles 3 in Example 1 as carrier particles, the gelcol concentration of the medium was adjusted to 5% by weight using the apparatus shown in Example 1.
Glutamine Q fermentation was carried out continuously for two months under the same conditions as in Example 1, except that the pH was 7 to 8 and the culture temperature was 32°C.

その結果、平均2.z5M5M量割合でグルタミン酸の
生成が認められた。
As a result, the average was 2. Production of glutamic acid was observed at the z5M5M amount ratio.

実施例3 実施例1の担体粒子3に市販パン酵母(サツカロミセス
・セレビシェ)を付着せしめてグルコースを炭素源とす
る培地に加えて培養し、エタノールの生産を行なった。
Example 3 Commercially available baker's yeast (Saccharomyces cerevisiae) was attached to the carrier particles 3 of Example 1, and cultured in a medium containing glucose as a carbon source to produce ethanol.

実験装置として第5図に示したガラス製の装置(径15
CIrL、高さ30crn、有効反応槽容積約4A’)
を用い、かつ循環用ポンプIIKより装散内の液体をラ
イン12を通して循環させて下向流となし、培養液の一
部をライン8より抜出した。また、生成ガスは9より排
出させた。図中、1は培地の供給ライン、2はボンダ、
3は装置、5は411体粒子である。
The experimental device was a glass device (diameter 15 mm) shown in Figure 5.
CIrL, height 30crn, effective reaction tank volume approximately 4A')
Using a circulation pump IIK, the liquid in the suspension was circulated through line 12 to create a downward flow, and a portion of the culture solution was extracted from line 8. Further, the produced gas was discharged from 9. In the figure, 1 is a medium supply line, 2 is a bonder,
3 is the device, and 5 is the 411-body particle.

実験は下記の条件で2ケ月間連続して行なった。The experiment was conducted continuously for two months under the following conditions.

温 度 30℃ pH約5.5 グルコース濃度 20M量% 培地供給速度 1.4A/br 担体粒子充てん量 21 培養液循環速度 50〜2001/hrその結果、培養
液中のエタノールの平均濃度は6.4M量%であり、単
位体積当りの反応速度は229エタノール/1j−hr
であった。また、旬体粒子に付着したパン酵母は担体粒
子11当り26りであった。
Temperature: 30°C pH: approx. 5.5 Glucose concentration: 20M amount % Medium supply rate: 1.4 A/br Carrier particle filling amount: 21 Culture solution circulation rate: 50 to 2001/hr As a result, the average concentration of ethanol in the culture solution is 6. 4M amount%, reaction rate per unit volume is 229 ethanol/1j-hr
Met. Furthermore, the amount of baker's yeast attached to the shuntai particles was 26 per 11 carrier particles.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a ”−tは本発明の担体粒子を構成する基材の
態様を示す断面図、第2図は本発明の111体粒子の実
施例を示す見取図、第3図a、bは担体粒子に衛生物が
付着した状態の説明図であり、aは流動もしくは混合前
の状態、bは流動もしくは温合後の状態を示す。第4図
および第5図は実施例に用いた実験装置の説明図である
。 特許出願人 千代田化工建設株式余社 第1図 (Q) (1)) (c) 第2図 第4図 q ”)(b) 第5図 3
Figure 1 a''-t is a sectional view showing the aspect of the base material constituting the carrier particles of the present invention, Figure 2 is a sketch diagram showing an example of the 111-body particles of the present invention, and Figures 3 a and b are the carrier particles. It is an explanatory diagram of a state in which sanitary substances are attached to particles, where a shows the state before fluidization or mixing, and b shows the state after fluidization or warming. Figures 4 and 5 show the experimental equipment used in the example. This is an explanatory diagram. Patent applicant Chiyoda Corporation Yosha Fig. 1 (Q) (1)) (c) Fig. 2 Fig. 4q ”) (b) Fig. 5 3

Claims (1)

【特許請求の範囲】 1、外表面に切欠き部を有する合成樹脂基材に糸または
繊維を巻着してなる担体粒子。 2、合成樹脂基材が長さ1〜501m、径1〜50韮の
ものである特許請求の範囲第1項記載の担体粒子。
[Scope of Claims] 1. Carrier particles formed by winding threads or fibers around a synthetic resin base material having notches on the outer surface. 2. The carrier particles according to claim 1, wherein the synthetic resin base material has a length of 1 to 501 m and a diameter of 1 to 50 mm.
JP58154923A 1983-08-26 1983-08-26 Carrier particle Granted JPS6047673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58154923A JPS6047673A (en) 1983-08-26 1983-08-26 Carrier particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58154923A JPS6047673A (en) 1983-08-26 1983-08-26 Carrier particle

Publications (2)

Publication Number Publication Date
JPS6047673A true JPS6047673A (en) 1985-03-15
JPS6211594B2 JPS6211594B2 (en) 1987-03-13

Family

ID=15594900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58154923A Granted JPS6047673A (en) 1983-08-26 1983-08-26 Carrier particle

Country Status (1)

Country Link
JP (1) JPS6047673A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070246A1 (en) * 2010-11-26 2012-05-31 株式会社川瀬製作所 Purification apparatus and purification method using same
JP2012187557A (en) * 2011-03-14 2012-10-04 Inc Engineering Co Ltd Wastewater treatment apparatus and wastewater treatment method
WO2019188966A1 (en) * 2018-03-27 2019-10-03 三機工業株式会社 Water purification element and water purification device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104071901A (en) * 2013-03-25 2014-10-01 北京工业大学 Bacterium embedded immobilized active carrier filling material and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070246A1 (en) * 2010-11-26 2012-05-31 株式会社川瀬製作所 Purification apparatus and purification method using same
JP2012110854A (en) * 2010-11-26 2012-06-14 Kawase Seisakusho Co Ltd Purification apparatus and purification method using the same
JP2012187557A (en) * 2011-03-14 2012-10-04 Inc Engineering Co Ltd Wastewater treatment apparatus and wastewater treatment method
WO2019188966A1 (en) * 2018-03-27 2019-10-03 三機工業株式会社 Water purification element and water purification device
JP2019171237A (en) * 2018-03-27 2019-10-10 三機工業株式会社 Water purification element and water purification apparatus

Also Published As

Publication number Publication date
JPS6211594B2 (en) 1987-03-13

Similar Documents

Publication Publication Date Title
JPS61149085A (en) Material holding microorganism
US6900055B1 (en) Preparation of porous silicone rubber for growing cells or living tissue
JPH0463584A (en) Bioreactor equipment
US8435781B2 (en) Porous sheet-form material for cell culture, and bioreactor and culturing method utilizing same
US5385836A (en) Nonwoven fabric coated with a mixture of silk fibroin, gelatin and insolubilized chitosan for use as a carrier for animal cells
JPH03164169A (en) Cell culture
EA009716B1 (en) Cell cultivation method
JP2003534788A (en) Incubator
JPH05500616A (en) Cell culture device
JPH0623389A (en) Adherent photosynthetic bacteria reaction apparatus
US7560274B1 (en) Culture chamber
JPS6047673A (en) Carrier particle
US20230018016A1 (en) A carrier for cell biomass production and cell culture device comprising the same
JPH01225475A (en) Culture apparatus
JP2007098195A (en) Biologically contact filter and method for treating water
JPH0375237B2 (en)
JP3219305B2 (en) Carrier for immobilizing animal cells and cell culture method using the same
US20180057782A1 (en) Low energy photobioreactor system
JP4262695B2 (en) Membrane biodevice and bioreactor
JP3041378B2 (en) Packed bed type culture apparatus and culture method
JPH0411519Y2 (en)
JPH04135481A (en) Biocatalyst-carrying material for bioreactor, biocatalyst-immobilized carrying material, and method for treating with biocatalyst
JPH01317390A (en) Production of microorganism carrying material
JPS63209788A (en) Microorganism carrier
EP0160681A1 (en) Aerobic microbiological method.