JPS58111447A - Bidirectional optical data bus - Google Patents

Bidirectional optical data bus

Info

Publication number
JPS58111447A
JPS58111447A JP56211809A JP21180981A JPS58111447A JP S58111447 A JPS58111447 A JP S58111447A JP 56211809 A JP56211809 A JP 56211809A JP 21180981 A JP21180981 A JP 21180981A JP S58111447 A JPS58111447 A JP S58111447A
Authority
JP
Japan
Prior art keywords
optical
optical path
receiver
beam splitter
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56211809A
Other languages
Japanese (ja)
Other versions
JPS6211537B2 (en
Inventor
Kiyoharu Inao
稲生 清春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Yokogawa Hokushin Electric Corp
Yokogawa Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp, Yokogawa Hokushin Electric Corp, Yokogawa Electric Works Ltd filed Critical Yokogawa Electric Corp
Priority to JP56211809A priority Critical patent/JPS58111447A/en
Publication of JPS58111447A publication Critical patent/JPS58111447A/en
Publication of JPS6211537B2 publication Critical patent/JPS6211537B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/278Bus-type networks

Abstract

PURPOSE:To attain the constitution of fail-soft against a disconnection of transmission line, by providing two transmission lines in parallel for optical signals and a beam splitter at every communication station, and connecting the splitter to a transmitter and a receiver. CONSTITUTION:Each communication station 3i(i=1-n) connected to parallel optical transmission lines 1, 2 is provided with optical beam splitters SP4i1, 4i2 and the SP4i1 is connected to a receiver 3i1 and the SP4i2 is connected to a transmitter 4i2. The transmission lines transmit signals to opposite directions with each other, an optical signal incoming from the right of the line 1 is transmitted to down-stream via a lateral optical path in the SP4i1 and branched into a longitudinal optical path and inputted to the receiver 3i1. The optical signal from left to right in the transmssion line 2 is transmitted to the down-stream via a lateral optical path in the SP4i2, branched at the SP4i1 through a longitudinal optical path and transmitted to the receiver 3i1 and the down-stream of the transmission line 1. A transmission signal from the transmitter 3i2 is branched into the longitudinal and lateral optical path in the SP4i2 and transmitted to the receiver 3i1 and the lateral optical path in the SP4i1.

Description

【発明の詳細な説明】 本発明は、双方向性のマルチドロップ形光データ・バス
の改良に関するものである。さらに詳しくは、双方向性
のマルチドロップ形光データ・バスの低損失化と高信頼
化に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an improvement to a bidirectional multidrop optical data bus. More specifically, the present invention relates to reducing loss and increasing reliability of a bidirectional multi-drop optical data bus.

マルチドロップ形の光データ・バスは、それに接続され
る通信ステーションのどれが機能を停止しても全通信が
とだえない利点がある。また、この形の光データ・バス
を双方向性にすると、光伝送線をループにしないでよい
利点もある。
A multi-drop optical data bus has the advantage that all communication will not be interrupted even if any of the communication stations connected to it stop functioning. Furthermore, making this type of optical data bus bidirectional has the advantage that the optical transmission line does not need to be looped.

双方向性のマルチドロップ形の光データ・バスの従来例
としては、光伝送線を1本用い、それに、各通信ステー
ションを互いに方向の逆な2つの光カップラを通じて接
続するようにしたものと、光伝送線を2本用い、それら
伝送線の一端同志を再生増幅器を介して接続し、一方の
伝送線には、各通信ステーションの送信器を一方向の光
カップラを通じて再生増幅器の方向にむけて接続し、他
方の伝送線には、各通信ステーションの受信器を一方向
の光カップラを通じて再生増幅器の方向に向けて接続す
るようにしたものとがある。
Conventional bidirectional multi-drop optical data buses use one optical transmission line and connect each communication station through two optical couplers in opposite directions. Two optical transmission lines are used, and one end of the transmission lines is connected through a regenerative amplifier, and one transmission line has the transmitter of each communication station directed toward the regenerative amplifier through a unidirectional optical coupler. The other transmission line connects the receivers of each communication station to the regenerative amplifier through a one-way optical coupler.

伝送線が一本のものは、伝送線上に信号を双方向性に伝
送することができるので、伝送線が途中で断線しても、
断線箇所の両側においては、それぞれの伝送線につなが
る複数の通信ステーション間で通信が行える。このため
、伝送線の断線に対してはフェイル・ソフトであり。そ
れだけ信頼性が^い利点があるが、光カップラが1つの
通信ステーションあたり2個用いられるので、光カップ
ラの挿入損失による光信号の減衰が大きい欠点がある。
With a single transmission line, signals can be transmitted bidirectionally on the transmission line, so even if the transmission line breaks midway,
On both sides of the disconnection point, communication can be performed between a plurality of communication stations connected to each transmission line. Therefore, it is a fail soft against disconnection of the transmission line. Although this has the advantage of higher reliability, since two optical couplers are used per communication station, there is a disadvantage that the optical signal is attenuated significantly due to the insertion loss of the optical coupler.

伝送線が2本のものは、伝送線の一方が往路で他方が復
路であって、光信号は一方向だけに伝送されるから、ど
ちらかの伝送線が断線すると、全通信がとだえる欠点が
ある。とくに再生増幅器のような能動素子が伝送線に直
列に接続されているので、この部分の故障により全通信
が停止する危険性がある。また、この形式のものも、往
路と復路にともに通信ステーションごとの光カップラが
存在するので、光カップラの挿入損失による光信号の減
衰が大きい。
For systems with two transmission lines, one transmission line is for the outbound path and the other is for the return path, and the optical signal is transmitted in only one direction, so if either transmission line is disconnected, all communication will stop. There are drawbacks. In particular, since active elements such as regenerative amplifiers are connected in series to the transmission line, there is a risk that a failure in this part will stop all communications. Also, in this type of communication, there is an optical coupler for each communication station on both the outbound and return routes, so the attenuation of the optical signal due to the insertion loss of the optical coupler is large.

本発明の目的は、伝送線の断線に対してフェイル・ソフ
トであり、かつ光カップラの挿入損失が少ない双方向性
のマルチドロップ形データ・バスを提供することにある
SUMMARY OF THE INVENTION An object of the present invention is to provide a bidirectional multidrop data bus that is fail-proof against transmission line disconnections and has low optical coupler insertion loss.

この目的を達成するために、本発明は、光信号の伝送線
を2本並行して設け、これら画伝送線に各通信ステーシ
ョンごとにビーム・スプリッタをそれぞれもうけ、一方
の伝送線のビーム・スプリッタには各通信ステーション
の受信器をそれぞれ接続し、他方の伝送線のビーム・ス
プリンタには各通信ステーションの送信器をそれぞれ接
続し、かつ、画伝送線上のビーム・スプリッタは、同一
通信ステーションのもの同志で光信号の伝達を行うよう
にしたものである。
In order to achieve this object, the present invention provides two optical signal transmission lines in parallel, and each of these image transmission lines is provided with a beam splitter for each communication station. The receivers of each communication station are connected to the receivers of each communication station, and the transmitters of each communication station are connected to the beam splitter of the other transmission line. It is designed to transmit optical signals between objects.

以下、図面によって本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は、本発明実施例の概念的構成図である。FIG. 1 is a conceptual block diagram of an embodiment of the present invention.

第1図において、1および2は並行して布設された光信
号用の伝送線、3l−3nは通信ステーション、311
−3nlはそれぞれ通信ステージ3ン31−3++の受
信器、312−3n2はそれぞれ通信ステーション3l
−3nの送信器、411−4n1および412−4n2
は通信ステーション3l−3nごとに設けられた光用の
ビーム・スプリッタである。
In FIG. 1, 1 and 2 are optical signal transmission lines laid in parallel, 3l-3n are communication stations, and 311
-3nl are receivers for communication stages 3 and 31-3++, and 312-3n2 are receivers for communication stations 3l and 312-3n2, respectively.
-3n transmitters, 411-4n1 and 412-4n2
is an optical beam splitter provided for each communication station 3l-3n.

ビーム・スプリッタ4ij(i−1・・・n、J−1o
r2)は、2つの光路の光をそれぞれ分割して、互いに
相手の光路に挿入する機能を有するものであり、例えば
第2図のように、ハーフ・ミラー40の両面から2つの
光を対照的に照射して、ともに透過光と反射光に分割し
、お互いの透過光にお互いの反射光を混入するようにし
たもので実現できる。勿論ビーム・スプリッタの構成は
これに限定されるものではない。
Beam splitter 4ij (i-1...n, J-1o
r2) has the function of splitting the lights in two optical paths and inserting them into each other's optical paths, for example, as shown in FIG. This can be achieved by irradiating the two beams, dividing both into transmitted light and reflected light, and mixing each other's reflected light into each other's transmitted light. Of course, the configuration of the beam splitter is not limited to this.

同一の通信ステーション31に属するビーム・スプリッ
タ4i1 、4i2は、一方の光路(仮に縦光路と呼ぶ
)同志が直列に接続され、他方の光路(仮りに横光路と
よぶ)がそれぞれ、伝送線1および2に直列に接続され
る。ビーム・スプリッタ4i1の縦光路の一端には受信
器311が接続され、ビーム・スプリッタ4i2の一端
には送信器312が接続される。送信器312から出力
された光信号は、縦光路を通じて受信機3i1に入力さ
れるとともに、ビーム・スプリッタ411および412
をつうじてそれぞれ伝送線1および2に分岐送出される
。伝送線1と2の信号伝送方向は互いに逆になっている
In the beam splitters 4i1 and 4i2 belonging to the same communication station 31, one optical path (tentatively called a vertical optical path) is connected in series, and the other optical path (tentatively called a horizontal optical path) is connected to the transmission line 1 and the beam splitter 4i2, respectively. 2 in series. A receiver 311 is connected to one end of the longitudinal optical path of the beam splitter 4i1, and a transmitter 312 is connected to one end of the beam splitter 4i2. The optical signal output from the transmitter 312 is input to the receiver 3i1 through the vertical optical path, and is also input to the receiver 3i1 through the beam splitters 411 and 412.
The signals are branched and sent out to transmission lines 1 and 2, respectively. The signal transmission directions of transmission lines 1 and 2 are opposite to each other.

伝送線1の右側から到来する光信号は、ビーム・スプリ
ッタ4i1において、その横光路を通じて下流に伝送さ
れるとともに、縦光路に分岐して受信機3i1に入力さ
れる。伝送線2の左側から到来する光信号は、ビーム・
スプリッタ4:2において、その横光路をつうじて下流
に伝送されるとともに、縦光路に分岐して、ビーム・ス
プリッタ4i1に達し、そこにおいて受信器3i1への
入力信号と伝送線1の下流への伝送信号に分割される。
An optical signal arriving from the right side of the transmission line 1 is transmitted downstream through the horizontal optical path at the beam splitter 4i1, and is split into a vertical optical path and input to the receiver 3i1. The optical signal arriving from the left side of transmission line 2 is a beam
At the splitter 4:2, it is transmitted downstream via its transverse optical path and split into a longitudinal optical path to reach the beam splitter 4i1, where the input signal to the receiver 3i1 and downstream of the transmission line 1 are transmitted. divided into transmission signals.

このような構成であるから、送信器3i2の送信出力は
、ビームスプリッタ4i2で分岐されて伝送線2を右方
向に伝送されるとともに、ビームスプリッタ4i2を透
過し、4i1で分岐して、伝送線1を左方向に伝送され
る。すなわち、ステーション31の送信出力は、右側と
左側に同時に送出され、双方向性の送信が行われること
になる。また、受信器3:1の入力信号は、伝送線1の
右側からビーム・スプリッタ4i1で分岐して入力する
ものと、伝送112の左−から、ビーム・スプリッタ4
i2で分岐し、4i1を透過して入力するものと、双方
向の入力がある。すなわち、入力は右からも左からも受
信でき、双方向性の入力信号を受信できる。
With such a configuration, the transmission output of the transmitter 3i2 is split by the beam splitter 4i2 and transmitted to the right on the transmission line 2, and is also transmitted through the beam splitter 4i2, branched at 4i1, and transmitted to the transmission line. 1 is transmitted to the left. That is, the transmission output of the station 31 is simultaneously sent to the right and left sides, resulting in bidirectional transmission. In addition, the input signal to the receiver 3:1 is split into the beam splitter 4i1 from the right side of the transmission line 1, and inputted from the left side of the transmission line 112 at the beam splitter 4i1.
There are two types of input: one that branches at i2 and inputs through 4i1, and the other that inputs in both directions. That is, input can be received from either the right or the left, and bidirectional input signals can be received.

このようにして、双方向性の光データ・バスが実現でき
る。この光データ・バスにおいて、ある2つの通信ステ
ーション間で通信を行なう時、途中に介在する光カップ
ラの数は、途中に介在する通信ステーションの数に等し
い。これは、従来の場合の半分であって、それだけ損失
の少ないものとなる。
In this way, a bidirectional optical data bus can be realized. When communicating between two communication stations on this optical data bus, the number of optical couplers intervening on the way is equal to the number of intervening communication stations. This is half of the conventional case, and the loss is reduced accordingly.

また、伝送線1.2のいずれにも、とくに能動素子を含
まないので、信頼性が高い。
Further, since neither of the transmission lines 1.2 includes any active elements, reliability is high.

いま、伝送線1または2が通信ステージジン31と3 
(1+l )の閣で断線したとすると、断線箇所を境に
して右と左では、通信□がとだえるが、右の系統内およ
び左の系統内では、それぞれ上記と同様にして、双方向
性の通信が続けられる。すなわち、フェイル・ソフトで
ある。
Now, transmission line 1 or 2 is connected to communication stages 31 and 3.
If there is a disconnection at (1+l), communication □ will be interrupted on the right and left sides of the disconnection point, but in the right system and left system, two-way communication will be interrupted in the same way as above. Sexual communication continues. In other words, it is fail software.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明実施例の概念的な構成図、第2図は、
第1図の一部分の具体例の構成図である。 1.2・・・光伝送線、3l−3n・・・通信ステージ
」ン。 311−3nl・・・受信機、312−3n2・・・送
信器、411−4n1.412−4n2−・・ビーム・
ズブリッタ、40−・・ハーフ・ミラー。
FIG. 1 is a conceptual configuration diagram of an embodiment of the present invention, and FIG. 2 is a
FIG. 2 is a configuration diagram of a specific example of a portion of FIG. 1; 1.2...Optical transmission line, 3l-3n...Communication stage. 311-3nl...Receiver, 312-3n2...Transmitter, 411-4n1.412-4n2-...Beam.
Zubritta, 40--half mirror.

Claims (1)

【特許請求の範囲】[Claims] 並行して布設された2本の光伝送線、2つの光路を持ち
これら光路の光をそれぞれ分岐して互に相手の光路に挿
入するe−ム・スプリッタであって各通信ステーション
の受信器ごとに設けられ上記2本の伝送線のうちの一方
に1つの光路が方向をそろえて直列に接続され他の光路
が通信ステーションの受信−に接続された第1のビーム
・スプリッタ、および、同様なビーム・スプリッタであ
って、各通信ステーションの送信器ごとに設けられ上記
伝送−の他方に1つの光路が第1のビーム・スプリッタ
とは逆方向に方向をそろえて直列に接続され、他の光路
が通信ステーショーンの送信器に接@されるとともに第
1のビーム・スプリッタの他の光路と直列に接続された
第2のビーム・スプリッタを備えた双方向性光データ・
バス。
An e-mail splitter that has two optical transmission lines laid in parallel and two optical paths, and splits the light from each of these optical paths and inserts the light into the other's optical path, and is used for each receiver at each communication station. a first beam splitter provided in the transmission line, with one optical path connected in series in alignment with one of the two transmission lines and the other optical path connected to the receiver of the communication station, and a similar beam splitter; a beam splitter, which is provided for each transmitter of each communication station and has one optical path connected in series with the other side of the transmission line aligned in the opposite direction to the first beam splitter; a bidirectional optical data beam with a second beam splitter connected to the transmitter of the communication station and connected in series with the other optical path of the first beam splitter;
bus.
JP56211809A 1981-12-24 1981-12-24 Bidirectional optical data bus Granted JPS58111447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56211809A JPS58111447A (en) 1981-12-24 1981-12-24 Bidirectional optical data bus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56211809A JPS58111447A (en) 1981-12-24 1981-12-24 Bidirectional optical data bus

Publications (2)

Publication Number Publication Date
JPS58111447A true JPS58111447A (en) 1983-07-02
JPS6211537B2 JPS6211537B2 (en) 1987-03-13

Family

ID=16611951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56211809A Granted JPS58111447A (en) 1981-12-24 1981-12-24 Bidirectional optical data bus

Country Status (1)

Country Link
JP (1) JPS58111447A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198234A (en) * 1989-01-26 1990-08-06 Nec Corp Space light transmitter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198234A (en) * 1989-01-26 1990-08-06 Nec Corp Space light transmitter

Also Published As

Publication number Publication date
JPS6211537B2 (en) 1987-03-13

Similar Documents

Publication Publication Date Title
US5341232A (en) Star-shaped network for data communication between stations
US4826275A (en) Optical communication systems using star couplers
US4422179A (en) Electrical-optical interface network
JPS6261448A (en) Voice and data distribution system with optical fiber multinode star network
US5131061A (en) Modular active fiber optic coupler system
US5594581A (en) Low loss optical transmission/monitoring path selection in redundant equipment terminals
JPS58111447A (en) Bidirectional optical data bus
US5185833A (en) Modular active fiber optic coupler system
JPS5857834A (en) Optical communication system
GB2102232A (en) Optical fibre system
JPS62196934A (en) Optical fiber switching system
US5396358A (en) Optical reflective star device
JPS5813040A (en) Optical signal transmission system
JPH04291525A (en) Two-way optical repeater
US5497259A (en) Local area network with optical transmission
EP0159929A2 (en) Hybrid high speed data bus
JPS59141840A (en) Optical broadcast communication network
JPS59214344A (en) Optical data transmitter
JPS6087546A (en) Optical transmission system
JPH04328930A (en) Duplex type optical transmission system
JPH03127524A (en) Two-way optical data transmission system
JPS5915420B2 (en) Redundant regenerative optical communication system
JPH0388529A (en) Network device for duplex optical communication
JPH01208921A (en) Optical fiber transmission system
JPS62150952A (en) Duplicated node equipment