JPS6211537B2 - - Google Patents

Info

Publication number
JPS6211537B2
JPS6211537B2 JP56211809A JP21180981A JPS6211537B2 JP S6211537 B2 JPS6211537 B2 JP S6211537B2 JP 56211809 A JP56211809 A JP 56211809A JP 21180981 A JP21180981 A JP 21180981A JP S6211537 B2 JPS6211537 B2 JP S6211537B2
Authority
JP
Japan
Prior art keywords
optical
transmission line
beam splitter
communication station
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56211809A
Other languages
Japanese (ja)
Other versions
JPS58111447A (en
Inventor
Kyoharu Inao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOKAWA DENKI KK
Original Assignee
YOKOKAWA DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOKAWA DENKI KK filed Critical YOKOKAWA DENKI KK
Priority to JP56211809A priority Critical patent/JPS58111447A/en
Publication of JPS58111447A publication Critical patent/JPS58111447A/en
Publication of JPS6211537B2 publication Critical patent/JPS6211537B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/278Bus-type networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Bidirectional Digital Transmission (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】 本発明は、双方向性のマルチドロツプ形光デー
タ・バスの改良に関するものである。さらに詳し
くは、双方向性のマルチドロツプ形光データ・バ
スの低損失化と高信頼化に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an improvement to a bidirectional, multidrop optical data bus. More specifically, the present invention relates to reducing loss and increasing reliability of a bidirectional multi-drop optical data bus.

マルチドロツプ形の光データ・バスは、それに
接続される通信ステーシヨンのどれが機能を停止
しても全通信がとだえない利点がある。また、こ
の形の光データ・バスを双方向性にすると、光伝
送線をループにしないでよい利点もある。
A multi-drop optical data bus has the advantage that all communication will not be interrupted even if any of the communication stations connected to it stop functioning. Furthermore, making this type of optical data bus bidirectional has the advantage that the optical transmission line does not need to be looped.

双方向性のマルチドロツプ形の光データ・バス
の従来例としては、光伝送線を1本用い、それ
に、各通信ステーシヨンを互いに方向の逆な2つ
の光カツプラを通じて接続するようにしたもの
と、光伝送線を2本用い、それら伝送線の一端同
志を再生増幅器を介して接続し、一方の伝送線に
は、各通信ステーシヨンの送信器を一方向の光カ
ツプラを通じて再生増幅器の方向にむけて接続
し、他方の伝送線には、各通信ステーシヨンの受
信器を一方向の光カツプラを通じて再生増幅器の
方向に向けて接続するようにしたものとがある。
Conventional bidirectional multi-drop optical data buses use one optical transmission line and connect each communication station through two optical couplers in opposite directions; Two transmission lines are used, and one end of the transmission lines is connected through a regenerative amplifier, and the transmitter of each communication station is connected to one transmission line through a unidirectional optical coupler toward the regenerative amplifier. However, the other transmission line is one in which the receivers of each communication station are connected through a one-way optical coupler toward the regenerative amplifier.

伝送線が一本のものは、伝送線上に信号を双方
向性に伝送することができるので、伝送線が途中
で断線しても、断線箇所の両側においては、それ
ぞれの伝送線につながる複数の通信ステーシヨン
間で通信が行える。このため、伝送線の断線に対
してはフエイル・ソフトであり。それだけ信頼性
が高い利点があるが、光カツプラが1つの通信ス
テーシヨンあたり2個用いられるので、光カツプ
ラの挿入損失による光信号の減衰が大きい欠点が
ある。
With a single transmission line, signals can be transmitted bidirectionally on the transmission line, so even if the transmission line breaks midway, there are multiple lines connected to each transmission line on both sides of the breakage point. Communication can be performed between communication stations. Therefore, it is a fail soft against disconnection of the transmission line. Although this has the advantage of high reliability, since two optical couplers are used per communication station, there is a disadvantage that the optical signal is greatly attenuated due to the insertion loss of the optical coupler.

伝送線が2本のものは、伝送線の一方が往路で
他方が復路であつて、光信号は一方向だけに伝送
されるから、どちらかの伝送線が断線すると、全
通信がとだえる欠点がある。とくに再生増幅器の
ような能動素子が伝送線に直列に接続されている
ので、この部分の故障により全通信が停止する危
険性がある。また、この形式のものも、往路と復
路にともに通信ステーシヨンごとの光カツプラが
存在するので、光カツプラの挿入損失による光信
号の減衰が大きい。
In systems with two transmission lines, one transmission line is the outbound path and the other is the return path, and the optical signal is transmitted in only one direction, so if either transmission line breaks, all communication will stop. There are drawbacks. In particular, since active elements such as regenerative amplifiers are connected in series to the transmission line, there is a risk that a failure in this part will stop all communications. Also, in this type of communication, there is an optical coupler for each communication station on both the outbound and return routes, so the attenuation of the optical signal due to the insertion loss of the optical coupler is large.

本発明の目的は、伝送線の断線に対してフエイ
ル・ソフトであり、かつ光カツプラの挿入損失が
少ない双方向性のマルチドロツプ形データ・バス
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a bidirectional multi-drop data bus that is fail-proof against transmission line disconnections and has low optical coupler insertion loss.

この目的を達成するために、本発明は、光信号
の伝送線を2本並行して設け、これら両伝送線に
各通信ステーシヨンごとにビーム・スプリツタを
それぞれもうけ、一方の伝送線のビーム・スプリ
ツタには各通信ステーシヨンの受信器をそれぞれ
接続し、他方の伝送線のビーム・スプリツタには
各通信ステーシヨンの送信器をそれぞれ接続し、
かつ、両伝送線上のビーム・スプリツタは、同一
通信ステーシヨンのもの同志で光信号の伝達を行
うようにしたものである。
In order to achieve this object, the present invention provides two optical signal transmission lines in parallel, a beam splitter for each communication station on both transmission lines, and a beam splitter for one transmission line. to which the receiver of each communication station is connected, and the transmitter of each communication station is connected to the beam splitter of the other transmission line, respectively.
In addition, the beam splitters on both transmission lines are configured to transmit optical signals between the beam splitters of the same communication station.

以下、図面によつて本発明を詳細に説明する。
第1図は、本発明実施例の概念的構成図である。
第1図において、1および2は並行して布設され
た光信号用の伝送線、31−3nは通信ステーシ
ヨン、311−3n1はそれぞれ通信ステーシヨ
ン31−3nの受信器、312−3n2はそれぞ
れ通信ステーシヨン31−3nの送信器、411
−4n1および412−4n2は通信ステーシヨ
ン31−3nごとに設けられた光用のビーム・ス
プリツタである。
Hereinafter, the present invention will be explained in detail with reference to the drawings.
FIG. 1 is a conceptual block diagram of an embodiment of the present invention.
In FIG. 1, 1 and 2 are transmission lines for optical signals laid in parallel, 31-3n is a communication station, 311-3n1 is a receiver of each communication station 31-3n, and 312-3n2 is a communication station, respectively. 31-3n transmitter, 411
-4n1 and 412-4n2 are optical beam splitters provided for each communication station 31-3n.

ビーム・スプリツタ4ij(i=1…………n、
j=1or2)は、2つの光路の光をそれぞれ分割し
て、互いに相手の光路に挿入する機能を有するも
のであり、例えば第2図のように、ハーフ・ミラ
ー40の両面から2つの光を対照的に照射して、
ともに透過光と反射光に分割し、お互いの透過光
にお互いの反射光を混入するようにしたもので実
現できる。勿論ビーム・スプリツタの構成はこれ
に限定されるものではない。
Beam splitter 4ij (i=1…………n,
j = 1 or 2) has the function of dividing the lights of two optical paths and inserting them into each other's optical path. For example, as shown in Fig. 2, two lights are split from both sides of the half mirror 40. Irradiate in contrast,
This can be achieved by dividing both into transmitted light and reflected light, and mixing each other's reflected light into each other's transmitted light. Of course, the configuration of the beam splitter is not limited to this.

同一の通信ステーシヨン3iに属するビーム・
スプリツタ4i1,4i2は、一方の光路(仮に
縦光路と呼ぶ)同志が直列に接続され、他方の光
路(仮りに横光路とよぶ)がそれぞれ伝送線1お
よび2に直列に接続される。ビーム・スプリツタ
4i1の縦光路の一端には受信器3i1が接続さ
れ、ビーム・スプリツタ4i2の一端には送信器
3i2が接続される。送信器3i2から出力され
た光信号は、縦光路を通じて受信機3i1に入力
されるとともに、ビーム・スプリツタ4i1およ
び4i2をつうじてそれぞれ伝送線1および2に
分岐送出される。伝送線1と2の信号伝送方向は
互いに逆になつている。伝送線1の右側から到来
する光信号は、ビーム・スプリツタ4i1におい
て、その横光路を通じて下流に伝送されるととも
に、縦光路に分岐して受信機3i1に入力され
る。伝送線2の左線から到来する光信号は、ビー
ム・スプリツタ4i2において、その横光路をつ
うじて下流に伝送されるとともに、縦光路に分岐
して、ビーム・スプリツタ4i1に達し、そこに
おいて受信器3i1への入力信号と伝送線1の下
流への伝送信号に分割される。
Beams belonging to the same communication station 3i
In the splitters 4i1 and 4i2, one optical path (tentatively referred to as a vertical optical path) is connected in series, and the other optical path (tentatively referred to as a horizontal optical path) is connected in series to the transmission lines 1 and 2, respectively. A receiver 3i1 is connected to one end of the longitudinal optical path of the beam splitter 4i1, and a transmitter 3i2 is connected to one end of the beam splitter 4i2. The optical signal output from the transmitter 3i2 is input to the receiver 3i1 through a vertical optical path, and is branched and sent out to transmission lines 1 and 2 through beam splitters 4i1 and 4i2, respectively. The signal transmission directions of transmission lines 1 and 2 are opposite to each other. An optical signal arriving from the right side of the transmission line 1 is transmitted downstream through the horizontal optical path at the beam splitter 4i1, and is split into a vertical optical path and input to the receiver 3i1. The optical signal arriving from the left line of the transmission line 2 is transmitted downstream through the horizontal optical path at the beam splitter 4i2, and is split into a vertical optical path to reach the beam splitter 4i1, where it is transmitted to the receiver. 3i1 and a transmission signal downstream of transmission line 1.

このような構成であるから、送信器3i2の送
信出力は、ビームスプリツタ4i2で分岐されて
伝送線2を右方向に伝送されるとともに、ビーム
スプリツタ4i2を透過し、4i1で分岐して、
伝送線1を左方向に伝送される。すなわち、ステ
ーシヨン3iの送信出力は、右側と左側に同時に
送出され、双方向性の送信が行われることにな
る。また、受信器3i1の入力信号は、伝送線1
の右側からビーム・スプリツタ4i1で分岐して
入力するものと、伝送線2の左側から、ビーム・
スプリツタ4i2で分岐し、4i1を透過して入
力するものと、双方向の入力がある。すなわち、
入力は右からも左からも受信でき、双方向性の入
力信号を受信できる。
With such a configuration, the transmission output of the transmitter 3i2 is split at the beam splitter 4i2 and transmitted to the right on the transmission line 2, transmitted through the beam splitter 4i2, and branched at 4i1.
The signal is transmitted to the left on transmission line 1. That is, the transmission output of the station 3i is simultaneously sent to the right and left sides, resulting in bidirectional transmission. Moreover, the input signal of the receiver 3i1 is the transmission line 1
The beam splitter 4i1 splits and inputs the beam from the right side of the transmission line 2, and the beam splits from the left side of the transmission line 2.
There are two types of input: one that branches at splitter 4i2 and is input through 4i1, and the other that inputs bidirectionally. That is,
Input can be received from the right or left, and bidirectional input signals can be received.

このようにして、双方向性の光データ・バスが
実現できる。この光データ・バスにおいて、ある
2つの通信ステーシヨン間で通信を行なう時、途
中に介在する光カツプラの数は、途中に介在する
通信ステーシヨンの数に等しい。これは、従来の
場合の半分であつて、それだけ損失の少ないもの
となる。
In this way, a bidirectional optical data bus can be realized. When communicating between two communication stations on this optical data bus, the number of intervening optical couplers is equal to the number of intervening communication stations. This is half of the conventional case, and the loss is correspondingly smaller.

また、伝送線1,2のいずれにも、とくに能動
素子を含まないので、信頼性が高い。
Further, since neither of the transmission lines 1 and 2 includes any active elements, reliability is high.

いま、伝送線1または2が通信ステーシヨン3
iと3(i+1)の間で断線したとすると、断線
箇所を境にして右と左では、通信がとだえるが、
右の系統内および左の系統内では、それぞれ上記
と同様にして、双方向性の通信が続けられる。す
なわち、フエイル・ソフトである。
Now, transmission line 1 or 2 is connected to communication station 3.
If there is a disconnection between i and 3 (i+1), communication will stop on the right and left sides of the disconnection point, but
Bidirectional communication continues within the right system and within the left system, respectively, in the same manner as described above. In other words, it is fail software.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明実施例の概念的な構成図、第
2図は、第1図の一部分の具体例の構成図であ
る。 1,2……光伝送線、31−3n……通信ステ
ーシヨン、311−3n1……受信機、312−
3n2……送信器、411−4n1,412−4
n2……ビーム・スブリツタ、40……ハーフ・
ミラー。
FIG. 1 is a conceptual block diagram of an embodiment of the present invention, and FIG. 2 is a block diagram of a specific example of a portion of FIG. 1, 2...Optical transmission line, 31-3n...Communication station, 311-3n1...Receiver, 312-
3n2...Transmitter, 411-4n1, 412-4
n2...Beam Subrita, 40...Half
mirror.

Claims (1)

【特許請求の範囲】[Claims] 1 並行して布設された2本の光伝送線、2つの
光路を持ちこれら光路の光をそれぞれ分岐して互
に相手の光路に挿入するビーム・スプリツタであ
つて各通信ステーシヨンの受信器ごとに設けられ
上記2本の伝送線のうちの一方に1つの光路が方
向をそろえて直列に接続され他の光路が通信ステ
ーシヨンの受信器に接続された第1のビーム・ス
プリツタ、および、同様なビーム・スプリツタで
あつて、各通信ステーシヨンの送信器ごとに設け
られ上記伝送線の他方に1つの光路が第1のビー
ム・スプリツタとは逆方向に方向をそろえて直列
に接続され、他の光路が通信ステーシヨンの送信
器に接続されるとともに第1のビーム・スプリツ
タの他の光路と直列に接続された第2のビーム・
スプリツタを備えた双方向性光データ・バス。
1 A beam splitter that has two optical transmission lines laid in parallel and two optical paths, and splits the light from each of these optical paths and inserts the light into the other's optical path, and is installed at each receiver of each communication station. a first beam splitter provided and having one optical path connected in series in alignment with one of said two transmission lines and the other optical path connected to a receiver of a communication station, and a similar beam; - A splitter, which is provided for each transmitter of each communication station, and one optical path is connected in series with the other side of the transmission line aligned in the opposite direction to the first beam splitter, and the other optical path is connected in series to the other side of the transmission line. a second beam splitter connected to the transmitter of the communication station and in series with the other optical path of the first beam splitter;
Bidirectional optical data bus with splitter.
JP56211809A 1981-12-24 1981-12-24 Bidirectional optical data bus Granted JPS58111447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56211809A JPS58111447A (en) 1981-12-24 1981-12-24 Bidirectional optical data bus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56211809A JPS58111447A (en) 1981-12-24 1981-12-24 Bidirectional optical data bus

Publications (2)

Publication Number Publication Date
JPS58111447A JPS58111447A (en) 1983-07-02
JPS6211537B2 true JPS6211537B2 (en) 1987-03-13

Family

ID=16611951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56211809A Granted JPS58111447A (en) 1981-12-24 1981-12-24 Bidirectional optical data bus

Country Status (1)

Country Link
JP (1) JPS58111447A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2522379B2 (en) * 1989-01-26 1996-08-07 日本電気株式会社 Space optical transmission device

Also Published As

Publication number Publication date
JPS58111447A (en) 1983-07-02

Similar Documents

Publication Publication Date Title
US4422179A (en) Electrical-optical interface network
US4527286A (en) Repeater for fiber optic bus distribution system
JPS6261448A (en) Voice and data distribution system with optical fiber multinode star network
JPS6211537B2 (en)
JPH04278739A (en) Module system active optical fiber coupler unit and its system
JPS60229433A (en) Two-way optical communication system
JP2001119345A (en) Redundant system in pon system
JPS628981B2 (en)
GB2102232A (en) Optical fibre system
JPS62196934A (en) Optical fiber switching system
JPS62118648A (en) Duplicated optical loop network
JP2778704B2 (en) Optical communication system
JPH0289429A (en) Optical communication system
JPS5813040A (en) Optical signal transmission system
JPS5890840A (en) Optical fiber multiple access communication system
JPS5915420B2 (en) Redundant regenerative optical communication system
JPH01208921A (en) Optical fiber transmission system
JPH04268846A (en) U-shaped optical bus network system
JPS6143036A (en) Remote supervisory and controlling equipment
JPH03127524A (en) Two-way optical data transmission system
JPS59141840A (en) Optical broadcast communication network
JPS62150952A (en) Duplicated node equipment
JPH04328930A (en) Duplex type optical transmission system
JPS59214344A (en) Optical data transmitter
JPH0388529A (en) Network device for duplex optical communication