JPH05109379A - Scanning reflecting electron microscope - Google Patents

Scanning reflecting electron microscope

Info

Publication number
JPH05109379A
JPH05109379A JP3269739A JP26973991A JPH05109379A JP H05109379 A JPH05109379 A JP H05109379A JP 3269739 A JP3269739 A JP 3269739A JP 26973991 A JP26973991 A JP 26973991A JP H05109379 A JPH05109379 A JP H05109379A
Authority
JP
Japan
Prior art keywords
electron
electrons
energy
scanning
backscattered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3269739A
Other languages
Japanese (ja)
Inventor
Takayoshi Hayashi
孝好 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3269739A priority Critical patent/JPH05109379A/en
Publication of JPH05109379A publication Critical patent/JPH05109379A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To analyze the electron condition of a crystal by separating reflected electrons from the surface of a specimen and energy lost electrons by an electron mirror and displaying them as electron images by each CRT while scanning radiated primary electron beam synchronously. CONSTITUTION:Primary electron beam 4 from an electron gun 1 is converged by a focusing lens 2, accelerated by a scanning coil 3, and radiated to a specimen 5. Elastically scattered electrons 15 reflected by the specimen and not elastically scattered, energy lost electrons 16 are separated by an electron mirror 13 to which a prescribed minus bias voltage is applied. The electrons 15 transmitted through the mirror 13 are detected by a detector 6 and after passing an amplifier 7, the measured signals are displayed as reflected electron images by a CRT 11 for observation synchronously with the scanning of the primary electrons. After energy spectrum of the electrons 16 reflected by the mirror 13 is measured by an energy analizer 8, they are displayed as energy lost electron images by a CRT 12 for observation simultaneously with the images by the CRT 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は試料表面の結晶構造、ア
モルファス状態、組成、化学シフトとにより化学結合状
態並びに電子結合状態等を複合的に分析する装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for complexly analyzing a chemical bond state, an electronic bond state and the like based on the crystal structure, amorphous state, composition and chemical shift of a sample surface.

【0002】[0002]

【従来の技術】従来の走査型反射電子顕微鏡は、試料固
体表面の結晶表面の結晶構造や形状を観察する装置であ
り、表面を構成している元素の種類を直接分析すること
は出来なかった。
2. Description of the Related Art A conventional scanning backscattered electron microscope is an apparatus for observing the crystal structure and shape of the crystal surface of a sample solid surface, and it has not been possible to directly analyze the kinds of elements constituting the surface. ..

【0003】従来の走査型反射電子顕微鏡装置にエネル
ギー損失分光を付加して、元素の種類を直接分析するこ
とを可能にした装置は市川等によって提案されている
(実用新案公開番号 U 56−167468)。しか
し、市川の装置では、反射電子像の信号とエネルギー損
失電子像の信号を同時に計測することは出来ない。又、
エネルギー損失分光を行う場合においても、エネルギー
分析器がバンドパスフィルタ型でないため信号のS/N
が悪いと言う欠点がある。
An apparatus that enables direct analysis of the type of element by adding energy loss spectroscopy to a conventional scanning reflection electron microscope apparatus has been proposed by Ichikawa et al. (Utility model publication number U 56-167468). ). However, the device of Ichikawa cannot simultaneously measure the signal of the backscattered electron image and the signal of the energy loss electron image. or,
Even when performing energy loss spectroscopy, the S / N ratio of the signal is different because the energy analyzer is not a bandpass filter type.
It has the drawback of being bad.

【0004】一次電子を10nm程度に絞った高分解能の
観察を行うためには、一次電子の電流を微小(例えば1
nA以下)にする必要があるので信号は極めて微弱にな
る。この様な場合には事実上充分なS/Nは得られな
い。
In order to perform high-resolution observation in which primary electrons are narrowed down to about 10 nm, the primary electron current is very small (for example, 1
The signal becomes extremely weak because it needs to be less than nA). In such a case, practically sufficient S / N cannot be obtained.

【0005】[0005]

【発明が解決しようとする課題】本発明は、従来の装置
がエネルギー損失電子像の信号と反射電子像の信号を同
時に計測が不可能であったものを、エネルギー損失電子
像の信号と反射電子像の信号とを同時に計測し、各々の
信号による画像を同時にCRT上に描画し、観察するこ
とを可能とした走査型反射電子顕微鏡を提供しようとす
るものである。
SUMMARY OF THE INVENTION According to the present invention, the conventional apparatus cannot measure the energy loss electron image signal and the backscattered electron image signal at the same time. An object of the present invention is to provide a scanning reflection electron microscope capable of simultaneously measuring an image signal and simultaneously drawing and observing an image by each signal on a CRT.

【0006】[0006]

【課題を解決するための手段】第一の発明の走査型反射
電子顕微鏡は、所定の運動エネルギーを有した一次電子
線を試料表面の所定の領域に、所定の角度で照射するこ
とにより、前記試料表面から、一次電子自身が弾性散乱
によりエネルギーを失なわず反射されてきた反射電子
と、一次電子自身が非弾性散乱により、エネルギー損失
し、所定の運動エネルギー以下のエネルギーとなったエ
ネルギー損失電子とを生じさせ、前記反射電子と、エネ
ルギー損失電子は試料と電子検出器との間に設置された
一次電子加速電圧と微小差減の所定のマイナスバイアス
電圧を印加された電子ミラーにより、分離される。ここ
では一次電子と同等の所定の運動エネルギーを保持する
前記反射電子が前記電子ミラーを透過直進し、前記電子
検出器で検出され、その電子信号は反射電子像を、もう
一方の前記エネルギー損失電子は、前記電子ミラーで反
射され、エネルギーアナライザーより分光計測され、任
意のエネルギーを持つた電子のみの信号により、エネル
ギー損失電子像をそれぞれ、一次電子線の走査と同期さ
せて,同時にCRT上に描画することを特徴とする。
The scanning backscattered electron microscope of the first invention is characterized in that a primary electron beam having a predetermined kinetic energy is irradiated onto a predetermined region of a sample surface at a predetermined angle, Reflected electrons from the surface of the sample where the primary electrons have been reflected without losing energy by elastic scattering, and energy-loss electrons where the primary electrons themselves have lost energy due to inelastic scattering and have energy below a prescribed kinetic energy. The reflected electrons and the energy-loss electrons are separated by the electron mirror applied with a primary electron acceleration voltage and a predetermined negative bias voltage with a small difference between the sample and the electron detector. It Here, the backscattered electrons holding a predetermined kinetic energy equivalent to that of the primary electrons go straight through the electron mirror and are detected by the electron detector, and the electron signal thereof shows a backscattered electron image and the other of the energy loss electrons. Are reflected by the electron mirror and spectroscopically measured by an energy analyzer, and the energy-loss electron images are drawn on the CRT at the same time by synchronizing with the scanning of the primary electron beam by a signal of only electrons having an arbitrary energy. It is characterized by doing.

【0007】第二の発明の走査型反射電子顕微鏡は、前
記電子ミラーが、前記試料と前記電子検出器との間でし
かも反射電子線が通過する経路5の所定の位置に、出し
入れが可能な移動性を有し、任意の場所でXYZの三次
元方向の位置調整並びに2軸傾斜角調整制御が可能な機
構を具備していることを特徴とする。
In the scanning backscattered electron microscope of the second invention, the electron mirror can be taken in and out between the sample and the electron detector and at a predetermined position of the path 5 through which the backscattered electron beam passes. It is characterized by being provided with a mechanism that is mobile and that can perform position adjustment in the three-dimensional XYZ directions and biaxial tilt angle adjustment control at any location.

【0008】第三の発明の走査型反射電子顕微鏡は、前
記電子検出器・エネルギーアナライザーが磁場偏向型、
静電偏向型、シリンドリカル・ミラー型並びに阻止電位
型の電子エネルギーアナライザーのいずれでも良く、ア
ナライザーに汎用性のある事を特徴とする走査型反射電
子顕微鏡を提供するものである。
In the scanning reflection electron microscope of the third invention, the electron detector / energy analyzer is a magnetic field deflection type,
It is possible to use any of electrostatic deflection type, cylindrical mirror type, and blocking potential type electron energy analyzers, and to provide a scanning backscattered electron microscope characterized by versatility in analyzers.

【0009】[0009]

【実施例】以下、本発明の実施例について図面を参照し
て詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0010】図1は第1,第2の発明を適用した実施例
の走査型反射電子顕微鏡の構成を示す図である。
FIG. 1 is a diagram showing the structure of a scanning reflection electron microscope of an embodiment to which the first and second inventions are applied.

【0011】本実施例においては、電子銃1により試料
5に向って照射された一次電子4は、まず一次電子の収
束レンズ2で絞られ、一次電子走査電源から一次電子の
走査コイル3で加速磁場を形成し、漸次一次電子を加速
させて得られた一次電子4が試料5に照射され、弾性散
乱を起しても一次電子4の所定の運動エネルギーを失わ
ずに反射された反射電子15と共に一次電子が非弾性散
乱を起こして、一次電子の所定の運動エネルギー以下に
エネルギーを損失した、エネルギー損失電子16の両者
を一次電子線加速電圧V0 (例えばV0 =20Kvolt
あるいはV0 =200Kvolt)より極微小差で低い電圧
V(例えばV=19.9 volt ,V0 =20Kvolt、あ
るいはV=199 volt ,V0 =200Kvolt)を|V
0 |>|V|の範囲内でマイナスバイアスを印加した電
子ミラーで反射電子とエネルギー損失電子の両者をそれ
ぞれ分離する機能を有する事になる。
In the present embodiment, the primary electrons 4 irradiated toward the sample 5 by the electron gun 1 are first focused by the primary electron converging lens 2 and accelerated by the primary electron scanning power supply 3 by the primary electron scanning coil 3. A reflected electron 15 which is reflected by the primary electron 4 obtained by forming a magnetic field and gradually accelerating the primary electron and irradiating the sample 5 without losing a predetermined kinetic energy of the primary electron 4 even if elastic scattering occurs. At the same time, the primary electrons undergo inelastic scattering and lose energy below a predetermined kinetic energy of the primary electrons. Both of the energy loss electrons 16 are subjected to the primary electron beam acceleration voltage V 0 (for example, V 0 = 20 Kvolt).
Alternatively, a voltage V (for example, V = 19.9 volt, V 0 = 20 Kvolt, or V = 199 volt, V 0 = 200 Kvolt) lower than V 0 = 200 Kvolt by an extremely small difference is used as | V
An electron mirror to which a negative bias is applied within the range of 0 |> | V | has a function of separating both reflected electrons and energy loss electrons.

【0012】そこで所定の一次電子加速電圧(V0 )よ
り極微小差で低い電圧(V)を印加された電子ミラー
は、所定の一次電子の運動エネルギー(eV0 )を有す
る弾性散乱をして反射してきた反射電子は電子ミラーを
透過するする事となり、この反射電子は検出器6で検出
され、さらに反射電子15の計測信号は、増幅器7で増
幅され(試料表面内電子強度分布を示す信号として示
す)反射電子像として観察用CRT11に一次電子の走
査と同期して描画する事が可能となる。もう一方の前記
電子ミラーで反射された非弾性散乱・エネルギー損失電
子16はエネルギーアナライザー8で電子のエネルギー
スペクトルを計測した後、増幅器で増幅されエネルギー
損失電子像として、観察用CRT12に任意のエネルギ
−を保持したエネルギー損失電子のみの走査出力信号と
して(試料表面内分布信号として示す)エネルギー損失
電子像として一次電子走査と同期して同時に描画する事
が可能となった。
Therefore, the electron mirror applied with a voltage (V) lower than the predetermined primary electron acceleration voltage (V 0 ) by a very small difference causes elastic scattering having the kinetic energy (eV 0 ) of the predetermined primary electrons. The reflected electrons that have been reflected are transmitted through the electron mirror, the reflected electrons are detected by the detector 6, and the measurement signal of the reflected electrons 15 is amplified by the amplifier 7 (a signal indicating the electron intensity distribution on the sample surface). It is possible to draw a reflected electron image on the CRT 11 for observation in synchronization with the scanning of primary electrons. The inelastic scattering / energy loss electron 16 reflected by the other electron mirror is measured by the energy analyzer 8 for the energy spectrum of the electron, and then amplified by an amplifier to be an energy loss electron image, and an arbitrary energy is displayed on the CRT 12 for observation. It is possible to simultaneously write in synchronization with the primary electron scanning as an energy loss electron image (shown as a distribution signal in the sample surface) as a scan output signal of only the energy loss electrons that have held.

【0013】以上により構成された装置として、検査型
電子顕微鏡が提供された。
An inspection electron microscope is provided as an apparatus constructed as described above.

【0014】又、この装置の計測プロセス並びに役割に
関して説明すると加速電圧V0 により所定の運動エネル
ギーeV0 を有する一次電子4が試料面5に当って、弾
性散乱により反射された反射電子14が発生する。この
大部分の反射電子14は一次電子4に等しい運動エネル
ギーeV0 を有している。
The measurement process and role of this apparatus will be described. The primary electron 4 having a predetermined kinetic energy eV 0 hits the sample surface 5 by the acceleration voltage V 0 , and the reflected electron 14 reflected by elastic scattering is generated. To do. Most of the reflected electrons 14 have a kinetic energy eV 0 equal to that of the primary electron 4.

【0015】この電子強度の試料表面内分布を求めるの
が従来からある走査型反射電子顕微鏡である。
It is a conventional scanning reflection electron microscope that determines the distribution of the electron intensity on the surface of the sample.

【0016】そこで本発明では、反射電子14とは別に
一次電子の加速電圧で、所定の運動エネルギーeV0
有する一次電子線が試料5に照射される事により非弾性
散乱を起して一次電子が本来保持している所定の運動エ
ネルギーeV0 以下のエネルギーに減少されたエネルギ
ー損失電子8を電子ミラーにより反射電子と分離し、一
次電子からエネルギー損失したエネルギー損失電子8を
空間に分離することが出来。これによってエネルギー損
失電子8はエネルギー損失分光計測により得られた任意
の運動エネルギーeVを保持した電子のみのスペクトル
信号を走査,積算し、エネルギー損失電子像としてCR
T上に描画させる事により試料の電子状態や組成,結晶
状態、アモルファス状態を知り、ケミカル・シフトによ
り化学結合状態を知る事が出来る。
Therefore, in the present invention, in addition to the reflected electrons 14, the primary electron beam having a predetermined kinetic energy eV 0 is applied to the sample 5 at the acceleration voltage of the primary electrons to cause inelastic scattering to cause the primary electrons. The energy loss electron 8 reduced to an energy equal to or lower than the predetermined kinetic energy eV 0 originally held by the electron can be separated from the reflected electron by the electron mirror, and the energy loss electron 8 which has energy loss from the primary electron can be separated into space. Done. As a result, the energy-loss electron 8 scans and integrates the spectrum signal of only the electron holding the arbitrary kinetic energy eV obtained by the energy-loss spectroscopy measurement, and CR is obtained as the energy-loss electron image.
By drawing on T, the electronic state, composition, crystalline state, and amorphous state of the sample can be known, and the chemical bond state can be known by chemical shift.

【0017】ここでは、これによりエネルギー損失電子
像が試料面内でのある元素あるいは電子状態分布状態図
を得ることで、試料面内の電子状態や組成,結晶状態,
アモルファス状態を調べる事が出来る。
Here, an energy loss electron image is obtained from this to obtain a certain element or electronic state distribution state diagram in the sample plane, whereby the electronic state, composition, crystalline state,
You can check the amorphous state.

【0018】図2は電子ミラー13部分の構造と動作・
原理を示す図表である。
FIG. 2 shows the structure and operation of the electronic mirror 13.
It is a chart showing the principle.

【0019】三枚グリッドの網平面状の電極17,19
には接地電圧(0volt)とし、網平面状の電極18は網
平面状の電極17,19に挟まれており、一次電子線の
所定の加速電圧V0 (例えば20KVあるいは100K
V)とした時、同電圧値V0 (20Kvolt)より極微小
差低い電圧V(例えばV=19.9Kvolt,V0 =20
Kvoltあるいは、V=99.9volt,V0 =100Kvo
lt)にし同期して印加し、一次電子加速電圧に応じて任
意に変化させることが可能である事が特徴で、網平面状
電極18に電圧|V|<|V0 |の範囲にマイナス電圧
を印加して、電子ミラーを形成し、一次電子線の所定の
運動エネルギーV0 に同値の反射電子は網平面状の電極
17と18の間で方向が変化し、やがて18を通過した
後に18と19の間で16方向と直角の15方向に方向
変換し、例えばV=19.9voltの電圧を印加した電子
ミラーを透過し15方向に出て行き、電子検出器で検出
されると共に、エネルギー損失電子は電子ミラーにより
網平面状の電極17と18の間の電界により方向を変え
て16方向に反射され、エネルギー損失電子をエネルギ
ーアナライザでエネルギースペクトル分光が計測され
る。これによって、一次電子線の加速電圧V0 の変化と
同期して電子ミラーの網平面状電極18の電圧を|V|
<|V0 |範囲内で変化させることで、反射電子の最大
エネルギーを任意に設定制御する事も可能であり、エネ
ルギー損失電子の最大エネルギーを制限制御出来、eV
0 以下の任意の運動エネルギーeVを保有するエネルギ
ー損失電子の反射操作並びに分離操作が可能で基準を任
意に設定する事も可能な事を特徴とする。
Three-plane grid net-shaped electrodes 17, 19
Is set to a ground voltage (0 volt), and the net-planar electrode 18 is sandwiched between the net-planar electrodes 17 and 19, and a predetermined acceleration voltage V 0 of the primary electron beam (for example, 20 KV or 100 K).
V), a voltage V having an extremely small difference from the same voltage value V 0 (20 Kvolt) (for example, V = 19.9 Kvolt, V 0 = 20).
Kvolt or, V = 99.9volt, V 0 = 100Kvo
lt) and applied in synchronism with it, and can be arbitrarily changed according to the primary electron accelerating voltage. A negative voltage in the range of voltage | V | <| V 0 | Is applied to form an electron mirror, and the direction of the backscattered electrons having the same value as the predetermined kinetic energy V 0 of the primary electron beam changes between the net-plane electrodes 17 and 18, and eventually passes 18 and then 18 Between 15 and 19 is converted into 15 directions at right angles to the 16 directions, and for example, it passes through an electron mirror to which a voltage of V = 19.9 volt is applied and exits in 15 directions. Lost electrons are reflected by the electron mirror in 16 directions by changing the direction due to the electric field between the net-shaped electrodes 17 and 18, and the energy lost electrons are subjected to energy spectrum spectroscopy with an energy analyzer. As a result, the voltage of the net plane electrode 18 of the electron mirror is | V | in synchronization with the change of the acceleration voltage V 0 of the primary electron beam.
By changing it within the range of <| V 0 |, the maximum energy of the reflected electrons can be arbitrarily set and controlled, and the maximum energy of the energy-loss electrons can be limitedly controlled.
It is characterized in that it is possible to perform reflection operation and separation operation of energy loss electrons having an arbitrary kinetic energy eV of 0 or less, and to set an arbitrary reference.

【0020】これによって一次電子線の走査に同期し
て、反射電子15の強度信号は増幅器7で増幅され反射
電子像がCRT11上に描画されると同時にエネルギー
損失電子16の任意の運動エネルギーeVのエネルギー
損失電子像がCRT12上に描画する事が可能となった
走査型反射電子顕微鏡を提供した。
As a result, in synchronization with the scanning of the primary electron beam, the intensity signal of the backscattered electron 15 is amplified by the amplifier 7 so that the backscattered electron image is drawn on the CRT 11, and at the same time, the kinetic energy eV of the energy loss electron 16 is increased. Provided is a scanning reflection electron microscope capable of drawing an energy loss electron image on a CRT 12.

【0021】[0021]

【考案の効果】以上のように本発明では、反射電子像と
エネルギー損失電子像を同時に観察出来るため試料表面
の結晶性と組成や電子状態ケミカルシフトによる化学結
合状態、アモルファス状態との相互関係を解析する上で
究めて有効である。
As described above, according to the present invention, since the backscattered electron image and the energy loss electron image can be observed simultaneously, the correlation between the crystallinity of the sample surface and the chemical bonding state due to the chemical shift or the electronic state chemical shift, and the amorphous state is shown. It is extremely effective for analysis.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1,第2の発明を適用した実施例の走査型反
射電子顕微鏡の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a scanning backscattered electron microscope of an embodiment to which the first and second inventions are applied.

【図2】電子ミラー部分の構造と動作原理を示す図であ
る。
FIG. 2 is a diagram showing the structure and operation principle of an electronic mirror portion.

【符号の説明】[Explanation of symbols]

1 一次電子を出射する電子鏡 2 一次電子の収束レンズ 3 一次電子の走査コイル 4 一次電子 5 試料 6 反射電子の検出器 7 反射電子の増幅器 8 エネルギー損失電子のエネルギーアナライザー 9 エネルギー損失電子の増幅器 10 走査電源 11 反射電子像観察用CRT 12 エネルギー損失電子像観察用CRT 13 電子ミラー 14 試料表面内での反射した反射電子 15 試料表面内で一次電子が弾性散乱を起して反射し
てきた反射電子が電子ミラーを通過直進した反射電子 16 試料表面内で一次電子が非弾性散乱を起したため
に生じたエネルギー損失電子が電子ミラーで反射され偏
向されたエネルギー損失電子 17 接地電圧(電圧0volt) の網平面状電極(三枚グ
ラッドの電子ミラーにおいて) 18 一次電子の加速電圧V0 より極微小差で低い|V
0 |>|V|電圧を印加した三枚グラッドの中央網平面
状電極(V) 19 接地電圧(電圧0volt)の網平面状電極 20 電子加速・走査・発生部 21 電子分離部 22 制御・計測・映像形成部
1 Electron Mirror for Emitting Primary Electrons 2 Convergence Lens for Primary Electrons 3 Scanning Coil for Primary Electrons 4 Primary Electrons 5 Sample 6 Detector for Backscattered Electrons 7 Amplifier for Backscattered Electrons 8 Energy Analyzer for Energy Loss Electrons 9 Amplifier for Energy Loss Electrons 10 Scanning power supply 11 CRT for backscattered electron image observation 12 CRT for energy loss electron image observation 13 Electronic mirror 14 Reflected electron reflected on the sample surface 15 Reflected electron reflected by primary electron elastically scattered on the sample surface Reflected electrons that have passed straight through the electron mirror 16 Energy loss electrons caused by inelastic scattering of primary electrons on the sample surface Electrons are reflected by the electron mirror and deflected Energy loss electrons 17 Ground plane (voltage 0 volt) -Shaped electrode (in an electron mirror of three-blade) 18 Very small from the acceleration voltage V 0 of primary electrons Low with a small difference | V
0 |> | V | Central grid plane electrode (V) of three-grad to which voltage is applied 19 Mesh plane electrode with ground voltage (voltage 0 volt) 20 Electron acceleration / scanning / generation unit 21 Electron separation unit 22 Control / measurement・ Image formation department

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年10月18日[Submission date] October 18, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】以上により構成された装置として、走査型
反射電子顕微鏡が提供された。
A scanning type device having the above-mentioned structure
A backscattered electron microscope was provided.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】[0021]

【発明の効果】以上のように本発明では、反射電子像と
エネルギー損失電子像を同時に観察出来るため試料表面
の結晶性と組成や電子状態ケミカルシフトによる化学結
合状態、アモルファス状態との相互関係を解析する上で
究めて有効である。
As described above, in the present invention, since the backscattered electron image and the energy loss electron image can be observed at the same time, the correlation between the crystallinity of the sample surface and the chemical bonding state or the amorphous state due to the composition or the electronic state chemical shift is observed. It is extremely effective for analysis.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】符号の説明[Correction target item name] Explanation of code

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【符号の説明】 1 一次電子を出射する電子 2 一次電子の収束レンズ 3 一次電子の走査コイル 4 一次電子 5 試料 6 反射電子の検出器 7 反射電子の増幅器 8 エネルギー損失電子のエネルギーアナライザー 9 エネルギー損失電子の増幅器 10 走査電源 11 反射電子像観察用CRT 12 エネルギー損失電子像観察用CRT 13 電子ミラー 14 試料表面内での反射した反射電子 15 試料表面内で一次電子が弾性散乱を起して反射し
てきた反射電子が電子ミラーを通過直進した反射電子 16 試料表面内で一次電子が非弾性散乱を起したため
に生じたエネルギー損失電子が電子ミラーで反射され偏
向されたエネルギー損失電子 17 接地電圧(電圧0volt) の網平面状電極(三枚グ
ラッドの電子ミラーにおいて) 18 一次電子の加速電圧V0 より極微小差で低い|V
0 |>|V|電圧を印加した三枚グラッドの中央網平面
状電極(V) 19 接地電圧(電圧0volt)の網平面状電極 20 電子加速・走査・発生部 21 電子分離部 22 制御・計測・描画部
[Explanation of symbols] 1 Electron gun for emitting primary electrons 2 Convergence lens for primary electrons 3 Scanning coil for primary electrons 4 Primary electrons 5 Sample 6 Detector for backscattered electrons 7 Amplifier for backscattered electrons 8 Energy analyzer for energy loss 9 Energy Amplifier for loss electron 10 Scanning power supply 11 CRT for observation of backscattered electron image 12 CRT for observation of energy loss electron image 13 Electron mirror 14 Reflected electron reflected on sample surface 15 Primary electron is reflected on the sample surface by elastic scattering Backscattered electrons that have passed through the electron mirror and travel straight forward. 16 Energy loss electrons caused by inelastic scattering of primary electrons on the sample surface. Energy loss electrons reflected by the electron mirror and deflected. 17 Ground voltage (voltage 0 volt) mesh plane electrode (in three-mirror electron mirror) 18 Acceleration of primary electrons Very low in the minute difference from the pressure V 0 | V
0 |> | V | Central grid plane electrode (V) 19 of three glads to which voltage is applied 19 Mesh plane electrode with ground voltage (voltage 0 volt) 20 Electron acceleration / scanning / generation unit 21 Electron separation unit 22 Control / measurement・Drawing part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 所定の運動エネルギーを有した一次電子
線を試料表面の所定の領域に、所定の角度で照射するこ
とにより、前記試料表面から、一次電子自身が弾性散乱
によりエネルギーを失なわず反射されてきた反射電子
と、一次電子自身が非弾性散乱により、エネルギー損失
し、所定の運動エネルギー以下のエネルギーとなったエ
ネルギー損失電子とを生じさせる電子加速・走査・発生
部と前記反射電子が直進し、前記反射電子の検出器で検
出され、その電子信号は反射電子像としてCRT上に描
画される計測・描画部で構成された走査型反射電子顕微
鏡において、前記反射電子と、前記エネルギー損失電子
が前記試料と前記反射電子の検出器との間で、しかも反
射電子線が通過する経路上に設置され、任意の一次電子
加速電圧と微小差減の所定のマイナスバイアス電圧を印
加された電子ミラーにより分離される電子分離部と、前
記電子ミラーで反射され、分離された前記エネルギー損
失電子がエネルギーアナライザーよりエネルギー損失分
光計測され、任意のエネルギーを持つ電子のみの信号に
よりエネルギー損失電子像を一次電子線の走査と同期さ
せて、CRT上に描画すると同時に、前記ミラーを透過
直進した前記反射電子が前記電子検出器で検出され、そ
の電子信号は反射電子像として一次電子線と同期させ
て、CRT上に描画される制御・計測・描画部を付加し
て構成されることを特徴とする走査型反射電子顕微鏡。
1. A primary electron beam having a predetermined kinetic energy is irradiated onto a predetermined region of a sample surface at a predetermined angle so that the primary electron itself does not lose energy by elastic scattering from the sample surface. The electron acceleration / scanning / generating unit and the reflected electrons that cause the reflected electrons that have been reflected and the energy-loss electrons whose primary electrons themselves have undergone energy loss due to inelastic scattering to have energy below a predetermined kinetic energy. In the scanning backscattered electron microscope composed of a measurement / drawing unit, which travels straight, is detected by the backscattered electron detector, and the electron signal is drawn on the CRT as a backscattered electron image, the backscattered electrons and the energy loss Electrons are installed between the sample and the detector of the backscattered electrons, and further on a path through which the backscattered electron beam passes, and an arbitrary primary electron acceleration voltage and a small difference An electron separation unit separated by an electron mirror to which a predetermined negative bias voltage is applied, and the energy loss electrons reflected and separated by the electron mirror are subjected to energy loss spectroscopy measurement by an energy analyzer, and electrons having an arbitrary energy. The energy loss electron image is drawn on the CRT in synchronism with the scanning of the primary electron beam by the only signal, and at the same time, the backscattered electrons transmitted straight through the mirror are detected by the electron detector, and the electron signal is the backscattered electrons. A scanning backscattered electron microscope characterized by being configured by adding a control / measurement / drawing unit drawn on a CRT in synchronism with a primary electron beam as an image.
【請求項2】 請求項1に記載の走査型反射電子顕微鏡
において、前記電子ミラーが、前記試料と前記電子検出
器との間で、しかも反射電子線が通過する経路上の所定
の位置に、出し入れが可能な移動性を有し、任意の場所
でXYZの三次元方向の位置調整並びに2軸傾斜角調整
制御が可能な機構を具備していることを特徴とする走査
型反射電子顕微鏡。
2. The scanning reflection electron microscope according to claim 1, wherein the electron mirror is located between the sample and the electron detector, and at a predetermined position on a path along which a reflected electron beam passes. A scanning backscattered electron microscope having a mechanism capable of moving in and out, and having a mechanism capable of adjusting the position in the three-dimensional directions of XYZ and adjusting the biaxial tilt angle at an arbitrary position.
【請求項3】 請求項1に記載の走査型反射電子顕微鏡
において、前記電子検出器並びにエネルギーアナライザ
ーが磁場偏向型、静電偏向型、シリンドリカル・ミラー
型並びに阻止電位型の電子エネルギーアナライザーのい
ずれでも良く、アナライザーに汎用性のある事を特徴と
する走査型反射電子顕微鏡。
3. The scanning backscattered electron microscope according to claim 1, wherein the electron detector and the energy analyzer are any one of a magnetic field deflection type, an electrostatic deflection type, a cylindrical mirror type and a blocking potential type electron energy analyzer. It is a scanning backscattered electron microscope characterized by its versatility as an analyzer.
JP3269739A 1991-10-17 1991-10-17 Scanning reflecting electron microscope Pending JPH05109379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3269739A JPH05109379A (en) 1991-10-17 1991-10-17 Scanning reflecting electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3269739A JPH05109379A (en) 1991-10-17 1991-10-17 Scanning reflecting electron microscope

Publications (1)

Publication Number Publication Date
JPH05109379A true JPH05109379A (en) 1993-04-30

Family

ID=17476489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3269739A Pending JPH05109379A (en) 1991-10-17 1991-10-17 Scanning reflecting electron microscope

Country Status (1)

Country Link
JP (1) JPH05109379A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7022986B2 (en) 2002-01-09 2006-04-04 Hitachi High-Technologies Corporation Apparatus and method for wafer pattern inspection
WO2010125754A1 (en) * 2009-04-28 2010-11-04 株式会社 日立ハイテクノロジーズ Composite charged particle radiation device
WO2011118744A1 (en) * 2010-03-26 2011-09-29 株式会社日立ハイテクノロジーズ Composite charged-particle-beam apparatus
JP2011249811A (en) * 2010-05-28 2011-12-08 Kla-Tencor Corp Reflection electron beam projection lithography using exb separator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7022986B2 (en) 2002-01-09 2006-04-04 Hitachi High-Technologies Corporation Apparatus and method for wafer pattern inspection
US7982188B2 (en) 2002-01-09 2011-07-19 Hitachi High-Technologies Corporation Apparatus and method for wafer pattern inspection
WO2010125754A1 (en) * 2009-04-28 2010-11-04 株式会社 日立ハイテクノロジーズ Composite charged particle radiation device
JP2010257855A (en) * 2009-04-28 2010-11-11 Hitachi High-Technologies Corp Compound charged particle beam device
US8455820B2 (en) 2009-04-28 2013-06-04 Hitachi High-Technologies Corporation Composite charged particle beams apparatus
WO2011118744A1 (en) * 2010-03-26 2011-09-29 株式会社日立ハイテクノロジーズ Composite charged-particle-beam apparatus
JP2011204570A (en) * 2010-03-26 2011-10-13 Hitachi High-Technologies Corp Composite charged particle beam device
US8581219B2 (en) 2010-03-26 2013-11-12 Hitachi High-Technologies Corporation Composite charged-particle-beam apparatus
JP2011249811A (en) * 2010-05-28 2011-12-08 Kla-Tencor Corp Reflection electron beam projection lithography using exb separator

Similar Documents

Publication Publication Date Title
KR100382026B1 (en) Scanning Electron Microscope
US3626184A (en) Detector system for a scanning electron microscope
US4618767A (en) Low-energy scanning transmission electron microscope
US4211924A (en) Transmission-type scanning charged-particle beam microscope
EP0377446B1 (en) Surface analysis method and apparatus
US6548810B2 (en) Scanning confocal electron microscope
US5008537A (en) Composite apparatus with secondary ion mass spectrometry instrument and scanning electron microscope
US2418029A (en) Electron probe analysis employing X-ray spectrography
TWI559356B (en) Apparatus and method of applying small-angle electron scattering to characterize nanostructures on opaque substrate
US2257774A (en) Electronic-optical device
KR100443761B1 (en) Charged particle device
US4358680A (en) Charged particle spectrometers
JPS59501384A (en) Electron beam device and electron collector therefor
US3714424A (en) Apparatus for improving the signal information in the examination of samples by scanning electron microscopy or electron probe microanalysis
US4097740A (en) Method and apparatus for focusing the objective lens of a scanning transmission-type corpuscular-beam microscope
JPH05109379A (en) Scanning reflecting electron microscope
US5034903A (en) Apparatus and method for measuring the time evolution of carriers propogating within submicron and micron electronic devices
Chouffani et al. Determination of electron beam parameters by means of laser-Compton scattering
US3909610A (en) Apparatus for displaying the energy distribution of a charged particle beam
US2418228A (en) Electronic microanalyzer
JP2947440B2 (en) Simultaneous measurement of electron energy loss
JPH06310076A (en) Transmission type scanning electron beam device and sample density measuring method
US3488494A (en) Ion microscope the image of which represents the intensity of secondary radiation as a function of the position of the primary ions causing the radiation
JPH0269692A (en) Spherical mirror analyzer of energy of charged particle beam
Darlington et al. A magnetic prism spectrometer for a high voltage electron microscope