JPS62113349A - Electron beam energy analyzer - Google Patents

Electron beam energy analyzer

Info

Publication number
JPS62113349A
JPS62113349A JP60253929A JP25392985A JPS62113349A JP S62113349 A JPS62113349 A JP S62113349A JP 60253929 A JP60253929 A JP 60253929A JP 25392985 A JP25392985 A JP 25392985A JP S62113349 A JPS62113349 A JP S62113349A
Authority
JP
Japan
Prior art keywords
electron beam
detector
spectrometer
energy
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60253929A
Other languages
Japanese (ja)
Inventor
Masao Inoue
雅夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP60253929A priority Critical patent/JPS62113349A/en
Publication of JPS62113349A publication Critical patent/JPS62113349A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To make electron beam spectrums different in signal intensity each measurable with a detector of constant sensitivity, by adding an electron beam adsorber whose adsorption factor differs according to an incident position and a deflector both to an interval between a selector device of electron beams and the detector. CONSTITUTION:Electron beams 17 transmitting a sample are led into a spectrometer 9 and dispersed according to energy, and selected by a slit 13. Next, they are detected by a detector 14 and an energy spectrum is secured. At this time, at an interval between the slit 13 and the detector 14, there are provided with deflectors 20 and 21 to be deflected with output of the detector 14 and an electron beam absorber 22 whose adsorption factor differs according to an incident position. And, such as electron beam as being very large in a dynamic range is adsorbed by the adsorber 22 according to signal intensity, making it detectable in keeping sensitivity of the detector 14 constant as it is. Therefore, quantitative measurement is performable over the whole range of the signal intensity without entailing any alteration of measuring conditions.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電子線エネルギー分析装置に関し、更に詳しく
はエネルギースペクトルの測定を容易にした電子線エネ
ルギー分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electron beam energy analyzer, and more particularly to an electron beam energy analyzer that facilitates the measurement of energy spectra.

(従来の技術) 電子線エネルギー分析装置は電子顕微鏡等において電子
線を試料に照射すると、電子線は試料との相互作用によ
ってそのエネルギーの一部を失うが、この試料を透過し
た電子線のエネルギーを分析すると、試料を構成する元
素によって固有のスペクトルが得られるので、このエネ
ルギー損失スペクトルを観察して元素分析を行う装置で
ある。
(Prior art) When an electron beam energy analyzer irradiates a sample with an electron beam using an electron microscope or the like, the electron beam loses part of its energy due to interaction with the sample, but the energy of the electron beam that has passed through the sample is When analyzed, unique spectra are obtained depending on the elements that make up the sample, so this device performs elemental analysis by observing this energy loss spectrum.

第4図は従来の電子顕微鏡におけるエネルギー分析装置
を示すもので、電子銃1からの電子1!i12を集束レ
ンズ系3によって試料4に照射し、試料4を透過した電
子線2を対物レンズ5、中間レンズ6、投影レンズ7を
介して入射絞り8を経て、スペクトロメータ9に導き、
このスペクトロメータ9において、電子線をエネルギー
に応じて分散させ、出射レンズ12によって出射スリッ
ト13上に集束せしめ、一種の帯スペクトルを形成する
ようにしている。10aはスペクトロメータ9の主コイ
ル11aに主電流を供給するための主電源で、10bは
エネルギー掃引用コイル11bに掃引′R流を供給する
ための掃引電源である。この掃引電源10bからの掃引
電流によりスペクトロメータ9はエネルギー掃引を行う
。エネルギー掃引用コイル11bの電流値によって特定
のエネルギーの電子線が出射スリット13を通過し、掃
引電流値の変化に伴って出射スリット13を通過する電
子のエネルギー(直が掃引されるため、エネルギー1M
引用コイル11bの局引電流によって検出器14にエネ
ルギースペクトルの出力信号が得られる。この出力信号
は増幅器15を通して記録計16に入力される。一方、
掃引電源10bからの掃引出力が記録計16を同期して
掃引するのでエネルギースペクトルが表示できる。第5
図はそのエネルギースペクトルの一例を示すもので、図
中P!はエネルギー損失の無い入rJ1電子線のエネル
ギー値に対応した所謂ゼロロスピークと呼ばれるピーク
であり、Plはプラズマロスピークと呼ばれるピークで
、Pn等が試料の特定元素との相互作用によって生じた
ピークである。これらピークPlとpnの信号強度は著
しく異なっており、そのダイナミックレンジは107〜
108 にも及ぶものである。そのためピークpnを観
察し易い程度に増幅した場合にはピークP1及びPlは
飽和してしまい、Plが観察し易い程度に増幅した場合
にはピークP−nは殆ど観察できない程度になってしま
う。
FIG. 4 shows an energy analyzer in a conventional electron microscope, in which electrons 1! from an electron gun 1! i12 is irradiated onto the sample 4 through the focusing lens system 3, and the electron beam 2 transmitted through the sample 4 is guided to the spectrometer 9 via the objective lens 5, the intermediate lens 6, the projection lens 7, the entrance aperture 8, and the spectrometer 9.
In this spectrometer 9, the electron beam is dispersed according to energy and focused onto an exit slit 13 by an exit lens 12 to form a kind of band spectrum. 10a is a main power supply for supplying the main current to the main coil 11a of the spectrometer 9, and 10b is a sweep power supply for supplying the sweep 'R current to the energy sweep coil 11b. The spectrometer 9 performs an energy sweep using the sweep current from the sweep power supply 10b. An electron beam with a specific energy passes through the output slit 13 depending on the current value of the energy sweep coil 11b, and as the sweep current value changes, the energy of the electrons passing through the output slit 13 (direction is swept, so the energy 1M
An output signal of an energy spectrum is obtained on the detector 14 by the local current of the reference coil 11b. This output signal is input to a recorder 16 through an amplifier 15. on the other hand,
Since the sweep output from the sweep power supply 10b sweeps the recorder 16 in synchronization, an energy spectrum can be displayed. Fifth
The figure shows an example of the energy spectrum. is the so-called zero loss peak, which corresponds to the energy value of the input rJ1 electron beam with no energy loss, and Pl is the peak called the plasma loss peak, which is a peak caused by the interaction of Pn etc. with specific elements in the sample. be. The signal intensities of these peaks Pl and pn are significantly different, and their dynamic range is 107~
The number is as high as 108. Therefore, when the peak pn is amplified to the extent that it is easy to observe, the peaks P1 and Pl become saturated, and when the peak Pl is amplified to the extent that it is easy to observe, the peak Pn becomes almost unobservable.

電子線エネルギー分析装置において、電子線信号を定量
的に測定することが、エネルギースペクトルの定性定量
分析に不可欠である。従って前述の不具合を解消するた
めに、電子線エネルギー分析装置における分離エネルギ
ーを挿引する信号が特定のレベになる都度自動的に検出
信号′−を増幅する際の増幅利得を切換え、観察に適し
たスペクトルを得るようにしている。
In an electron beam energy analyzer, quantitatively measuring electron beam signals is essential for qualitative and quantitative analysis of energy spectra. Therefore, in order to eliminate the above-mentioned problems, each time the signal for subtracting the separation energy in the electron beam energy analyzer reaches a certain level, the amplification gain for amplifying the detection signal '- is automatically switched, making it suitable for observation. I'm trying to get a spectrum that looks like this.

(発明が解決しようとする問題点) 前述のようにダイナミックレンジの極めて大きな信号を
信号の大きさに応じた増幅利得で12察しようとすると
、測定の途中で検出器の感度を変化させることが必要に
なる。しかしながら、電気回路系が新たな感度状態に安
定するまでには比較的長い時間がかかるため、その過渡
的な段階での測定を高精度に行うことはできない。
(Problems to be Solved by the Invention) As mentioned above, when trying to detect a signal with an extremely large dynamic range using an amplification gain that corresponds to the signal size, the sensitivity of the detector may change during the measurement. It becomes necessary. However, since it takes a relatively long time for the electric circuit system to stabilize to a new sensitivity state, it is not possible to measure with high precision during this transitional stage.

本発明は上記の点に鑑みてなされたもので、その目的は
、信号強度の著しく差のある信号群を検出器感度を変え
る等の測定条件の変更を伴うことなく測定できる電子線
エネルギー分析装置を提供することである。
The present invention has been made in view of the above points, and an object of the present invention is to use an electron beam energy analyzer that can measure signal groups with significantly different signal intensities without changing measurement conditions such as changing detector sensitivity. The goal is to provide the following.

(問題点を解決するための手段) 11J1記の問題点を解決する本発明は、試料からの電
子線をそのエネルギーに応じて分離するスペクトロメー
タと、該スペクトロメータのエネルギーを掃引Jるため
の手段と、該スペクトロメータによって分離された電子
線を選別する選別手段と、該選別手段によって選別され
た電子を検出するための検出手段と、該検出手段からの
出力信号を増幅するための増幅手段と、前記掃引手段に
よるスペクトロメータの掃引と同期して掃引され、前記
増幅手段からの出力信号に基づいてエネルギースペクト
ルを表示するための表示手段とを備えた装置において、
電子の吸収率が電子線の入射位置に応じて異なる電子線
吸収体を前記選別手段と検出器との間に配置すると共に
、前記選別手段を出)1した電子線を偏向づる偏向器を
配置し、前記スペクトロメータの掃引に伴って前記選別
手段を出射した電子を前記電子線吸収体の異なった位置
に入Q4 t! L、、めるように前記偏向器による偏
向を制御する手段を備えたことを特徴とするものである
(Means for Solving the Problems) The present invention, which solves the problems described in 11J1, includes a spectrometer that separates electron beams from a sample according to their energies, and a device for sweeping the energy of the spectrometer. means, a sorting means for sorting the electron beam separated by the spectrometer, a detection means for detecting the electrons sorted by the sorting means, and an amplification means for amplifying the output signal from the detection means. and display means for displaying an energy spectrum based on the output signal from the amplification means, which is swept in synchronization with the sweep of the spectrometer by the sweep means,
An electron beam absorber whose electron absorption rate differs depending on the incident position of the electron beam is disposed between the sorting means and the detector, and a deflector is disposed for deflecting the electron beam exiting the sorting means. As the spectrometer sweeps, the electrons emitted from the selection means enter different positions of the electron beam absorber Q4 t! L. The device is characterized in that it includes means for controlling the deflection by the deflector so that the deflection is controlled by the deflector.

(作用) 本発明は、エネルギーの大きさに対応して掃引されたダ
イナミックレンジの極めて大きな電子線を、掃引電源に
同期された(−同盟によって各部の吸収率の分っている
電子線吸収体により階段的に信号強度に応じて吸収せし
めたので、信号強度の全範囲にわたって定量的に測定で
きる。
(Function) The present invention uses an electron beam absorber whose absorption rate is known at each part by an electron beam synchronized with a sweep power supply (-) which has an extremely large dynamic range and which is swept in accordance with the magnitude of energy. Since the absorption is carried out stepwise according to the signal strength, it is possible to quantitatively measure the entire range of signal strength.

(実施例) 以下に図面を参照して本発明の実施例につき詳細に説明
する。
(Example) Examples of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の実施例を示すブロック図である。図中
第2図と同じ部分には同じ符号を付しである。17は試
料を透過した電子線である。入射電子線のエネルギーを
損失なく持ったゼロロスビークP + 、プラズマロス
ビークP2及び元素特有の値のエネルギー損失を受けた
ビークpnを含んでいる電子4017は、スペクトロメ
ータ9をOr出射スリット13を通過する電子線19と
、スペクトロメータ9で分散されて出射スリット13で
遮断される電子線18に分離される。電子線19は検出
器14に入ってエネルギー値に応じた信号強度を偏向信
号と同期して検出される。検出器14よりの信号は増幅
器15で増幅された後次段に送られる。24はクロック
発振器でクロックパルスを発振し、1m引電源10bに
クロックパルスを供給する。掃引電流10bは掃引信号
を発振し、掃引コイル11bに掃引電流を流し、出用ス
リット13を通過する電子のエネルギーを掃引する。
FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, the same parts as in FIG. 2 are given the same reference numerals. 17 is an electron beam that has passed through the sample. Electrons 4017, which include a zero loss beak P + that has the energy of the incident electron beam without loss, a plasma loss beak P2, and a beak pn that has suffered an energy loss of a value specific to the element, pass through the spectrometer 9 through the Or exit slit 13. It is separated into an electron beam 19 and an electron beam 18 which is dispersed by a spectrometer 9 and blocked by an exit slit 13 . The electron beam 19 enters the detector 14, and the signal strength corresponding to the energy value is detected in synchronization with the deflection signal. The signal from the detector 14 is amplified by an amplifier 15 and then sent to the next stage. 24 is a clock oscillator that oscillates clock pulses and supplies the clock pulses to the 1 m power supply 10b. The sweep current 10b oscillates a sweep signal, causes the sweep current to flow through the sweep coil 11b, and sweeps the energy of the electrons passing through the output slit 13.

クロック発振器24は又偏向電源23にクロックパルス
を供給し、偏向7111!23は偏向信号を発振し、偏
向器20.21に信号を与える。前記の各信号は第3図
に示す通りである。偏向器20に与えられる信号は第3
図(C)に示す波形を持った信号で、偏向器21にはこ
の信号の逆極性の信号を与えて電子線の経路を戻して検
出器14に入射させる。第5図に示すスペクトル図で説
明すれば、ゼロロスビークP+信号に対しては大きな偏
向信号のαを、プラズマビークP?に対してはβを、p
nに対してはδを与える。この偏向信号による偏向器の
動作を第2図に示す。電子線吸収体22の構造は図のよ
うに吸収体の厚みが変化していて、その厚みに比例して
吸収率が増加する。最大偏向電圧の時は電子線のαで示
される経路を取り、電子線の減衰は最大であり、β、γ
と逐次減衰量は減り、δは減衰0で検出器14に入る。
The clock oscillator 24 also provides clock pulses to the deflection power supply 23, and the deflection 7111!23 oscillates a deflection signal and provides the signal to the deflector 20.21. Each of the above-mentioned signals is as shown in FIG. The signal given to the deflector 20 is the third
A signal having a waveform as shown in FIG. 3C is applied to the deflector 21, and a signal with the opposite polarity to this signal is given to the deflector 21 to return the electron beam to the detector 14. To explain using the spectrum diagram shown in FIG. 5, for the zero loss beak P+ signal, α, which is a large deflection signal, is used for the plasma beak P? For β, p
For n, give δ. FIG. 2 shows the operation of the deflector based on this deflection signal. The structure of the electron beam absorber 22 is such that the thickness of the absorber changes as shown in the figure, and the absorption rate increases in proportion to the thickness. At the maximum deflection voltage, the electron beam takes the path indicated by α, the attenuation of the electron beam is maximum, and β, γ
The amount of attenuation decreases sequentially, and δ enters the detector 14 with zero attenuation.

夫々の減衰は予め較正してあって分っているものである
Each attenuation is previously calibrated and known.

ここにα、β+7+ δの経路は第3図(C)の偏向信
号のα、β、γ、δの電位(又は電流値)に対応する。
Here, the paths α, β+7+δ correspond to the potentials (or current values) of α, β, γ, and δ of the deflection signal in FIG. 3(C).

このようにしてエネルギー値に対応した掃引電流によっ
て出射された電子線は、掃引電流に同期した偏向信号に
よって漏向されて電子線吸収体で一定の吸収を受け、一
定感度の検出器で検出され、図示しない記録装置で電子
線吸収体の吸収量に応じた増幅を行って元の信号強度に
戻して記録する。
In this way, the electron beam emitted by the sweep current corresponding to the energy value is leaked by the deflection signal synchronized with the sweep current, undergoes a certain amount of absorption by the electron beam absorber, and is detected by a detector with a certain sensitivity. Then, a recording device (not shown) performs amplification according to the absorption amount of the electron beam absorber to restore the original signal strength and record the signal.

このように本発明によればスペクトロメータに与える掃
引電流に同期して偏向器に偏向信号を与え、電子線吸収
体に電子線スペクトルの信号強度に応じて吸収させるこ
とにより、検出器の感度を一定にしたまま測定すること
ができる。
In this way, according to the present invention, a deflection signal is applied to the deflector in synchronization with the sweep current applied to the spectrometer, and the sensitivity of the detector is increased by causing the electron beam absorber to absorb according to the signal strength of the electron beam spectrum. It can be measured while keeping it constant.

尚、ここに挙げたのは一例に過ぎず、例えば偏向信号を
階段状信号ではなく、電子線吸収体を通過づる信号の強
度に応じて偏向信号の大きさを変えて偏向器にフィード
バックしてもよい。
Note that the above is just an example; for example, the deflection signal is not a stepped signal, but the magnitude of the deflection signal is changed according to the strength of the signal passing through the electron beam absorber and fed back to the deflector. Good too.

(発明の効果) 以上詳細に説明したように、本発明によれば信号強度の
著しく異なる電子線スペクトルを一定感度の検出器によ
って精度よく測定することができる。
(Effects of the Invention) As described above in detail, according to the present invention, electron beam spectra with significantly different signal intensities can be accurately measured using a detector with constant sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電子線エネルギー分析装jdの実施例
を説明するブロック図、第2図は電子線の信号強度に応
じた経路の説明図、第3図は各借りのタイミング説明図
、第4図は従来の電子線エネルギー分析装置のブロック
図で、第5図は電子線スペクトル図の一例である。 1・・・電子銃      2・・・電子線3・・・集
束レンズ系   4・・・試料5.6.7・・・レンズ
  8・・・入射絞り9・・・スペクトロメータ 10
a主電源101)・・・桶引電IQ   11a・・・
主コイル11b・・・1吊引コイル  12・・・出射
レンズ13・・・出射スリット  14・・・検出器1
5・・・増幅器     16・・・記録g117・・
・試利透過電子線 18・・・出射スリットを通過しない電子線19・・・
出射スリットを通過づる電子線20.21・・・偏向器
  22・・・電子線吸収体23・・・偏向電源   
 24・・・クロック発振に特許出願人  日本電子株
式会社 代 理 人  弁唾士 井島MW 外1名 第1図 1]bシ掃引コイル ]3.出射スリット ]5,1!1B 17;f&料透過電子線 18;出射スリットを通過しない1a八:19;出射ス
リンl−を通過する電子、管2α21;偏向器 第2 図 第3図 ゛第5図 エネルギー
FIG. 1 is a block diagram illustrating an embodiment of the electron beam energy analyzer jd of the present invention, FIG. 2 is an explanatory diagram of the path according to the signal strength of the electron beam, and FIG. 3 is a diagram illustrating the timing of each borrowing. FIG. 4 is a block diagram of a conventional electron beam energy analyzer, and FIG. 5 is an example of an electron beam spectrum diagram. 1...Electron gun 2...Electron beam 3...Focusing lens system 4...Sample 5.6.7...Lens 8...Incidence aperture 9...Spectrometer 10
a Main power supply 101)...Pail power supply IQ 11a...
Main coil 11b...1 suspension coil 12...output lens 13...output slit 14...detector 1
5...Amplifier 16...Record g117...
・Trial transmission electron beam 18... Electron beam 19 that does not pass through the exit slit...
Electron beam passing through the exit slit 20.21...Deflector 22...Electron beam absorber 23...Deflection power source
24... Patent applicant for clock oscillation: JEOL Co., Ltd. Representative: Attorney: MW Ijima and 1 other person Figure 1 1]b sweep coil] 3. Output slit] 5,1!1B 17; diagram energy

Claims (1)

【特許請求の範囲】[Claims] 試料からの電子線をそのエネルギーに応じて分離するス
ペクトロメータと、該スペクトロメータのエネルギーを
掃引するための手段と、該スペクトロメータによって分
離された電子線を選別する選別手段と、該選別手段によ
って選別された電子を検出するための検出手段と、該検
出手段からの出力信号を増幅するための増幅手段と、前
記掃引手段によるスペクトロメータの掃引と同期して掃
引され、前記増幅手段からの出力信号に基づいてエネル
ギースペクトルを表示するための表示手段とを備えた装
置において、電子の吸収率が電子線の入射位置に応じて
異なる電子線吸収体を前記選別手段と検出器との間に配
置すると共に、前記選別手段を出射した電子線を偏向す
る偏向器を配置し、前記スペクトロメータの掃引に伴っ
て前記選別手段を出射した電子を前記電子線吸収体の異
なった位置に入射せしめるように前記偏向器による偏向
を制御する手段を備えた電子線エネルギー分析装置。
A spectrometer that separates electron beams from a sample according to their energies, a means for sweeping the energy of the spectrometer, a sorting means for sorting the electron beams separated by the spectrometer, and a means for sorting the electron beams separated by the spectrometer. a detection means for detecting the sorted electrons, an amplification means for amplifying an output signal from the detection means, and an output from the amplification means that is swept in synchronization with the sweep of the spectrometer by the sweep means. and display means for displaying an energy spectrum based on a signal, in which an electron beam absorber whose electron absorption rate differs depending on the incident position of the electron beam is disposed between the sorting means and the detector. At the same time, a deflector is arranged to deflect the electron beam emitted from the sorting means, so that the electrons emitted from the sorting means are made to enter different positions of the electron beam absorber as the spectrometer sweeps. An electron beam energy analyzer comprising means for controlling deflection by the deflector.
JP60253929A 1985-11-12 1985-11-12 Electron beam energy analyzer Pending JPS62113349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60253929A JPS62113349A (en) 1985-11-12 1985-11-12 Electron beam energy analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60253929A JPS62113349A (en) 1985-11-12 1985-11-12 Electron beam energy analyzer

Publications (1)

Publication Number Publication Date
JPS62113349A true JPS62113349A (en) 1987-05-25

Family

ID=17257984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60253929A Pending JPS62113349A (en) 1985-11-12 1985-11-12 Electron beam energy analyzer

Country Status (1)

Country Link
JP (1) JPS62113349A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003532256A (en) * 2000-04-24 2003-10-28 フェイ カンパニ Collection of secondary electrons through the objective of a scanning electron microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003532256A (en) * 2000-04-24 2003-10-28 フェイ カンパニ Collection of secondary electrons through the objective of a scanning electron microscope

Similar Documents

Publication Publication Date Title
JPH04500126A (en) Method and apparatus for rapid spectral analysis of signals at single or multiple measurement points
US4355232A (en) Apparatus for measuring specimen potential in electron microscope
US6198095B1 (en) Apparatus and method for imaging a particle beam
JPS6280541A (en) Method and device for measuring optical attenuation of zone of body to be tested on which primary beam cross
JPS62113349A (en) Electron beam energy analyzer
JPH04334861A (en) Electron spectroscopic image measuring method
US3260845A (en) Method for the analysis of x-rays from an electron probe device
US6933500B2 (en) Electron microscope
US3873839A (en) High speed linac-beam analyzer
US3456108A (en) Apparatus for fluorescent x-ray analysis of test bodies employing fluid filters with variable absorption characteristics
Darlington et al. A magnetic prism spectrometer for a high voltage electron microscope
JPH05109379A (en) Scanning reflecting electron microscope
JP3661501B2 (en) Modulation and fast time-resolved spectroscopy
JPS6233546B2 (en)
JPS6335481Y2 (en)
JP3123860B2 (en) Elemental analyzer using wavelength dispersive spectrometer and energy dispersive spectrometer
JPS62167452A (en) X-ray photoelectric spectrometer
Johnson High speed linac-beam analyzer
Nikischer Modern mineral identification techniques: Part I. WDS and EDS
JPH04112445A (en) Electronic spectral analyzing device
JPH0230652B2 (en) KOSOKUKURIKAESHIPARUSUHIKARIKEISOKUSOCHI
JPH01124945A (en) Charged particle beam device
JPS5831702B2 (en) Augier electron spectrometer
Hashimoto et al. Electron detector
JPH0586616B2 (en)