JPS62112744A - Electrode material for electric discharge machining in water - Google Patents
Electrode material for electric discharge machining in waterInfo
- Publication number
- JPS62112744A JPS62112744A JP25235185A JP25235185A JPS62112744A JP S62112744 A JPS62112744 A JP S62112744A JP 25235185 A JP25235185 A JP 25235185A JP 25235185 A JP25235185 A JP 25235185A JP S62112744 A JPS62112744 A JP S62112744A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- powder
- electrode material
- discharge machining
- electric discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、水放電加工用電極材料に関し、更には、従来
の電極よりも水放電加工に適した型砕材料に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electrode material for water discharge machining, and more particularly to a crushed material that is more suitable for water discharge machining than conventional electrodes.
従来、放電加工はケロシン溶液内に被加工物を入れ、電
極として鋳造鋼材、グラファイト、銅タングステン等を
用いて行なわれてきた。加工液のケロシンには、■冷却
、■加工屑の輸送、■加工液の分解によって生成するパ
イログラフ ゛アイトが電極表面に析出して電極の消
耗を低減させる、等の作用がある。Conventionally, electric discharge machining has been carried out by placing a workpiece in a kerosene solution and using cast steel, graphite, copper-tungsten, or the like as an electrode. The kerosene in the machining fluid has the following effects: (1) cooling, (2) transporting machining debris, and (2) pyrographicite produced by decomposition of the machining fluid deposits on the electrode surface to reduce electrode wear.
とのケロシンを用いた放電加工は、火災発生の危険性が
あり、またケロシン加工液からアセチレン、エチレン、
メタン等のガス発生による環境上の問題があるので、近
年放電加工機の加工液として水が用いられつつある。Electric discharge machining using kerosene poses a risk of fire, and the kerosene machining fluid may contain acetylene, ethylene,
Since there are environmental problems due to the generation of gases such as methane, water has recently been used as a machining fluid in electric discharge machines.
加工液として水を用いた場合、水はケロシンにおける冷
却作用、加工屑の輸送作用は秦するが、パイログラファ
イトが電極に面へ析出せず、従来の放電加工用電極、特
に鋳jt鋼材、グラファイト等は消耗が敞しく実用に供
し難いという問題がある。When water is used as a machining fluid, water has a cooling effect on kerosene and a transporting effect on machining debris, but pyrographite does not precipitate on the surface of the electrode, making it difficult to use conventional electric discharge machining electrodes, especially cast JT steel materials, and graphite. etc. have the problem of being difficult to put to practical use due to their poor wear and tear.
また、銅タングステンは消耗度が比較的小さいが、大き
いサイズの物は製造の際に割れるので大きさに制限があ
り、嵩比重が/ダ〜76?/7と高く非常に重たく、加
工が困難であり、更にコストが高いという問題があり、
従って、水放電加工においても消耗度が低く、かつ、上
記銅タングステンにおける問題が解決された電極が求め
られていた。In addition, copper tungsten has relatively low wear and tear, but large ones break during manufacturing, so there is a limit to the size, and the bulk specific gravity is ~76? /7, it is extremely heavy, difficult to process, and also costly.
Therefore, there has been a need for an electrode that is less abrasive even in water discharge machining and that solves the problems associated with copper-tungsten.
本発明は、水放市、加工に適した電極を提供するもので
あり、その要旨は、銅粉15〜92体積チおよび炭素粉
末75〜3体fR%からなる原料粉を、理論密度の!!
チ以上に加熱加圧焼結してなる水放電加工用電極材料に
存する。The present invention provides an electrode suitable for water release and processing, and the gist thereof is to use raw material powder consisting of 15 to 92 volumes of copper powder and 75 to 3 parts fR% of carbon powder at a theoretical density. !
The present invention relates to an electrode material for water discharge machining which is sintered under heat and pressure.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
原料として用いる銅粉は、銅が粉末状となったものであ
ればよく、銅を溶融後噴露して得られたアトマイズ粉、
電解によって得られた電解銅粉、機械的粉砕粉等いずれ
でもよいが、焼結の容易さから電解銅粉が好ましい。ま
た、銅粉は平均粒径/〜コθμmのものが好ましい。The copper powder used as a raw material may be any powdered copper, including atomized powder obtained by melting copper and then spraying it.
Electrolytic copper powder obtained by electrolysis, mechanically pulverized powder, etc. may be used, but electrolytic copper powder is preferable because of ease of sintering. Further, it is preferable that the copper powder has an average particle size of /~θμm.
炭素粉末としては、人造および天然の黒鉛、コークス、
生コークス、仮焼コークス、カーボンブラック等粒状炭
素であればいずれでもよいが、特に生コークスの様に水
素原子が含有されたJIE M /77−2による揮発
分2〜70重量%のものの方が、後述する加熱加圧焼結
後の結合力が増すので好ましい。炭素粉末は、平均粒径
204m以下、特には7μm以下のものが適している。Carbon powders include artificial and natural graphite, coke,
Any granular carbon such as raw coke, calcined coke, or carbon black may be used, but it is especially preferable to use raw coke with a volatile content of 2 to 70% by weight according to JIE M /77-2 that contains hydrogen atoms. is preferable because it increases the bonding strength after heat and pressure sintering, which will be described later. Carbon powder having an average particle diameter of 204 m or less, particularly 7 μm or less is suitable.
銅粉?!〜97体積チ、好ましくにりθ〜97体積チを
炭素粉末15〜3体積チ、好ましくは10〜3体積チと
混合し、通常は可及的均一に混合分散させて原料粉とし
て理論密度のrsgr以上、好ましくはりθチ以上に加
熱加圧焼結して、目的とする電極材料が得られる。なお
、本発明において、体積チとは、銅粉および炭素粉の各
々について、使用した重量を真比重で割算して得られる
真の体積を基にした体積の割合を示し、また、理論密度
とは、原料である銅および炭素粉末の真比重を、その組
成比にて按分積算して得られた計算値を指す。Copper powder? ! ~97 volume chi, preferably 97 volume chi, is mixed with carbon powder 15 to 3 volume chi, preferably 10 to 3 volume chi, and usually mixed and dispersed as uniformly as possible to obtain a raw material powder with a theoretical density. The desired electrode material is obtained by heating and pressurizing sintering to a temperature of rsgr or higher, preferably θg or higher. In addition, in the present invention, volumetric refers to the volume ratio based on the true volume obtained by dividing the weight used by the true specific gravity for each of copper powder and carbon powder, and also refers to the theoretical density. refers to a calculated value obtained by proportionally integrating the true specific gravity of copper and carbon powder, which are raw materials, based on their composition ratios.
加熱加圧焼結は、得られた焼結晶の理論密度が上記値と
なればホットプレス法、ヒラピング法等の公知の方法は
いずれでも可能であるが、理論密度の95%以上の焼結
が容易であることからホットプレス法が好適である。こ
の場合は、通常面圧コθ〜!θθ船’ad、too〜/
100℃の温度範囲、好ましくは700〜ノ000℃の
範囲まで昇温してφ結を行なう。Heat and pressure sintering can be carried out by any known method such as hot pressing or sintering as long as the theoretical density of the obtained sintered crystal is within the above value. The hot press method is preferred because it is easy. In this case, the normal surface pressure is θ~! θθ ship'ad, too~/
The φ-curing is carried out by raising the temperature to a temperature range of 100°C, preferably a range of 700 to 000°C.
以上の方法によって、本発明の水放電加工用電極材料が
得られるが、本発明の電極材料は上記の加熱加圧焼結の
みによって最終製品である電極を得たものに限定されず
、該焼結の前に予備成、形を行なったもの等も包含する
。また、得られた雷、極材料はそのま1電極としても使
用できるが、更にコイニング四の成形を行なって最終製
品の電極とすることも可能である。The electrode material for water discharge machining of the present invention can be obtained by the above method, but the electrode material of the present invention is not limited to the electrode obtained as a final product only by the above-mentioned heating and pressure sintering. It also includes items that have been preformed or shaped before being tied. In addition, the obtained lightning pole material can be used as an electrode as it is, but it can also be further formed into a coining material to form an electrode as a final product.
以下、実施例により本発明を史に#細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.
実施例/
平均粒径10μmの電解銅粉と平均粒径jμmの天然黒
鉛粉を真の体積比90ニア0で均一に混合分散させた混
合粉を、面圧2θ0 蛇/ctA、銅の融点/θ/3℃
より低い900℃の温度でホットプレス法により加熱加
圧焼結を行ない、比重7J t /all (理論密度
のりjチ)の電極材料を得た。Example/ A mixed powder in which electrolytic copper powder with an average particle size of 10 μm and natural graphite powder with an average particle size of j μm were uniformly mixed and dispersed at a true volume ratio of 90 near 0 was mixed with a surface pressure of 2θ0 / ctA and a melting point of copper / θ/3℃
Heat and pressure sintering was performed by a hot press method at a lower temperature of 900° C. to obtain an electrode material with a specific gravity of 7 J t /all (theoretical density).
得られた電極材料を、コ!−×コsWMの放電面を有し
、中央に31rFφの噴流五の穴をあけた電極とし、工
具鋼(SK−s)を被加工物とし、抵抗!×70”Ω−
儂の紳水を用いた噴流式水放電加工を正極性、電流r、
s A 、 Ton ==J’μB。Use the obtained electrode material! The electrode has a discharge surface of -x sWM, a jet hole of 31 rFφ is drilled in the center, the workpiece is tool steel (SK-s), and the resistance is 1. ×70”Ω−
Jet-type water discharge machining using my own water with positive polarity, current r,
s A , Ton == J'μB.
Toff = 20μ日の条件で3θ分間行なった。Testing was carried out for 3θ minutes under the condition of Toff = 20μ days.
加工終了後に加工速度および次式で求められる消耗率を
、測定した。その結果を第1表に示す。After the machining was completed, the machining speed and the wear rate calculated from the following equation were measured. The results are shown in Table 1.
実施例コ、3
実施例/において天然黒鉛粉の代りに、JISM rr
/2による揮発分が1%である平均粒径O9Sμmの生
コークスを電解銅粉:生コークスの体積比を各々90
: 10 (実施例2)、り7:3(実施例3)とした
以外は同様にして、各々比重7./ y /crl (
理論密度の9j%)、比重7.9?/art(理論密度
の22%)である’を極材料を得た。Example 3 In Example/, instead of natural graphite powder, JISM rr
/2 raw coke with an average particle diameter of 09S μm and a volatile content of 1% was mixed with a volume ratio of electrolytic copper powder and raw coke of 90% each.
: 10 (Example 2) and 7:3 (Example 3). /y/crl (
9j% of theoretical density), specific gravity 7.9? /art (22% of theoretical density) was obtained.
各1ド極材料を実施例/と同条件にて水放電加工を行な
った結果を第1表に示す。Table 1 shows the results of water discharge machining of each single-pole electrode material under the same conditions as in Example.
比較例/、コ
電極材料として、市販の鋳造銅材・・・・・・・Oを用
いた場合(比較例/)及び市販の銅タングステン・−・
4P−・・―OOを用いた場合(比較例、2)について
実施例/と同条件にて水放電加工を行なった。Comparative Example/When commercially available cast copper material...O is used as the co-electrode material (Comparative Example/) and commercially available copper tungsten...
When 4P-...-OO was used (comparative example, 2), water discharge machining was performed under the same conditions as in Example.
その結果を第1表に示す。The results are shown in Table 1.
第1表
〔効 果〕
本発明の水放電加工用電極材料によると、従来の!極よ
りも遥かに高い加工速度が達成される。消耗度は従来の
電極である銅タングステンと同程度ではあるが、その他
網タングステンと比較すると1本発明の電極材料は、密
度が約//−であるので非常に軽量であり、電極材料と
して大型のものが容易に製造でき、電極材料自身の加工
が容易である、等の種々の効果があり、工業的に優れた
ものである。Table 1 [Effects] According to the electrode material for water discharge machining of the present invention, the conventional! Much higher machining speeds than poles are achieved. The degree of wear is comparable to that of conventional copper tungsten electrodes, but compared to other mesh tungsten electrodes, the electrode material of the present invention has a density of about 1/-, so it is extremely lightweight and can be used as a large-sized electrode material. It has various effects such as easy manufacturing and easy processing of the electrode material itself, and is industrially excellent.
Claims (3)
積%からなる原料粉を、理論密度の 85%以上に加熱加圧焼結してなる水放電加工用電極材
料。(1) An electrode material for water discharge machining, which is obtained by heat-pressing sintering raw material powder consisting of 85-97% by volume of copper powder and 15-3% by volume of carbon powder to 85% or more of the theoretical density.
を特徴とする特許請求の範囲第(1)項記載の電極材料
。(2) The electrode material according to claim (1), wherein the carbon powder contains 2 to 10% by weight of volatile matter.
の範囲第(1)項又は第(2)項記載の電極材料。(3) The electrode material according to claim (1) or (2), wherein the copper powder is electrolytic copper powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25235185A JPS62112744A (en) | 1985-11-11 | 1985-11-11 | Electrode material for electric discharge machining in water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25235185A JPS62112744A (en) | 1985-11-11 | 1985-11-11 | Electrode material for electric discharge machining in water |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62112744A true JPS62112744A (en) | 1987-05-23 |
Family
ID=17236078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25235185A Pending JPS62112744A (en) | 1985-11-11 | 1985-11-11 | Electrode material for electric discharge machining in water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62112744A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007129749A1 (en) * | 2006-05-10 | 2007-11-15 | National University Corporation Nagaoka University Of Technology | Porous copper electrode for electric discharge machining, and method for manufacturing porous copper electrode for electric discharge machining |
-
1985
- 1985-11-11 JP JP25235185A patent/JPS62112744A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007129749A1 (en) * | 2006-05-10 | 2007-11-15 | National University Corporation Nagaoka University Of Technology | Porous copper electrode for electric discharge machining, and method for manufacturing porous copper electrode for electric discharge machining |
JPWO2007129749A1 (en) * | 2006-05-10 | 2009-09-17 | 国立大学法人長岡技術科学大学 | Porous copper electrode for electric discharge machining and method for producing porous copper electrode for electric discharge machining |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3909241A (en) | Process for producing free flowing powder and product | |
US3816085A (en) | Diamond-nondiamond carbon polycrystalline composites | |
US2814566A (en) | Boron and carbon containing hard cemented materials and their production | |
RU2718723C1 (en) | Sintering method in discharge plasma for making composite with metal matrix reinforced with single-wall carbon nanotubes, and composite material obtained by such method | |
US2979813A (en) | Joining of graphite members | |
US4097567A (en) | Titanium diboride shapes | |
WO2015124094A1 (en) | Method for preparing tantalum powder for high-reliability, high specific capacity electrolytic capacitor | |
US3459515A (en) | Cermets of aluminum with titanium carbide and titanium and zirconium borides | |
KR101151987B1 (en) | Production process for carbonized product and carbonized product obtained by the same process | |
JPS62112744A (en) | Electrode material for electric discharge machining in water | |
KR100420605B1 (en) | Cabalt Metal Agglomerates, a Process of the Same and Their Use | |
CN103695850A (en) | Preparation method of solar battery CIGS (copper indium gallium selenium) target material | |
US3576619A (en) | Method for making alloy powders | |
RU95112580A (en) | Method of production of powdery metallic cobalt | |
SU1255058A3 (en) | Method of introducing manganese into tank of magnesium melt | |
JPS62116741A (en) | Electrode material for water electric discharge machining | |
US4312894A (en) | Hard facing of metal substrates | |
SE440463B (en) | HARD WELDED METAL SURFACE AND SETS AND MEANS TO MAKE IT | |
CN115304379A (en) | Anode material and preparation method thereof | |
JPH02236292A (en) | Production of carbonaceous electrode plate for electrolytic production of fluorine | |
RU2317944C2 (en) | Anode mass preparation process | |
CN101940894A (en) | Method for machining elliptic polycrystalline diamond for drilling | |
JP2001261440A (en) | Oxidation-resistant hafnium carbide sintered body and oxidation-resistant hafnium carbide-lanthanum boride sintered body, their production processes and electrode for plasma generation, made by using the same | |
JPH03243735A (en) | Whisker combined diamond sintered body and its manufacture | |
CN101954260B (en) | Processing method of square polycrystalline diamond for drilling |