JPS62112902A - Feedwater controller for nuclear reactor - Google Patents

Feedwater controller for nuclear reactor

Info

Publication number
JPS62112902A
JPS62112902A JP60250782A JP25078285A JPS62112902A JP S62112902 A JPS62112902 A JP S62112902A JP 60250782 A JP60250782 A JP 60250782A JP 25078285 A JP25078285 A JP 25078285A JP S62112902 A JPS62112902 A JP S62112902A
Authority
JP
Japan
Prior art keywords
water level
reactor
signal
flow rate
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60250782A
Other languages
Japanese (ja)
Inventor
由雄 朝倉
浅見 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60250782A priority Critical patent/JPS62112902A/en
Publication of JPS62112902A publication Critical patent/JPS62112902A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子炉給水制御装置に係り、特に再循環ポン
プ速度(又はそれと同等な再循環ポンプ流量又は炉心流
量)が急激に変化した時の原子炉水位変動を抑制するに
好適な給水制御装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a nuclear reactor feed water control system, particularly when the recirculation pump speed (or equivalent recirculation pump flow rate or core flow rate) changes suddenly. The present invention relates to a water supply control device suitable for suppressing fluctuations in reactor water level.

【発明の背景〕[Background of the invention]

第2図に従来のBWR形原子力発電所の給水及び再循環
流量制御装置を示す。原子炉1で発生しく1) た蒸気は主蒸気管2を通って加減弁3整経て主タービン
4に入り、機械エネルギーを発生して、復水器5で凝縮
され水に戻る。この水は給水ポンプ6A、6B、6G、
6Dより成る給水ポンプ6によって、給水配管7を経て
再び原子炉1に戻される。
FIG. 2 shows a conventional BWR type nuclear power plant water supply and recirculation flow control system. The steam generated in the reactor 1 passes through the main steam pipe 2, through the control valve 3, and enters the main turbine 4, where it generates mechanical energy and is condensed in the condenser 5 and returned to water. This water is supplied by water pumps 6A, 6B, 6G,
The water is returned to the reactor 1 via a water supply pipe 7 by a water supply pump 6 made of 6D.

原子炉給水流量制御系が設けられている。BWR一形′
原子力発電所における最も重要な制御系の−っである給
水流量制御系の主たる目的は、原子炉水位8をある定め
られた最適値に一定に保つことである。主蒸気流量信号
10と給水流量信号11との差信号にミスマツ手ゲイン
12を乗算し九ミスマツチ流量信号13と検出器9によ
って検出した原子炉水位との和信号を原子炉水位設定値
(Ref)から引いた差信号14が得られる。この差信
号14は給水主制御器15で比例・積分(PI)制御演
算が行われ、関数発生器17で補正された信号が給水ポ
ンプタービン制御器18に入る。タービン制御器出力は
加減弁20により、給水タービン19の回転数制御を行
い、給水ポンプ6の流量が調節される。給水ポンプは通
常2台がタービン駆動(6A、6B)で各々55%程度
の容量を有し、常時2台で運転される。更に、モータ駆
動の給水ポンプ(6G、6D)が待機系として設備され
ている。モータ駆動ポンプの容量は1台当り27.5%
の容量をもつ。
A reactor feed water flow control system is provided. BWR type 1'
The main purpose of the feed water flow rate control system, which is one of the most important control systems in a nuclear power plant, is to keep the reactor water level 8 constant at a predetermined optimum value. The difference signal between the main steam flow rate signal 10 and the feed water flow rate signal 11 is multiplied by the mismatch gain 12, and the sum signal of the nine mismatch flow rate signal 13 and the reactor water level detected by the detector 9 is determined as the reactor water level setting value (Ref). A difference signal 14 is obtained. This difference signal 14 is subjected to a proportional-integral (PI) control calculation in the feedwater main controller 15 , and the signal corrected by the function generator 17 is input to the feedwater pump turbine controller 18 . The turbine controller output controls the rotational speed of the water supply turbine 19 using the regulating valve 20, and the flow rate of the water supply pump 6 is adjusted. Two water supply pumps are normally driven by turbines (6A, 6B), each having a capacity of about 55%, and two pumps are always operated. Furthermore, motor-driven water supply pumps (6G, 6D) are installed as a standby system. The capacity of motor-driven pump is 27.5% per unit.
It has a capacity of

他方、原子炉再循環流量制御系は原子炉の再循環流量を
変えて原子炉出力を連続的に制御するために、設けられ
ている。再循環流量制御の一例は、1 ン第2図のように駆動モータ21.流体継手22゜交流
発電機23によるM/Gセットを構成し、流体継手のす
くい管(図示せず)位置を制御することによって、発電
機速度すなわち周波数を制御する。発電機の負荷は再循
環ポンプ25のモータ26であり、モータの周波数が連
続的に制御され炉心流量が変化する。制御系は再循環主
制御器27からの速度要求器28と発電機速度信号24
の偏差信号が速度制御器29でPI演算され、関数発生
器30で補正された信号が流体継手22のすくい管位置
信号となるように構成される。再循環ポンプ25.M/
Gセット、及び速度制御器29は1通常2系統より構成
される。
On the other hand, a reactor recirculation flow control system is provided to continuously control reactor power by varying the reactor recirculation flow rate. An example of recirculation flow rate control is to use a drive motor 21.1 as shown in FIG. A fluid coupling 22 constitutes an M/G set with an alternator 23, and the generator speed, ie, frequency, is controlled by controlling the position of the scoop pipe (not shown) of the fluid coupling. The load on the generator is the motor 26 of the recirculation pump 25, and the frequency of the motor is continuously controlled to change the core flow rate. The control system includes a speed requestor 28 from a recirculation main controller 27 and a generator speed signal 24.
The deviation signal is subjected to PI calculation by the speed controller 29, and the signal corrected by the function generator 30 is configured to become the scoop pipe position signal of the fluid coupling 22. Recirculation pump 25. M/
The G set and the speed controller 29 are usually composed of two systems.

ところで、一般に、自動周波数制御(AFC)運転では
、例えば周期1〜5分の間隔で変化幅±5%程度の負荷
要求信号である自動周波数制御信号が負荷要求信号とし
て原子炉再循環流量制御系に入力され、これにより再循
環流量、炉心流量及び主蒸気流量信号が変化し、タービ
ン発電機出力が自動周波制御信号に追従するようになる
By the way, in general, in automatic frequency control (AFC) operation, an automatic frequency control signal, which is a load request signal with a variation width of about ±5% at intervals of 1 to 5 minutes, is used as a load request signal in the reactor recirculation flow control system. is input, which changes the recirculation flow, core flow, and main steam flow signals, causing the turbine generator output to follow the automatic frequency control signal.

そして、この時、主蒸気流量信号13の増減に伴い給水
流量信号14も追従する形で増減するが、主蒸気流量が
変化してからそれに見合うだれの給水流量に変化させる
迄に、検出機構及び原子炉給水制御系での遅れがあるた
め給水流量の応答は遅れ、原子炉水位ξ3は第3図の曲
線aに示すように振動する。
At this time, as the main steam flow rate signal 13 increases or decreases, the water supply flow rate signal 14 also increases or decreases in a manner that follows, but the detection mechanism and Since there is a delay in the reactor water supply control system, the response of the water supply flow rate is delayed, and the reactor water level ξ3 oscillates as shown by curve a in FIG. 3.

すなわち、第3図において横軸には時間が、縦軸には原
子炉水位がとられており、曲線すで示す矩形状の自動周
波数制御信号が入力されると原子炉水位は曲線aのよう
に変化する。
In other words, in Fig. 3, the horizontal axis shows time and the vertical axis shows the reactor water level, and when the rectangular automatic frequency control signal shown in the curve is input, the reactor water level will change as shown in curve a. Changes to

この原子炉水位変動幅は解析によれば、約±5%の負荷
要求変化幅に対し、約±6G程度であるが、少なくとも
2〜3■の原子炉水位計9の測定誤差を考慮すると、基
準水位より約11G下方に設定される水位L4での水位
低アラームや、基準水位より約9■」二方に設定される
水位L7での水位高アラームが発生する恐れがあり、こ
の場合には自動周波数制御信号が入力されるたびにアラ
ーム、が発生するという恐れがある。
According to the analysis, this reactor water level fluctuation range is approximately ±6G for a load request fluctuation range of approximately ±5%, but considering the measurement error of the reactor water level gauge 9 of at least 2 to 3 cm, There is a risk of a low water level alarm occurring at water level L4, which is set approximately 11G below the reference water level, or a high water level alarm occurring at water level L7, which is set approximately 9" below the reference water level. In this case, There is a risk that an alarm will occur every time the automatic frequency control signal is input.

一方、自動周波数制御信号が入力されると再循環ホペン
プ25.32の回転数が増減し、炉心流量が増減し、タ
ービン発電機出力が増減し、この時主蒸気流量の増減に
伴い給水流量も追従する形で増減するが、給水流量の応
答が遅いため原子炉水位変動幅が大きくなるという問題
がある。
On the other hand, when the automatic frequency control signal is input, the rotation speed of the recirculation hopper 25.32 increases or decreases, the core flow rate increases or decreases, the turbine generator output increases or decreases, and at this time, the feed water flow rate also increases or decreases as the main steam flow rate increases or decreases. Although it increases and decreases in a following manner, there is a problem that the reactor water level fluctuation range becomes large because the response of the feed water flow rate is slow.

この原子炉水位の変動を抑制する方法として、例えば特
開昭59−40200号公報に示されるように、原子炉
給水制御系において給水主制御器出力信号16にタービ
ン蒸気流量の微分信号を付加し、この信号により給水加
減弁の開度を制御するものが知られている。この方法は
、原子炉水位の変動をある程度抑制することはできるが
、制御信号がタービン蒸気流量の微分信号であるため、
応答が遅れ必ずしも原子炉水位を十分安定に制御できな
いことがある。
As a method of suppressing fluctuations in the reactor water level, for example, as shown in Japanese Patent Laid-Open No. 59-40200, a differential signal of the turbine steam flow rate is added to the main water supply controller output signal 16 in the reactor feed water control system. It is known that the opening degree of the water supply control valve is controlled using this signal. This method can suppress fluctuations in the reactor water level to some extent, but since the control signal is a differential signal of the turbine steam flow rate,
The response may be delayed and it may not always be possible to control the reactor water level in a sufficiently stable manner.

〔発明の目的〕[Purpose of the invention]

・本発明の目的は、自動周波数制御運転時に、原子炉水
位の不用な変動幅を極力小さくするようにした原子炉給
水制御装置を提供することにある。
- An object of the present invention is to provide a reactor water supply control device that minimizes the range of unnecessary fluctuations in the reactor water level during automatic frequency control operation.

〔発明の概要〕[Summary of the invention]

本発明は、再循環ポンプ速度(又はそれと同等な再循環
ポンプ流量又は炉心流量)の微分信号を原子炉給水制御
系の給水主制御器出力信号に補正信号として加えてやる
ことにより、主蒸気流量変化に先立って先行的に原子炉
水位制御信号を制御し、yX子炉水位の変動を最小にさ
せるようにした。
The present invention adds a differential signal of the recirculation pump speed (or the equivalent recirculation pump flow rate or core flow rate) to the feed water main controller output signal of the reactor feed water control system as a correction signal, thereby increasing the main steam flow rate. Prior to the change, the reactor water level control signal was controlled in advance to minimize fluctuations in the yX child reactor water level.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の実施例を示す。第2図の従来例と同一
記号は同一内容を示す。本実施例は、第1図に示す従来
の原子炉給水制御装置に破線で囲んだ原子炉水位設定調
節器100を付設することにより行われ、再循環ポンプ
速度33.34の信号の総和により算出した原子炉水位
設定要求信号35により原子炉給水制御系の給水主制御
器出力信号16に補正を加えた点に要部がある。これは
、再循環ポンプ速度検出器により再循環ポンプ速度33
.34を検出し、原子炉水位設定調節器100で、この
再循環ポンプ速度の総和の変化率を計算して出力する。
FIG. 1 shows an embodiment of the invention. The same symbols as in the conventional example in FIG. 2 indicate the same contents. This embodiment is implemented by attaching a reactor water level setting regulator 100 surrounded by a broken line to the conventional reactor water supply control system shown in FIG. The main part is that the reactor water level setting request signal 35 is used to correct the water supply main controller output signal 16 of the reactor water supply control system. This is determined by the recirculation pump speed 33 by the recirculation pump speed detector.
.. 34 is detected, and the reactor water level setting regulator 100 calculates and outputs the rate of change of the sum of the recirculation pump speeds.

再循環ポンプ速度の減少率を再循ポンプ流量の減少率に
ほぼ比例し、又炉心内ボイドの過渡時における増加量は
再循環流量の減少率にほぼ比例することがわかっている
ので、原子炉水位設定調節器100の出力35は再循環
ポンプ速度変動時に発生する原子炉水位変化量を推定し
た値であり、給水主制御器出力信号16と突き合せた結
果の出力信号は、原子炉水位に発生する外乱を考慮しそ
れを補償するように修正された実際の原子炉水位設定要
求信号となる。
It is known that the rate of decrease in recirculation pump speed is approximately proportional to the rate of decrease in recirculation pump flow rate, and that the amount of increase in voids in the core during transient periods is approximately proportional to the rate of decrease in recirculation flow rate. The output 35 of the water level setting regulator 100 is a value that estimates the amount of change in the reactor water level that occurs when the recirculation pump speed fluctuates, and the output signal as a result of comparing it with the water supply main controller output signal 16 is the value that indicates the amount of change in the reactor water level that occurs when the recirculation pump speed fluctuates. This is an actual reactor water level setting request signal that is modified to take into account and compensate for the disturbance that occurs.

第4図は本発明のより具体的な実施例であり、原子炉水
位設定調節器100の構成図を示す。この調節器100
は微分演算器110、信号制限器120より成る。微分
演算器110はA系再循環ポンプ速度信号33とB系再
循環ポンプ速度信号34の総和を取込んで不完全微分演
算を行って出力し、信号制限器1.20で定常運転状態
における微少信号をカッ1−するとともに、過大な信号
をカットする上下限信号制限を行って出力する。ここで
、微分演算器110の時定数T及びゲインK、信号制限
器120の信号カット設定値はシミュレーション解析や
実機試験において適切な値を求めることができる。信号
制限器120の出力35は給水主制御器出力信号16と
加算器で加え合わされ、修正原子炉水位設定要求信号と
して、関数発生器17に入力される。
FIG. 4 is a more specific embodiment of the present invention, and shows a configuration diagram of a reactor water level setting regulator 100. This regulator 100
consists of a differential calculator 110 and a signal limiter 120. The differential calculator 110 takes in the sum of the A-system recirculation pump speed signal 33 and the B-system recirculation pump speed signal 34, performs an incomplete differential calculation, and outputs the sum. In addition to cutting the signal, upper and lower signal limits are applied to cut excessive signals, and the signal is output. Here, appropriate values can be obtained for the time constant T and gain K of the differential calculator 110 and the signal cut setting value of the signal limiter 120 through simulation analysis or actual machine testing. The output 35 of the signal limiter 120 is added to the water supply main controller output signal 16 in an adder, and the result is input to the function generator 17 as a modified reactor water level setting request signal.

以上述べた実施例により、自動周波数制御運転時の応答
を第5図に示す。再循環流量要求信号の矩形状減少要求
により再循環ポンプ速度、再循環ポンプ流量はやや遅れ
て追従し減少するが、再循環ポンプ速度の変化率より算
出された先行補正水位要求償号35により、給水流量の
迅速かつ多大な低下を実現し、従って原子炉水位の上昇
は著しく小さくなる。又、再循環流量要求信号の矩形状
増加要求、ランプ状減少要求、ランプ状増加要求の場合
あるいは再循環ポンプトリップなど再循環流量の大幅変
動を伴なう外乱に対しても良好な原子炉水位制御特性が
実現できる。
FIG. 5 shows the response during automatic frequency control operation according to the embodiment described above. Due to the rectangular reduction request of the recirculation flow rate request signal, the recirculation pump speed and recirculation pump flow rate follow and decrease with a slight delay, but due to the advance correction water level request compensation number 35 calculated from the rate of change of the recirculation pump speed, A rapid and large reduction in the feed water flow rate is realized, and therefore the rise in the reactor water level is significantly reduced. In addition, a good reactor water level can be maintained even in the case of a rectangular increase request, ramp-like decrease request, ramp-like increase request of the recirculation flow rate request signal, or disturbances that cause large fluctuations in the recirculation flow rate, such as a recirculation pump trip. Control characteristics can be achieved.

第6図は原子炉水位設定調節器100の他の実施例であ
る。この調節器100は微分演算器130、関数発生器
150より成る。微分演算器130はA系再循環ポンプ
速度信号33とB系再循環ポンプ速度信号34の総和を
取込んで不完全微分演算を行って出力し、関数発生器1
50で第7図に示す如く信号変換を行って出力する。こ
こで、微分演算器130の特定数T及びゲインに関数発
生器150の関数形状はシミュレーション解析や実機試
験において適切な値を求めることができる。関数発生器
150の出力35は給水主制御器出力信号16と加算器
で加え合わされ、修正原子炉水位設定要求信号として、
関数発生器17に入力される。
FIG. 6 shows another embodiment of the reactor water level setting regulator 100. This regulator 100 consists of a differential calculator 130 and a function generator 150. The differential calculator 130 takes in the sum of the A-system recirculation pump speed signal 33 and the B-system recirculation pump speed signal 34, performs an incomplete differential calculation, and outputs it.
At 50, the signal is converted and output as shown in FIG. Here, appropriate values for the specific number T and gain of the differential calculator 130 and the function shape of the function generator 150 can be obtained through simulation analysis or actual machine testing. The output 35 of the function generator 150 is summed with the feed water main controller output signal 16 in an adder to form a corrected reactor water level setting request signal.
It is input to the function generator 17.

第7図は関数発生器150の実施例を示す。FIG. 7 shows an embodiment of the function generator 150.

以上の原子炉水位設定調節器100は一例であり例えば
計算機でプログラムを利用し時定数T。
The reactor water level setting regulator 100 described above is one example, and the time constant T can be set by using a computer program, for example.

ゲインKを原子炉出力状態により最適に変更する。The gain K is optimally changed depending on the reactor output state.

あるいは信号制限器、関数発生器の関数形状を連続的に
設定する等も可能である。
Alternatively, it is also possible to continuously set the function shapes of the signal limiter and function generator.

又、本実施例では原子炉水位設定調節器100の入力信
号を再循環ポンプ速度としたが、その他に再循環ポンプ
滴数、原子炉炉心流量をパラメータとして用いることも
できる。
Further, in this embodiment, the input signal of the reactor water level setting regulator 100 is the recirculation pump speed, but the number of drops of the recirculation pump and the reactor core flow rate may also be used as parameters.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、自動周波制御運転に伴う原子炉水位の
変動を大幅に抑制することが可能になり、転を実現する
ことができる。
According to the present invention, it is possible to significantly suppress fluctuations in the reactor water level due to automatic frequency control operation, and it is possible to realize rotation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の系統図、第2図は従来例の
系統図、第3図は第2図に示す給水制御装置により制御
した時の原子炉水位の変化を示すグラフ、第4図は第1
図で付設した原子炉水位設定調節器の構成図、第5図は
第1図に示す給水制御装置により制御した時の主要パラ
メータの応答図、第6図は第4図と異なる原子炉水位設
定調節器の構成図、第7図は第6図で付設した関数発生
器の関数形状例を示す線図である。 1・・・原子炉、15・・・給水主制御器、100・・
・原子炉水位設定調節器。
FIG. 1 is a system diagram of an embodiment of the present invention, FIG. 2 is a system diagram of a conventional example, and FIG. 3 is a graph showing changes in reactor water level when controlled by the water supply control device shown in FIG. Figure 4 is the first
Figure 5 is a diagram showing the response of the main parameters when controlled by the water supply control device shown in Figure 1. Figure 6 is a reactor water level setting different from Figure 4. FIG. 7 is a diagram showing an example of the function shape of the function generator attached in FIG. 6. 1... Nuclear reactor, 15... Water supply main controller, 100...
・Reactor water level setting regulator.

Claims (1)

【特許請求の範囲】[Claims] 1、原子炉圧力容器内水位を目標値に一定制御する水位
調節器を備えた原子炉給水制御装置において、上記原子
炉の再循環ポンプ速度を取込みその時間的な変化率を検
出する手段と、上記水位調節器の先行制御要素として上
記変化率に応じた水位要求信号を取込む遮断を付加した
ことを特徴とする原子炉給水制御装置。
1. In a reactor water supply control system equipped with a water level regulator that constantly controls the water level in the reactor pressure vessel to a target value, means for acquiring the recirculation pump speed of the reactor and detecting its rate of change over time; A nuclear reactor water supply control device characterized in that a cutoff for receiving a water level request signal according to the rate of change is added as a preliminary control element of the water level regulator.
JP60250782A 1985-11-11 1985-11-11 Feedwater controller for nuclear reactor Pending JPS62112902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60250782A JPS62112902A (en) 1985-11-11 1985-11-11 Feedwater controller for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60250782A JPS62112902A (en) 1985-11-11 1985-11-11 Feedwater controller for nuclear reactor

Publications (1)

Publication Number Publication Date
JPS62112902A true JPS62112902A (en) 1987-05-23

Family

ID=17212964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60250782A Pending JPS62112902A (en) 1985-11-11 1985-11-11 Feedwater controller for nuclear reactor

Country Status (1)

Country Link
JP (1) JPS62112902A (en)

Similar Documents

Publication Publication Date Title
US4748814A (en) Electric power generating plant
JPS62112902A (en) Feedwater controller for nuclear reactor
JP2515797B2 (en) Turbin controller
JPS62157598A (en) Controller for water level of nuclear reactor
JP3345773B2 (en) Plant automatic controller
JP3388320B2 (en) Container level control method and apparatus
JPS6140591A (en) Controller for recirculation flow rate of nuclear reactor
JPH0339279B2 (en)
JPS5833002A (en) Controller for feedwater of steam generator
JPS5927293A (en) Reactor power control device
JPS60205101A (en) Controller for temperature of steam in outlet for evaporatorof fast breeder reactor
JPS6180095A (en) Controller for water level of nuclear reactor
JPS639638B2 (en)
JPS61225696A (en) Turbine controller
JPS6176993A (en) Method and device for controlling feed water to nuclear reactor
JPS59116099A (en) Reactor water level control device
JPS633277B2 (en)
JPH0371677B2 (en)
JPH05142390A (en) Water supply control device
JPS63233398A (en) Nuclear-reactor output controller
JPS61134699A (en) Load follow-up controller for boiling water type nuclear power plant
JPS593297A (en) Reactor feedwater control device
JPS61110083A (en) Load follow-up controller for boiling water type nuclear power plant
JPS61295401A (en) Controller for feed pump
JPS61245091A (en) Regulator for output from nuclear reactor