JPS6211373A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS6211373A
JPS6211373A JP60150462A JP15046285A JPS6211373A JP S6211373 A JPS6211373 A JP S6211373A JP 60150462 A JP60150462 A JP 60150462A JP 15046285 A JP15046285 A JP 15046285A JP S6211373 A JPS6211373 A JP S6211373A
Authority
JP
Japan
Prior art keywords
signal
value
pixel
sensitivity
limit value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60150462A
Other languages
Japanese (ja)
Inventor
Isao Tofuku
東福 勲
Yoshinori Tsujino
辻野 佳規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60150462A priority Critical patent/JPS6211373A/en
Publication of JPS6211373A publication Critical patent/JPS6211373A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To correct a picture element poor in sensitivity and thereby to improve the picture quality by positioning a picture-element signal whose noise output exceeds the tolerance limit value in the vicinity of a picture element and replacing said signal with another one whose S/N ratio is maximum. CONSTITUTION:Of the titled device, th offset correction value of each picture element is stored in an offset correction value memory 3 and the sensitivity correction value in a sensitivity correction value memory 5 beforehand. And these values are added with and multiplied on the picture signal form an A/D converter 2 respectively by an adder 4 and multiplier 6. Between a microprocessor 7 for the circuits 3 and 5 and display memories 11a and 11b, two frame memories 8 and 9 are provided in order to expand the function of the processor 7. The absolute value of the difference between a normalized output and the offset/sensitivity correction values generated by picking up a high-brightness reference target, is obtained. The said value is compared with the tolerance limit value, and a signal whose said signal exceeds the limit value is positioned near the picture element, and is replaced with a picture element signal of maximum S/N.

Description

【発明の詳細な説明】 〔概要〕 この発明は、固体撮像装置において、 その画像にちらつきとなって現れる信号対雑音比の悪い
画素の置換を行うことにより、画像表示を改善するもの
である。
[Detailed Description of the Invention] [Summary] The present invention improves image display in a solid-state imaging device by replacing pixels with a poor signal-to-noise ratio that appear as flickering in the image.

〔産業上の利用分野〕[Industrial application field]

本発明は固体撮像装置にかかり、特にその画像にちらつ
きとなって現れる信号対雑音比の悪い画素の補正に関す
る。
The present invention relates to solid-state imaging devices, and particularly to correction of pixels with poor signal-to-noise ratios that appear as flickering in images.

〔従来の技術〕[Conventional technology]

固体撮像装置では通常、光電変換素子の各画素領域で発
生した電気信号を、電荷結合装置(CCD)などの電荷
転送装置(CTD)により時系列多重化して検出し、サ
ンプリング、デジタル変換後に信号の補正を行って、デ
ィスプレイ装置に表示する。
In solid-state imaging devices, electrical signals generated in each pixel region of a photoelectric conversion element are normally multiplexed in time series and detected using a charge transfer device (CTD) such as a charge-coupled device (CCD), and the signals are processed after sampling and digital conversion. The correction is performed and displayed on the display device.

第3図はこの様な構成の固体撮像装置の1従来例のブロ
ック図である。同図において、1は光電変換素子、CO
D及びサンプリング回路を含む撮像部、2はア゛ナログ
/デジタル変換器、3はオフセット補正値メモリ、4は
オフセット補正加算器、5は感度(ゲイン)補正係数メ
モリ、6は感度補正乗算器、7はマイクロプロセッサ、
10は表示用アドレス発生器、lla及びllbは表示
用メモリ・12はデジタル/アナログ変換器、13は表
示装置である。
FIG. 3 is a block diagram of one conventional example of a solid-state imaging device having such a configuration. In the figure, 1 is a photoelectric conversion element, CO
2 is an analog/digital converter, 3 is an offset correction value memory, 4 is an offset correction adder, 5 is a sensitivity (gain) correction coefficient memory, 6 is a sensitivity correction multiplier, 7 is a microprocessor;
10 is a display address generator, lla and llb are display memories, 12 is a digital/analog converter, and 13 is a display device.

前記構成の固体撮像装置ではその信号の補正として、画
素相互間のオフセットのばらつき補正、感度のばらつき
補正と、全く或いは殆ど感度のない欠陥画素に他の画素
のデータを置換する欠陥画素補正とが行われている。
In the solid-state imaging device having the above configuration, signal correction includes correction of offset variations between pixels, sensitivity variation correction, and defective pixel correction in which defective pixels having no or almost no sensitivity are replaced with data of other pixels. It is being done.

オフセット及び感度のばらつき補正は一般に下記演算式
によって行われる。
Offset and sensitivity variation correction is generally performed using the following calculation formula.

(P −P L)/ (P HP L)ただし、Pは撮
像対象物を見たときの出力、PLは均一な低輝度基準タ
ーゲットを見たときの出力、PHは均一な高輝度基準タ
ーゲットを見たときの出力である。
(P - P L) / (P HP L) where P is the output when looking at the imaging target, PL is the output when looking at the uniform low brightness reference target, and PH is the output when looking at the uniform high brightness reference target. This is the output when viewed.

オフセット補正は前記式の分子で表され、入射光強度に
無関係な直流成分のばらつきの補正である。また感度補
正は前記式の分母で表され、入射光の変化量に対する出
力の変化量の比のばらつきの補正である。
The offset correction is expressed by the numerator of the above equation, and is a correction for variations in the DC component that are unrelated to the intensity of the incident light. The sensitivity correction is expressed by the denominator of the above equation, and is a correction for variations in the ratio of the amount of change in the output to the amount of change in the incident light.

これらの補正は第3図のブロック図の如く、オフセント
補正値メモリ3に各画素のオフセット補正値を、感度補
正係数メモリ5に感度補正係数を予め記憶しておき、デ
ジタル画像信号に対して加算器4によってオフセット補
正値を減算し、乗算器6によって感度補正係数を乗算す
る。
These corrections are performed by storing the offset correction value of each pixel in the offset correction value memory 3 and the sensitivity correction coefficient in the sensitivity correction coefficient memory 5 in advance, and adding them to the digital image signal, as shown in the block diagram of Fig. 3. The offset correction value is subtracted by the device 4, and the sensitivity correction coefficient is multiplied by the multiplier 6.

なお前記式から知られる様に、オフセット補正値は均一
な低躇度基準ターゲットを見たときの各画素の出力PL
に基づいて設定され、感度補正係数は高、低輝度の基準
ターゲットを見たときの各画素の出力差P、−PLの逆
数に定数を乗じた値に基づいて設定される。
As is known from the above equation, the offset correction value is the output PL of each pixel when looking at a uniform low hesitation reference target.
The sensitivity correction coefficient is set based on a constant multiplied by the reciprocal of the output difference P, -PL of each pixel when looking at high and low luminance reference targets.

このオフセット補正と感度補正とにより、撮像部1にば
らつきがある場合にも均一な出力が得られるようになる
が、感度が全く或いは殆どない画素がある場合にはその
感度補正係数が極めて大きくなり、撮像時の僅かの出力
変化に対しても補正出力が大きく変化してその画素はち
らつきが太きく見づらいものとなる。
This offset correction and sensitivity correction make it possible to obtain a uniform output even if there are variations in the imaging unit 1, but if there are pixels with no or almost no sensitivity, the sensitivity correction coefficient becomes extremely large. , the correction output changes greatly even for a slight change in output during imaging, and the pixel flickers heavily and becomes difficult to see.

この問題に対しては、例えば感度が一定値以下の画素を
欠陥画素と判定し、第3図の表示用アドレス発生器10
のメモリにより欠陥画素のアドレスをこれに隣接する正
常な画素のアドレスに変換して、表示用メモリlla及
びllbのその位置のデータを正常なデータに置換する
補正を行う。
To solve this problem, for example, a pixel whose sensitivity is below a certain value is determined to be a defective pixel, and the display address generator 10 shown in FIG.
The address of the defective pixel is converted into the address of the adjacent normal pixel by the memory of , and correction is performed to replace the data at that position in the display memories lla and llb with normal data.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上説明した従来知られている固体撮像装置の信号補正
方法では、信号対雑音比が悪いが感度が特に小さくはな
い画素は正常な画素として感度補正されて表示され、出
力画面上にちらつきとなって現れて画像を見づらいもの
としている。
In the conventional signal correction method for solid-state imaging devices described above, pixels with a poor signal-to-noise ratio but whose sensitivity is not particularly low are displayed as normal pixels after sensitivity correction, resulting in flickering on the output screen. This makes the image difficult to view.

従って、この様に信号対雑音比が悪い画素についても効
果的な補正が要望されている。
Therefore, there is a demand for effective correction even for pixels with poor signal-to-noise ratios.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点は、各画素の雑音出力を許容限界値と比較し
、該雑音出力が該許容限界値を越える画素の信号を、該
画素の近傍に配置されかつ信号対雑音比が最大である他
の画素の信号に置換する本発明による固体撮像装置によ
り解決される。
The above-mentioned problem is that the noise output of each pixel is compared with a tolerable limit value, and the signal of the pixel whose noise output exceeds the tolerable limit value is selected from pixels located near the pixel and having the maximum signal-to-noise ratio. This problem is solved by the solid-state imaging device according to the present invention, which replaces the signal of the pixel with the signal of the pixel.

なお前記雑音出力と許容限界値との比較は、例えば前記
許容限界値をオフセット及び感度補正後の基準信号値に
対して設定し、各画素のオフセット及び感度補正後の信
号値と該基準信号値との差の絶対値の積算値と該許容限
界値とを比較することにより容易に実行することが可能
である。
The noise output and the allowable limit value may be compared by, for example, setting the allowable limit value to a reference signal value after offset and sensitivity correction, and comparing the signal value after offset and sensitivity correction of each pixel with the reference signal value. This can be easily carried out by comparing the integrated value of the absolute value of the difference between the two and the permissible limit value.

〔作 用〕[For production]

第1図は本発明による固体撮像装置の1例の動作説明図
である。
FIG. 1 is an explanatory diagram of an example of the operation of a solid-state imaging device according to the present invention.

低輝度基準ターゲットLLと高輝度基準りiゲソl’L
Hに対する第1画素の出力をそれぞれpti、putと
すれば、この画素の入出力特性は直線A。
Low-luminance reference target LL and high-luminance reference target LL
If the output of the first pixel for H is pti and put, respectively, the input/output characteristic of this pixel is a straight line A.

で近似される。従来と同様にこの入出力特性にオフセッ
ト補正と感度補正を行えば、正規化された入出力特性が
全画素について直線Bで表される。
It is approximated by If offset correction and sensitivity correction are performed on this input/output characteristic as in the conventional case, the normalized input/output characteristic is represented by a straight line B for all pixels.

この第1画素の高輝度基準ターゲットL)Iに対する出
力pniに雑音による変動Viがあるとすれば、そのオ
フセット及び感度補正後の出力pH(全画素について一
定レベルとなる)に雑音による変動V。
If there is a fluctuation Vi due to noise in the output pni of this first pixel with respect to the high-intensity reference target L)I, there is a fluctuation V due to noise in the output pH (at a constant level for all pixels) after its offset and sensitivity correction.

を生ずる。will occur.

この出力変動Viが大きくなれば先に述べた不快なちら
つきとなるから、本発明では正規化された出力PRを基
準として、オフセット及び感度補正後の出力変動の許容
限界値V、を設定し、出力変動がこれを越える画素につ
いてはその近傍にある信号対雑音比が最大の画素の信号
値に置換して表示する。
If this output fluctuation Vi becomes large, it will cause the unpleasant flickering mentioned above, so in the present invention, the tolerable limit value V of the output fluctuation after offset and sensitivity correction is set based on the normalized output PR, Pixels whose output fluctuation exceeds this value are replaced with the signal value of a nearby pixel with the highest signal-to-noise ratio and displayed.

この出力変動の判定は、例えば後に実施例として示す如
(、高輝度基準ターゲットを橋像しオフセット及び感度
補正を行った結果を一つのフレームメモリに記録し、こ
れと正規化された出力P。
The determination of this output fluctuation can be performed, for example, as shown in an embodiment later (by recording the results of offset and sensitivity correction using a high-brightness reference target as a bridge image, and recording this and the normalized output P in one frame memory).

との差の絶対値を求めて、その複数フレーム期間につい
ての積算値を他のフレームメモリに記録させ、これを出
力変動の許容限界値VHと比較するなどの方法により実
施することができる。
This can be carried out by calculating the absolute value of the difference between the two frames, recording the integrated value for a plurality of frame periods in another frame memory, and comparing this with the allowable limit value VH of output fluctuation.

〔実施例〕〔Example〕

以下本発明を実施例により具体的に説明する。 The present invention will be specifically explained below using examples.

第2図は本発明の1実施例を示すブロック図であり、前
記従来例に相当する部分は第3図と同一符号で示す。
FIG. 2 is a block diagram showing one embodiment of the present invention, and parts corresponding to the conventional example are designated by the same reference numerals as in FIG. 3.

本実施例では前記従来例に比較して、2つのフレームメ
モリ8.9を備え、マイクロプロセッサ7の機能が拡充
されており、先に述べた如く、高輝度基準ターゲットを
撮像しオフセフ)及び感度補正を行った結果を一つのフ
レームメモリ8に記録し、これと正規化された出力P、
との差の絶対値を求めて、その複数フレーム期間につい
ての積算値をフレームメモリ9に記録させ、これを許容
限界値vHと比較する。
Compared to the conventional example, this embodiment is equipped with two frame memories 8 and 9, and the functions of the microprocessor 7 are expanded. The result of the correction is recorded in one frame memory 8, and this and the normalized output P,
The absolute value of the difference is determined, the integrated value for the plurality of frame periods is recorded in the frame memory 9, and this is compared with the allowable limit value vH.

この比較で許容限界値■8を越える出力変動がある画素
については、その画素に隣接するなど近傍にあり、かつ
信号対雑音比が最大の画素の信号値に置換することとし
、表示用アドレス発注器10のメモリの前者のアドレス
に後者のアドレスを記録する。これにより見づらいちら
つきを示す信号対雑音比が悪い画素の表示が改善される
If a pixel has an output fluctuation exceeding the allowable limit of 8 in this comparison, it will be replaced with the signal value of a pixel that is nearby, such as adjacent to that pixel, and has the highest signal-to-noise ratio, and the display address will be ordered. The latter address is recorded in the former address of the memory of the device 10. This improves the display of pixels with poor signal-to-noise ratios that exhibit difficult-to-see flickering.

また全く或いは殆ど感度のない欠陥画素があるならば前
記従来例と同様に、この画素に他の画素のデータを置換
する欠陥画素補正を行い、特異画素のない良好な画像表
示が得られる。
Furthermore, if there is a defective pixel with no or almost no sensitivity, defective pixel correction is performed to replace this pixel with data of another pixel, as in the conventional example, and a good image display without abnormal pixels can be obtained.

なお本実施例のフレームメモリ8.9の動作を表示用メ
モリlla 、 llbに行わせ、メモリ装置を節約す
る構成も可能である。
It is also possible to configure the display memories lla and llb to perform the operations of the frame memories 8 and 9 of this embodiment, thereby saving the memory device.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、低感度のみならず、
信号対雑音比が小さいためにちらつきを示す画素につい
てもその置換が容易に行われて、固体撮像装置の性能向
上に大きい効果が得られる。
As explained above, according to the present invention, not only low sensitivity but also
Even pixels exhibiting flickering due to a small signal-to-noise ratio can be easily replaced, resulting in a significant effect on improving the performance of the solid-state imaging device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による固体撮像装置の1実施例第3図は
固体撮像装置の従来例のブロック図である。 図において、 1は撮像部、 2はアナログ/デジタル変換器、 3はオフセット補正値メモリ、 4はオフセット補正加算器、 5は感度補正係数メモリ、 6は感度補正乗算器、 7はマイクロプロセッサ、 8及び9はフレームメモリ、 10は表示用アドレス発生器、 11a及びllbは表示用メモリ、 12はデジタル/アナログ変換器、 13は表示装置を示す。
FIG. 1 is an embodiment of a solid-state imaging device according to the present invention. FIG. 3 is a block diagram of a conventional example of a solid-state imaging device. In the figure, 1 is an imaging unit, 2 is an analog/digital converter, 3 is an offset correction value memory, 4 is an offset correction adder, 5 is a sensitivity correction coefficient memory, 6 is a sensitivity correction multiplier, 7 is a microprocessor, 8 and 9 a frame memory, 10 a display address generator, 11a and llb display memories, 12 a digital/analog converter, and 13 a display device.

Claims (1)

【特許請求の範囲】 1)各画素の雑音出力を許容限界値と比較し、該雑音出
力が該許容限界値を越える画素の信号を、該画素の近傍
に配置されかつ信号対雑音比が最大である他の画素の信
号に置換することを特徴とする固体撮像装置。 2)前記許容限界値をオフセット及び感度補正後の基準
信号値に対して設定し、各画素のオフセット及び感度補
正後の信号値と該基準信号値との差の絶対値の積算値と
該許容限界値とを比較することを特徴とする特許請求の
範囲第1項記載の固体撮像装置。
[Claims] 1) The noise output of each pixel is compared with a tolerable limit value, and the signal of the pixel whose noise output exceeds the tolerable limit value is selected from a pixel that is located near the pixel and has the highest signal-to-noise ratio. A solid-state imaging device characterized in that the signal is replaced with a signal from another pixel. 2) Set the permissible limit value for the reference signal value after offset and sensitivity correction, and calculate the integrated value of the absolute value of the difference between the signal value after offset and sensitivity correction of each pixel and the reference signal value, and the permissible limit value. The solid-state imaging device according to claim 1, wherein the solid-state imaging device compares with a limit value.
JP60150462A 1985-07-09 1985-07-09 Solid-state image pickup device Pending JPS6211373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60150462A JPS6211373A (en) 1985-07-09 1985-07-09 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60150462A JPS6211373A (en) 1985-07-09 1985-07-09 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS6211373A true JPS6211373A (en) 1987-01-20

Family

ID=15497447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60150462A Pending JPS6211373A (en) 1985-07-09 1985-07-09 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS6211373A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235484A (en) * 1988-03-16 1989-09-20 Toshiba Corp Picture reader

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235484A (en) * 1988-03-16 1989-09-20 Toshiba Corp Picture reader

Similar Documents

Publication Publication Date Title
US7760252B2 (en) Shading compensation device, shading compensation value calculation device and imaging device
JP4210021B2 (en) Image signal processing apparatus and image signal processing method
JP4487640B2 (en) Imaging device
US8248483B2 (en) Signal processing apparatus, signal processing method, control program, readable recording medium, solid-state image capturing apparatus, and electronic information device
US7102669B2 (en) Digital color image pre-processing
JP4646655B2 (en) Solid-state imaging device, driving method thereof, and imaging system
JP2007189544A (en) Imaging apparatus
JP2000224490A (en) Image pickup controller and image pickup control method
US20030231251A1 (en) Imaging apparatus
JP4900419B2 (en) Image processing apparatus and image processing program
US8155472B2 (en) Image processing apparatus, camera, image processing program product and image processing method
US8218021B2 (en) Image capture apparatus, method of controlling the same, and program
JP2000224487A (en) Image pickup device and image pickup method
US20070269133A1 (en) Image-data noise reduction apparatus and method of controlling same
JPH10322592A (en) Method and device for controlling electronic camera
JPS6211373A (en) Solid-state image pickup device
JP2004215063A (en) Photographing device and outline correction method
JP4307862B2 (en) Signal processing method, signal processing circuit, and imaging apparatus
JP2006319827A (en) Solid-state imaging device and image correcting method
JP4439841B2 (en) Imaging apparatus and image processing method thereof
JP3938097B2 (en) Correction apparatus, imaging apparatus, correction method, computer-readable storage medium, and program
JP2010193112A (en) Image processing apparatus and digital still camera
JP2002247445A (en) Video signal processor and video signal processing method
JPH1175112A (en) Automatic gain control circuit
JP2004200888A (en) Imaging device