JPS62114824A - Fine discharge electrode forming device - Google Patents

Fine discharge electrode forming device

Info

Publication number
JPS62114824A
JPS62114824A JP25137285A JP25137285A JPS62114824A JP S62114824 A JPS62114824 A JP S62114824A JP 25137285 A JP25137285 A JP 25137285A JP 25137285 A JP25137285 A JP 25137285A JP S62114824 A JPS62114824 A JP S62114824A
Authority
JP
Japan
Prior art keywords
electrode
electrode forming
parallel spring
discharge
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25137285A
Other languages
Japanese (ja)
Inventor
Katsutoshi Yonemochi
米持 勝利
Takeshi Masaki
健 正木
Akiyoshi Tanaka
田中 明美
Takeshi Mizutani
武 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25137285A priority Critical patent/JPS62114824A/en
Publication of JPS62114824A publication Critical patent/JPS62114824A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To improve accuracy in discharge formation of a fine electrode, by approaching finely a forming block whose machining part is narrowly formed in an axial direction of the electrode to an electrode which rotates and shifts in the axial direction, as deforming a parallel spring and detecting the deformed variable. CONSTITUTION:An electrode 1 is attached to a mandrel 2, rotated by a motor 5, moved up and down by a motor 15 via a lever 12, compressing a parallel spring 20 with a screw 24 rotated, and it makes an electrode forming block 26 finely move to the side of the electrode 1, whereby then it comes to the specified gap, discharge forming is carried out by voltage between A and B. Since a form machining part 27 of the forming block 26 is minute in size, the electrode 1 receives no deformation due to machining force, and the electrode 1 moves up and down in a highly accurate manner so that roundness comes so excellent. In addition, since the parallel spring 20 is used for fine motion are nothing at all, and a deformed variable is detected by a displacement gauge so that precision positioning at a submicron unit is performable.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、特に加工穴径がIOミクロン程度で真円度が
サブミクロンの高精度が要求されるインクジェットプリ
ンタ用ノズル、グラフィックディスプレイ用高精度電子
銃アパーチャ、光フアイバコネクタ、繊維ノズル、自動
車燃料噴射ノズル等の微細穴の放電加工に用いられる微
細放電電極を成形するのに適する微細放電電極成形装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is particularly applicable to nozzles for inkjet printers, which require a machined hole diameter on the order of IO microns and a roundness of submicron precision, and high-precision electron guns for graphic displays. The present invention relates to a micro-discharge electrode forming apparatus suitable for forming micro-discharge electrodes used for electrical discharge machining of micro-holes in apertures, optical fiber connectors, fiber nozzles, automobile fuel injection nozzles, and the like.

従来の技術 上記のような微細穴の放電加工を実現するためには、加
工装置として高精度な電極回転機構、微小放電技術、高
精度電極構造体等の技術の確立が必要である。これらの
技術については特開昭57−33922号公報、同57
−138545号公報、 同57−189726号公報
、同59−59322号公報等に示されている。以上の
技術の他にも本発明に係る微細放電電極の成形技術が必
要である。
BACKGROUND ART In order to realize electric discharge machining of minute holes as described above, it is necessary to establish techniques such as a high-precision electrode rotation mechanism, micro-discharge technology, and a high-precision electrode structure as a processing device. Regarding these techniques, see Japanese Patent Application Laid-open No. 57-33922,
It is shown in 138545 publication, 57-189726 publication, 59-59322 publication, etc. In addition to the techniques described above, a technique for forming the fine discharge electrode according to the present invention is also required.

従来、微細放電電極を成形するには、微細穴放電加工装
置上で放電回路の極性を切り替え、逆放電させることに
よって行っている。成形の方法としては、高精度に研磨
した電極成形用駒の面を利用し、電極成形用駒の面を回
転している電極に押し当てることにより電極を加工し成
形する方法やワイヤカットにより電極を成形する方法が
ある。
Conventionally, micro-discharge electrodes are formed by switching the polarity of the discharge circuit on a micro-hole electrical discharge machining device and causing reverse discharge. Molding methods include using the highly precisely polished surface of an electrode molding piece to process and shape the electrode by pressing the surface of the electrode molding piece against a rotating electrode, and forming the electrode by wire cutting. There is a way to do it.

発明が解決しようとする問題点 しかしながら、上記従来技術では次のような問題がある
Problems to be Solved by the Invention However, the above-mentioned prior art has the following problems.

電極成形用駒を利用して成形する方法では、第4図aに
示すように加工槽内に電極成形用駒10】を固定し、加
工槽全体を微小に移動させて電極成形用駒101を電極
102に押し当てるため、加工槽全体の微小移動機構の
高精度な移動量読み取り、振動、ガタッキ等のないスム
ーズで高精度な移動が困難であることにより、10ミク
ロン程度の極微細な電極の成形が困難である。また電極
必要を一度に成形するため、電極成形装置101面を電
極102に押し当てるので、極微細な電極の成形におい
ては、成形を行う放電加工の微小な抵抗が影響し、第4
図aに点線で示すように電極102にたわみが生じる。
In the method of forming using an electrode forming piece, as shown in FIG. Because it is pressed against the electrode 102, it is difficult to accurately read the amount of movement of the micro-movement mechanism of the entire processing tank, and to move the micro-movement mechanism smoothly and accurately without vibration or rattling. Difficult to mold. In addition, in order to mold all the electrodes at once, the surface of the electrode molding device 101 is pressed against the electrode 102, so when molding extremely fine electrodes, the minute resistance of the electrical discharge machining that performs the molding will affect the
Deflection occurs in the electrode 102 as shown by the dotted line in Figure a.

また電極102を回転させ成形1−1でいるのでたわみ
量が′成極102の径の減少になり、たわみ量は先端は
ど大きいので、f4図すに示すように電極102は先端
側が細いテーバ状となる。また電@102の真直度も成
形駒101の面である電極成形加工部の真直度に依存す
るが、この真直度を出すのは困難であり、従って真直度
の良好な電極の成形が困難である。
Also, since the electrode 102 is rotated and formed in 1-1, the amount of deflection is a decrease in the diameter of the polarized 102, and the amount of deflection is larger at the tip, so the electrode 102 has a tapered tip with a narrow tip as shown in Figure f4. It becomes like this. Furthermore, the straightness of the electrode @102 also depends on the straightness of the electrode molding part, which is the surface of the molding piece 101, but it is difficult to achieve this straightness, and therefore it is difficult to mold an electrode with good straightness. be.

ワイヤカット放電により電極を成形する方法では、ワイ
ヤを走行させるために高精度な成形は困難である。
In the method of forming electrodes by wire-cut discharge, it is difficult to form the electrodes with high precision because the wires are running.

以上のように従来では微細放電電極の高精度な成形が困
難である。
As described above, it is difficult to mold fine discharge electrodes with high precision in the conventional method.

そこで、本発明は微細放電電極を高精度に成形すること
ができるようにした微細放′を電極成形装置を提供しよ
うとするものである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a fine discharge electrode forming apparatus which is capable of forming fine discharge electrodes with high precision.

問題点を解決するための手段 そして上記問題点を解決するための本発明の技術的な手
段は、″電極を回転させると共に回転軸軸方向に移動さ
せる手段と、上記電極の成形加工を行う電極成形加工部
が電極の軸方向に狭く形成された電極成形用駒と、この
電極成形用駒が取付けられ、@オ)番こ反対側より平行
な四人溝が形成されて一方向に微小に変形し得る平行ば
ねと、この平行ばねに微小な変形を与える手段と、上記
平行ばねの変形量を検出する手段とを具備したものであ
る。
Means for solving the problems and the technical means of the present invention for solving the above problems are: ``means for rotating the electrode and moving it in the direction of the rotation axis; and an electrode for forming the electrode. An electrode molding piece whose molding part is formed narrowly in the axial direction of the electrode and this electrode molding piece are attached, and parallel four-way grooves are formed from the opposite side of the plate, microscopically extending in one direction. The device is equipped with a deformable parallel spring, means for applying a minute deformation to the parallel spring, and means for detecting the amount of deformation of the parallel spring.

作    用 上記技術的手段による作用は次のようになる。For production The effects of the above technical means are as follows.

即ち、まず電極を回転させると共に軸方向に移動させる
。次いで平行ばねを微小変形させて電極成形用駒の電極
成形加工部を電極側に微動させ、放電により電極の成形
加工を行う。このとき、電極成形用駒の微動機構として
、平行ばねを用いているため、微動の際の振動、ガタッ
キがなく、サブミクロンの位置決めが可能であり、しか
もその変形量を検出手段により検出するので、極めで微
細な電極の成形を容易に実現することができる。
That is, first, the electrode is rotated and moved in the axial direction. Next, the parallel spring is slightly deformed to slightly move the electrode forming part of the electrode forming piece toward the electrode side, and the electrode is formed by electric discharge. At this time, since a parallel spring is used as the fine movement mechanism of the electrode forming piece, there is no vibration or wobbling during fine movement, and submicron positioning is possible, and the amount of deformation is detected by the detection means. It is possible to easily form extremely fine electrodes.

また電極成形用駒の電極成形加工部を狭くしているので
、電極への負荷を小さくすることができる。
Furthermore, since the electrode forming part of the electrode forming piece is narrow, the load on the electrode can be reduced.

これにより真直度の良い電極を成形することができる。This makes it possible to form an electrode with good straightness.

実施例 以下、本発明の実施例を図面を基いて詳細lこ説明する
Embodiments Hereinafter, embodiments of the present invention will be explained in detail with reference to the drawings.

ツ・1図は本発明の一実施例を示す一部切欠概略正面図
である。第1図に示すように電極1はマンドレル2の先
端に取り付けられている。マンドレル2の中間部上にプ
ーリ3が取付けられている。
FIG. 1 is a partially cutaway schematic front view showing an embodiment of the present invention. As shown in FIG. 1, an electrode 1 is attached to the tip of a mandrel 2. A pulley 3 is mounted on the middle part of the mandrel 2.

架台4にはモータ5が支持され、このモータ5の出力軸
上にはプーリ6が取付けられている。プーリ3と6には
軸受8の孔8aを貫通してベルト7が掛けられ、マンド
レル2はベルト7の張力により架台4に取付けられた軸
受8の受圧面9に当接されて鉛直方向で回転可能に、且
つ上下動(軸方向移動)可能に支持されている。従って
モータ5の駆動によりプーリ6、ベルl−7及びプーリ
3を介してマンドレル2及び電極1を回転させることが
できる。架台4に支持された支持部材10には送りねじ
1)が上下方向ζこ移動可能に螺合されている。−7ン
ドレル2と送りねじ1)の上方には梃子12が設PJら
れ、この梃子12はその中間部が架台40こ対して揺動
可能に支持され、挺子12吉マンドレル2及び送りねじ
1)この間には球体13.14が介在されている。架台
6にはモータ15が支持され、このモータ15の出力軸
上にはプーリ16が取付けられている。一方、送りねじ
1)の下端部にはブーIJ17が取付けられ、これらプ
ーリ16と17にベルト18が掛けられている。従って
モータ15の駆動によりプーリ16、ベルト18及びブ
ー1j17を介して送りねじ1)を上方、若しくは下方
に移動させ、これに伴い梃子12を揺動させ、マンドレ
ル2及び電極1を下方、若しくは上方に移動させること
ができるようになっている。
A motor 5 is supported on the frame 4, and a pulley 6 is attached to the output shaft of the motor 5. A belt 7 is passed through the hole 8a of the bearing 8 on the pulleys 3 and 6, and the mandrel 2 is brought into contact with the pressure receiving surface 9 of the bearing 8 attached to the frame 4 due to the tension of the belt 7, and rotates in the vertical direction. It is supported so that it can move up and down (move in the axial direction). Therefore, by driving the motor 5, the mandrel 2 and the electrode 1 can be rotated via the pulley 6, bell l-7, and pulley 3. A feed screw 1) is screwed into the support member 10 supported by the pedestal 4 so as to be movable in the vertical direction ζ. A lever 12 is provided above the mandrel 2 and the feed screw 1), and the lever 12 is supported at its intermediate portion so as to be swingable relative to the frame 40. ) Spheres 13, 14 are interposed between them. A motor 15 is supported on the frame 6, and a pulley 16 is mounted on the output shaft of the motor 15. On the other hand, a boot IJ17 is attached to the lower end of the feed screw 1), and a belt 18 is hung around these pulleys 16 and 17. Therefore, by driving the motor 15, the feed screw 1) is moved upward or downward via the pulley 16, the belt 18, and the boot 1j17, and the lever 12 is accordingly swung to move the mandrel 2 and the electrode 1 downward or upward. It is now possible to move it to

架台4の底部上に非導電性材料よりなるベース19が取
付けられ、このベース】9上に平行ばね20の一側がね
じ21により取付けられている。
A base 19 made of a non-conductive material is attached to the bottom of the frame 4, and one side of a parallel spring 20 is attached to the base 9 by a screw 21.

平行はね20は鋼製の板材22におけるねじ21寄り位
置において上下反対側より凹入溝23a。
The parallel spring 20 is a groove 23a that is recessed from the vertically opposite side at a position close to the screw 21 in the steel plate 22.

23bが平行に形成され、これらの凹入溝23a。23b are formed in parallel, and these recessed grooves 23a.

23bを介して一方向、図ζこおいて左右方向lこ微小
lこ圧縮(変形)され、若しくは復元し得るようになっ
ている。架台4には平行ばね20の自由端側において送
りねじ24が水平方向に移動可能に螺合され、送りねじ
24と平行ばね20この間に球体25が介在されている
。従って送りねじ24の回転操作を行うことにより平行
ばね20を圧縮させ若しくは復元させることができる。
23b, it is possible to be slightly compressed (deformed) in one direction, left and right in the figure (ζ), or to be restored. A feed screw 24 is screwed onto the gantry 4 so as to be movable in the horizontal direction on the free end side of the parallel spring 20, and a sphere 25 is interposed between the feed screw 24 and the parallel spring 20. Therefore, by rotating the feed screw 24, the parallel spring 20 can be compressed or restored.

平行はね20上には電極成形用駒26が取付けられてい
る。この電極成形用駒26は上部に上下方向(電極1の
軸方向)に狭い電極成形加工部27が形成され、この電
極成形加工部27の下方は後方に後退されて逃げ部28
が形成されている。電極成形加工部27は図示例にあっ
ては鋭利なエツジ状に形成されている。この電極成形用
駒26は上記のように平行ばね20が圧縮するのに伴い
図において左右方向に微動可能となっている。平行ばね
20上には測定駒29が取付けられ、この測定駒29は
電極成形用駒26と共に微動し、その微動量が変位計3
0により測定されるようになっている。
An electrode forming piece 26 is mounted on the parallel spring 20. This electrode forming piece 26 has an electrode forming part 27 formed in the upper part thereof which is narrow in the vertical direction (in the axial direction of the electrode 1), and the lower part of this electrode forming part 27 is retreated rearward to form a relief part 28.
is formed. In the illustrated example, the electrode forming portion 27 is formed into a sharp edge shape. This electrode forming piece 26 can be slightly moved in the left and right directions in the figure as the parallel spring 20 is compressed as described above. A measuring piece 29 is attached to the parallel spring 20, and this measuring piece 29 moves slightly together with the electrode forming piece 26, and the amount of the fine movement is measured by the displacement meter 3.
It is designed to be measured by 0.

マンドレル2、即ち電極1はブラシ31を介して電極成
形用駒26と第2図に示すようにコンデンサC1充電抵
抗Rを介して電源33に接続され電源33により電極1
と電極成形用駒26に電力を供給するが、電源33の極
性は、電極1端をプラス、電極成形装置26端をマイナ
スとし、穴加工とは逆になるように設定されている。
The mandrel 2, that is, the electrode 1, is connected to the electrode forming piece 26 through a brush 31, and to a power source 33 through a capacitor C1 and a charging resistor R, as shown in FIG.
Power is supplied to the electrode forming piece 26, and the polarity of the power source 33 is set so that the electrode 1 end is positive and the electrode forming device 26 end is negative, which is opposite to that for hole machining.

次に上記実施例の動作について説明する。まず電源33
を投入し、上記のようにモータ8を駆動させてマンドレ
ル2及び電極1を回転させると共にモータ15を駆動さ
せてマンドレル2及び電極1を上下動させる。次いで送
りねじ241こより平行ばね20を圧縮させ、電極成形
用駒26を電極1に側に微動させる。電極1と電極成形
用駒26が所定の放電ギャップになると放電が開始され
、成形加工が行われる。而してマンドレル2及び電極1
は回転と同時に上下動しているので、電極1は必要な長
さで直径が減少する。このとき、測定駒29の微動を変
位計30で測定しながら電極1の目標の直径までの差の
半分の値で送りねじ24jこより微動送りを与える。
Next, the operation of the above embodiment will be explained. First, power supply 33
The motor 8 is driven to rotate the mandrel 2 and the electrode 1 as described above, and the motor 15 is driven to move the mandrel 2 and the electrode 1 up and down. Next, the parallel spring 20 is compressed by the feed screw 241, and the electrode forming piece 26 is slightly moved toward the electrode 1 side. When the electrode 1 and the electrode molding piece 26 reach a predetermined discharge gap, discharge is started and molding is performed. Therefore, mandrel 2 and electrode 1
Since the electrode 1 is rotating and moving up and down at the same time, the diameter of the electrode 1 decreases over the required length. At this time, while measuring the fine movement of the measurement piece 29 with the displacement meter 30, fine movement feed is applied from the feed screw 24j at a value that is half the difference between the electrode 1 and the target diameter.

第3図(a)、(b)はそれぞれ本発明の電極成形装置
による成形工程と、これにより得られる電極形状を示し
ている。上記のようlこ電極成形用駒26の電極成形加
工部27が微小であるので、電極1は加工力を受けて変
形する量がほとんどない。また上下方向に高精度に移動
するので電極の真直度も良好である。さらに電極成形用
駒26の微動に平行ばね20を用いるので、微動の際の
振動、ガタッキがなく、サブミクロンの位置決めが可能
であり、しかも変位計30により直接その変位量を検出
するため、高精度に電極径が成形可能となる。
FIGS. 3(a) and 3(b) respectively show the forming process by the electrode forming apparatus of the present invention and the electrode shape obtained thereby. As described above, since the electrode forming portion 27 of the electrode forming piece 26 is minute, the electrode 1 is hardly deformed by the processing force. In addition, since the electrode moves with high precision in the vertical direction, the straightness of the electrode is also good. Furthermore, since the parallel spring 20 is used for fine movement of the electrode forming piece 26, there is no vibration or wobbling during fine movement, and submicron positioning is possible.Moreover, since the displacement amount is directly detected by the displacement meter 30, high The electrode diameter can be molded with precision.

なお、上記実施例では、電極成形用駒26の移動を手動
で行うようにしているが、モータ等の駆動源により微動
送りを行うようにしてもよい。
In the above embodiment, the electrode forming piece 26 is moved manually, but fine movement may be performed using a drive source such as a motor.

発明の効果 以・上の説明より明らかなように本発明によれば電極を
回転させると共に軸方向に移動させるようにし、電極成
形用駒の電極成形加工部は電極の軸方向に狭く形成し、
この電極成形駒は板材に反対側より平行な凹入溝を形成
して一方向に微小変形させ、この変形量を検出手段によ
り検出する1′うにしているので、微細で、例えば10
ミクロン程度の直径の電極の成形を容易に、且つ高精度
に実現することができる。
Effects of the Invention As is clear from the above explanation, according to the present invention, the electrode is rotated and moved in the axial direction, and the electrode forming part of the electrode forming piece is formed narrowly in the axial direction of the electrode.
This electrode molding piece forms parallel recessed grooves from the opposite side in the plate material to cause minute deformation in one direction, and the amount of deformation is detected by the detection means.
Molding of electrodes with a diameter on the order of microns can be easily achieved with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至牙3図は本発明の一実施例における微細放電
電極成形装置を示し、第1図は一部切欠概略正面図、第
2図は放電回路図、第3図(a)は成形工程説明図、同
図(b)は本発明により得られる微細放電電極で、同図
(a)のllb部に相当する拡大図、第4図(a)は従
来の微細放電電極成形装置による成形工程説明図、同図
(b)は従来装置により得られる微細放電電極で、同図
(a)の■b部に相当する拡大図である。 1・・・電極、2・・・マンドレル、8・・・軸受、1
)・・・送りねじ、20・・・平行ばね、24・・・送
りねじ、26・・・電極成形用駒、27・・・電極成形
加工部、29・・・測定駒、30・・・変位計。 代理人の氏名 弁理士 中 尾 敏 男 はか1落第 
1 図 第3図 ((:L) m−」 第4世 一/− 緻 (b) (b)
Figures 1 to 3 show a fine discharge electrode forming apparatus according to an embodiment of the present invention, in which Figure 1 is a partially cutaway schematic front view, Figure 2 is a discharge circuit diagram, and Figure 3 (a) is a molding device. Figure 4 (b) is an enlarged view of the micro-discharge electrode obtained by the present invention, corresponding to the llb section in Figure (a), and Figure 4 (a) is the micro-discharge electrode formed by the conventional micro-discharge electrode forming apparatus. The process explanatory diagram, FIG. 13(b), shows a fine discharge electrode obtained by the conventional apparatus, and is an enlarged view corresponding to section 2b in FIG. 13(a). 1... Electrode, 2... Mandrel, 8... Bearing, 1
)... Feed screw, 20... Parallel spring, 24... Feed screw, 26... Electrode forming piece, 27... Electrode forming processing section, 29... Measuring piece, 30... displacement meter. Name of agent: Patent attorney Toshio Nakao Failed
1 Figure 3 ((:L) m-" 4th world 1/- Dens (b) (b)

Claims (2)

【特許請求の範囲】[Claims] (1)電極を回転させると共に回転軸軸方向に移動させ
る手段と、上記電極の成形加工を行う電極成形加工部が
電極の軸方向に狭く形成された電極成形用駒と、この電
極成形用駒が取付けられ、板材に反対側より平行な凹入
溝が形成されて一方向に微小に変形し得る平行ばねと、
この平行ばねに微小な変形を与える手段と、上記平行ば
ねの変形量を検出する手段とを具備したことを特徴とす
る微細放電電極成形装置。
(1) A means for rotating the electrode and moving it in the direction of the rotation axis, an electrode forming piece in which the electrode forming part for forming the electrode is narrowly formed in the axial direction of the electrode, and this electrode forming piece. is attached, and a parallel recessed groove is formed in the plate material from the opposite side so that the parallel spring can be slightly deformed in one direction;
A micro discharge electrode forming apparatus characterized by comprising means for applying a minute deformation to the parallel spring and means for detecting the amount of deformation of the parallel spring.
(2)電極成形加工部が鋭利なエッジ状に形成されてい
る特許請求の範囲第1項記載の微細放電電極成形装置。
(2) The micro discharge electrode forming apparatus according to claim 1, wherein the electrode forming processing portion is formed into a sharp edge shape.
JP25137285A 1985-11-08 1985-11-08 Fine discharge electrode forming device Pending JPS62114824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25137285A JPS62114824A (en) 1985-11-08 1985-11-08 Fine discharge electrode forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25137285A JPS62114824A (en) 1985-11-08 1985-11-08 Fine discharge electrode forming device

Publications (1)

Publication Number Publication Date
JPS62114824A true JPS62114824A (en) 1987-05-26

Family

ID=17221850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25137285A Pending JPS62114824A (en) 1985-11-08 1985-11-08 Fine discharge electrode forming device

Country Status (1)

Country Link
JP (1) JPS62114824A (en)

Similar Documents

Publication Publication Date Title
Liao et al. Development of a high precision tabletop versatile CNC wire-EDM for making intricate micro parts
CN101954518B (en) Horizontal micro-electric spark machine tool and method for performing online processing by applying same
US4771157A (en) Electrical discharge machining apparatus for forming minute holes in a workpiece
US4782203A (en) Wire guide for electric discharge machine
JPS5856734A (en) Guide apparatus for spiral surface for wire electrode of edm device
JPS62114824A (en) Fine discharge electrode forming device
Nawaz et al. Micro ECDM scanning process with feedback control of flexible contact force
EP0129340A1 (en) Electrical discharge machining apparatus for forming minute holes in a workpiece
JPH02190220A (en) Manufacturing apparatus for fine shape machining electrode
JPS62236629A (en) Fine discharge electrode forming device
JPS6040334B2 (en) Electrical machining electrode collapse correction device
JPH0576940A (en) Method for forming leaf spring
JPS6218296B2 (en)
JPS6328518A (en) Electric discharge machining apparatus for fine hole
JPH0276636A (en) Fine shaft discharge processing device
CN219850431U (en) Height mechanism for detecting dispensing head and lead frame of chip loader
JPS63127816A (en) Electrode shaping device for electric discharge machining
JP4218322B2 (en) Manufacturing method of grinding tool
JPH01316133A (en) Minute shaft electric discharge machining method
JPH05154591A (en) Method and device for forming leaf spring and assembled leaf spring
JPS6218290B2 (en)
SU1291318A1 (en) Apparatus for electro-erosion alloying
JP2001328029A (en) Sending mechanism of wire electrode in wire electric discharge machine
JPS63156619A (en) Electric discharge machine for fine hole
JPH02250800A (en) Fine hole press machining die set