JPS62112639A - Flame retarder for synthetic resin - Google Patents

Flame retarder for synthetic resin

Info

Publication number
JPS62112639A
JPS62112639A JP60250907A JP25090785A JPS62112639A JP S62112639 A JPS62112639 A JP S62112639A JP 60250907 A JP60250907 A JP 60250907A JP 25090785 A JP25090785 A JP 25090785A JP S62112639 A JPS62112639 A JP S62112639A
Authority
JP
Japan
Prior art keywords
flame retardant
ammonium salt
antimony
powder
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60250907A
Other languages
Japanese (ja)
Inventor
Toshinobu Imahama
敏信 今濱
Hideo Fuwa
日出生 不破
Yosaburo Tanaka
田中 洋三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP60250907A priority Critical patent/JPS62112639A/en
Publication of JPS62112639A publication Critical patent/JPS62112639A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide the titled flame retarder which gives moldings having excellent flame retardance, resistance to water and impact and appearance, by coating a mixture of an inorg. ammonium salt and an antimony flame- retardant aid with a urethane resin so as to give a specified max. particle size. CONSTITUTION:100pts.wt. powder mixture (A) of 100pts.wt. inorg. ammonium salt (a) such as NH4Cl, NH4Br, (NH4)2SO4, etc. and 1-30pts.wt. antimony flame-retardant aid (b) (e.g., Sb2O3) is suspended and dispersed in an org. solvent contg. a surfactant (e.g., a polyoxyethylene alkylaryl ether) dissolved therein. An isocyanate (e.g., toluene diisocyanate) and a polyol (e.g., a polyester polyol) in such amounts as to give 3-30pts.wt. polyurethane resin component are then dissolved therein, and while stirring, the resulting suspension is cured by drying in a spray dryer to obtain the titled flame retarder having a max. particle size of 50mu or below, wherein the surface of the inorg. ammonium salt powder is coated with the urethane resin.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は合成樹脂用難燃剤に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to flame retardants for synthetic resins.

更に詳しくは、本発明は粉末表面なウレタン樹脂を被覆
した無機アンモニウム塩系難燃剤を提供するものである
More specifically, the present invention provides an inorganic ammonium salt flame retardant whose powder surface is coated with a urethane resin.

〔従来の技術〕[Conventional technology]

無機アンモニウム塩を可燃性重合体の難燃剤として使用
することは周知である。しかし、この化合物は自己凝集
性が強く、保存中fブロッキングを起こすのみでなく、
ポリエチレン、ポリブレピレン、ポリスチレン等の合成
樹脂に混練すると混練時のせん断力によっても凝集を起
こすことが知ら五ている。また、無機アンモニウム塩を
配合した成形樹脂界は無機アンモニウム塩の強い吸湿性
のため、耐水性が問題となる。すなわち、樹脂組成物な
いしこれを加工して得た成形物を水性物質と接触させる
と無機アンモニウム塩が溶出し、該組成物の物性若しく
は該成形物表面状態など変化し、使用上支障を来たす。
The use of inorganic ammonium salts as flame retardants for flammable polymers is well known. However, this compound has strong self-aggregation properties and not only causes f-blocking during storage, but also
It is known that when kneaded with synthetic resins such as polyethylene, polybrepylene, polystyrene, etc., agglomeration may occur due to shear force during kneading. Furthermore, in the field of molded resins containing inorganic ammonium salts, water resistance becomes a problem due to the strong hygroscopicity of inorganic ammonium salts. That is, when a resin composition or a molded product obtained by processing the resin composition is brought into contact with an aqueous substance, the inorganic ammonium salt is eluted and the physical properties of the composition or the surface condition of the molded product change, causing problems in use.

又、湿度の高い状態下での該組成物使用の場合も空気中
の水分を吸湿し若しくは該水分により前述の塩が溶出し
樹脂表面に該壌の結晶が析出するというような実用面に
問題がある。これらのことが無機アンモニウム塩のポリ
オレフィン、ポリスチレン等の合成樹脂への使用を制限
している理由である。
In addition, when the composition is used under high humidity conditions, it may absorb moisture from the air, or the above-mentioned salts may be eluted by the moisture, causing practical problems such as precipitation of soil crystals on the resin surface. There is. These are the reasons that limit the use of inorganic ammonium salts in synthetic resins such as polyolefins and polystyrene.

無機アンモニウム塩のこれら問題点を改良する方法とし
て塩素化パラフィン(特公昭47−56246、特公昭
5l−7494)、ポリシロキサン(特開昭59−19
1746)、尿素−ホルムアルデヒド樹脂(特開昭52
−100544)。
As a method to improve these problems of inorganic ammonium salts, chlorinated paraffin (Japanese Patent Publication No. 47-56246, Japanese Patent Publication No. 51-7494), polysiloxane (Japanese Patent Publication No. 59-1989)
1746), urea-formaldehyde resin (Unexamined Japanese Patent Publication No. 1746)
-100544).

等の樹脂でその表面を被覆するという方法が既に知られ
ている。塩素化パラフィンで表面被覆した臭化アンモニ
ウムを樹脂に混練した場合、樹脂の耐熱性(熱変色)を
著しく低下させたり、ブリードを起こしたりして成形品
の外観を大いにそこなう原因となる。硬化性ポリシロキ
サン表面処理なした硫酸アンモニウムの場合、配合樹脂
の吸水率は未処理品に比べかなり低下するものの、未だ
1〜2%程度の吸水率があり、さらに耐水性を向上させ
る必要がある。尿素−ホルムアルデヒド樹脂で被覆する
方法については、該樹脂が水溶性であるという点で易水
溶性化合物である無機アンモニウム塩に適用するには種
々の問題がある。また、アミノ樹脂は熱変色を起こしや
すいという欠点もある。さらに本発明者らは先に不飽和
ポリエステルで被覆して塩化アンモニウムを改質した(
特願昭59−97573)が、この場合はその粒子径が
100〜200ミクロンと大きくなり、添加型難燃剤と
して好ましい50ミクロン以下の被覆物な得るのは工業
的に難しい。100〜200ミクロンの粉体を物理的に
粉砕することが考えられるが、この場合、カプセルが破
壊し、塩化アンモニウム単味を添加した時と同じ前記短
所が発生する。
A method of coating the surface with a resin such as the following is already known. When ammonium bromide whose surface is coated with chlorinated paraffin is kneaded into a resin, it can significantly reduce the heat resistance (thermal discoloration) of the resin and cause bleeding, which can greatly impair the appearance of the molded product. In the case of ammonium sulfate that has not been surface-treated with curable polysiloxane, the water absorption rate of the compounded resin is considerably lower than that of an untreated product, but the water absorption rate is still about 1 to 2%, and there is a need to further improve the water resistance. Regarding the method of coating with urea-formaldehyde resin, there are various problems in applying it to inorganic ammonium salts, which are easily water-soluble compounds, in that the resin is water-soluble. Furthermore, amino resins also have the disadvantage of being susceptible to thermal discoloration. Furthermore, the present inventors previously modified ammonium chloride by coating it with unsaturated polyester (
However, in this case, the particle size is as large as 100 to 200 microns, and it is industrially difficult to obtain a coating of 50 microns or less, which is preferable as an additive flame retardant. It is conceivable to physically grind the powder of 100 to 200 microns, but in this case the capsules will be destroyed and the same drawbacks mentioned above will occur as when adding ammonium chloride alone.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者らは、かかる問題点解決のため、鋭意検討の結
果、界面活性剤処理をした無機アンモニウム塩について
ウレタン披薇を行うことてよって解決することを見出し
本発明に至った。
In order to solve this problem, the inventors of the present invention have conducted extensive studies and found that the problem can be solved by applying urethane coating to an inorganic ammonium salt that has been treated with a surfactant, leading to the present invention.

本発明は界面活性剤、次いでウレタン処理した無機アン
モニウム端糸難燃剤に関するものであり、これを含有し
た樹脂は燃焼時に有毒ガスの発生がなく、黒煙発生が抑
制され、且つ経済性に極めて優れた難燃剤を提供するこ
とを目的とするものである。
The present invention relates to a surfactant and then an inorganic ammonium end yarn flame retardant treated with urethane. A resin containing this does not generate toxic gas when burned, suppresses black smoke generation, and is extremely economical. The purpose of this invention is to provide a flame retardant that is highly effective.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は無機アンモニウム塩とアンチモン系難燃助剤と
の混合物をウレタン樹脂で被覆した粉末であって、該被
覆粉末の最大粒子径が50ミクロン以下であることを特
徴とする合成樹脂用難燃剤にある。以下本発明の詳細な
説明する。
The present invention is a flame retardant for synthetic resins, which is a powder in which a mixture of an inorganic ammonium salt and an antimony-based flame retardant aid is coated with a urethane resin, and the coated powder has a maximum particle size of 50 microns or less. It is in. The present invention will be explained in detail below.

本発明に於ける無機アンモニウム塩とは、リン酸、硫酸
、ホウ酸、臭酸、塩酸、スルファミノ酸。
Inorganic ammonium salts in the present invention include phosphoric acid, sulfuric acid, boric acid, hydrobromic acid, hydrochloric acid, and sulfamino acid.

イミドジスルホン酸のアンモニウム塩であり、これらは
1種で使用され又は2 flJ1以上混合使用される。
It is an ammonium salt of imidodisulfonic acid, and these are used alone or in a mixture of 2flJ1 or more.

樹脂に添加使用の場合は成形温度で安定であることが必
要である。従って、銀塩の分解温度が130℃以上であ
るものが望ましい。コスト的優位性も考慮した場合、塩
化アンモニウム、臭化アンモニウムおよび硫酸アンモニ
ウムが特に好ましいO 本発明の被覆材であるウレタン樹脂は、インシアネート
とポリオールとから得られるものであるが、カプセル化
樹脂として130℃以上の耐熱性があれば、イソシアネ
ート及びポリオールは特に限定されない。イソシアネー
トとしては、トルエンジイソシアネー)(TD工)、メ
チジ/ジフェニルジイソシアネート+MDI)等が代表
的なものであり、一方、ポリオールとしてはポリエステ
ルポリオール、ポリエーテルポリオール等が代表的であ
る。
When used as an additive to a resin, it must be stable at the molding temperature. Therefore, it is desirable that the decomposition temperature of the silver salt is 130°C or higher. Considering cost advantages, ammonium chloride, ammonium bromide and ammonium sulfate are particularly preferred. Isocyanates and polyols are not particularly limited as long as they have heat resistance of ℃ or higher. Typical isocyanates include toluene diisocyanate (TD Engineering) and methidi/diphenyl diisocyanate + MDI, while polyols include polyester polyols, polyether polyols, and the like.

被覆に際し、界面活性剤を使用することによってウレタ
ン被覆を良好に行いうる。これは、ウレタン樹脂と無機
アンモニウム塩及び/又はアンチモン系無機難燃助剤の
無機表面との儒れ(密着性)の向上のためであろう。使
用される界面活性剤は130℃以上の耐熱性のあるもの
であれば特Vclr!z定しない。130℃以下の耐熱
性であると樹脂への配合時に分解又は変成し、樹脂加工
性の劣化又は成形品の表面黄変化等の好ましくない現象
が発生する。本発明においては、ポリオキシエチレンア
ルキルエーテル、ポリオキシエチレンアルキルアリルエ
ーテル等の非イオン性界面活性剤は前記問題が全くなく
特に好ましいものである。
Urethane coating can be performed satisfactorily by using a surfactant during coating. This is probably due to the improvement in the elasticity (adhesion) between the urethane resin and the inorganic surface of the inorganic ammonium salt and/or antimony-based inorganic flame retardant aid. The surfactant used must be heat resistant to 130°C or higher. z Not determined. If it has a heat resistance of 130° C. or lower, it will decompose or denature when blended into a resin, resulting in undesirable phenomena such as deterioration of resin processability or yellowing of the surface of molded products. In the present invention, nonionic surfactants such as polyoxyethylene alkyl ether and polyoxyethylene alkyl allyl ether are particularly preferred since they do not have any of the above problems.

本発明における被覆粉末の粒子径は最大50ミクロン以
下である。50ミクロンを超える最大粒子径の粉末を難
燃化のために樹脂に混練すると得られる樹脂製品の耐衝
撃性が極端に劣化し好ましくない。また、難燃性のバラ
ツキが大きくなり好ましくない。したがって、原料無機
アンモニウム塩およびアンチモン系難燃助剤はその最大
粒子径が45ミクロン以下のものが使用される。このよ
うな粒子径の無機アンモニウム塩はジェット気流粉砕方
法、塩安水溶液の噴霧乾燥法、その他特殊ボールミル法
等、特願昭59−92085号明細書に記載されている
方法と同様にして得ることができる。
The particle size of the coated powder in the present invention is at most 50 microns or less. If a powder with a maximum particle size exceeding 50 microns is kneaded into a resin for flame retardation, the impact resistance of the resulting resin product will be extremely deteriorated, which is not preferable. Moreover, the variation in flame retardancy becomes large, which is not preferable. Therefore, raw inorganic ammonium salts and antimony-based flame retardant aids having a maximum particle size of 45 microns or less are used. An inorganic ammonium salt having such a particle size can be obtained by a method similar to the method described in Japanese Patent Application No. 1985-92085, such as a jet stream pulverization method, a spray drying method of an aqueous ammonium chloride solution, or other special ball mill method. I can do it.

本発明における難燃剤はウレタンa脂の膜で覆った微粒
子の集合体であるが、その微粒子の表面膜内部は無機ア
ンモニウム塩とアンチモン系難燃助剤との混合粉末であ
る。さらに、該混合粉末は100ii部の無機アンモニ
ウム塩に対し、1〜30広量部の割合でアンチモン系難
燃助剤を混合したものである。アンチモン系難燃助剤は
、あらかじめ無機アンモニウム塩に混合して被覆するこ
とにより難燃剤の機能を更に相乗的に増幅させるもので
ある。100重量部の無機アンモニウム塩に対し、1重
量部以下のアンチモン系難燃助剤の混合割合では相乗効
果が小さく、該難燃助剤を添加する意味が認められない
。また、30重量部以上のアンチモン系難燃助剤の混合
割合では相乗効果がほとんど認められず、高価なアンチ
モン系難燃助剤の増量した意味がない。
The flame retardant in the present invention is an aggregate of fine particles covered with a film of urethane a-fat, and the inside of the surface film of the fine particles is a mixed powder of an inorganic ammonium salt and an antimony-based flame retardant aid. Further, the mixed powder is a mixture of 1 to 30 parts by weight of an antimony-based flame retardant aid to 100 parts of an inorganic ammonium salt. The antimony-based flame retardant aid is mixed in advance with an inorganic ammonium salt and coated to further synergistically amplify the function of the flame retardant. If the antimony-based flame retardant aid is mixed in an amount of 1 part by weight or less with respect to 100 parts by weight of the inorganic ammonium salt, the synergistic effect is small, and there is no point in adding the flame retardant aid. Furthermore, when the antimony-based flame retardant adjuvant is mixed at a mixing ratio of 30 parts by weight or more, almost no synergistic effect is observed, and there is no point in increasing the amount of the expensive antimony-based flame retardant adjuvant.

本発明の一構成成分であるアンチモン系難燃助剤とは、
三酸化アンチモン、アンチモン酸カリ等に代表されるア
ンチモン系化合物であり、三酸化アンチモンが特に好ま
しい。
The antimony-based flame retardant aid, which is a component of the present invention, is
It is an antimony-based compound represented by antimony trioxide, potassium antimonate, etc., and antimony trioxide is particularly preferred.

本発明に用いる無機アンモニウム塩とアンチモン系難燃
助剤との混合微粉末の被覆されたものの製造法は種々の
方法があり、製造法の数例を次に示すが、製造法はこれ
に限定されるものではない。
There are various methods for manufacturing the coated mixture of fine powder of inorganic ammonium salt and antimony-based flame retardant used in the present invention. Some examples of manufacturing methods are shown below, but the manufacturing method is limited to these. It is not something that will be done.

(A)  噴霧乾燥法 所定量微細な無機アンモニウム塩と三酸化アンチモンと
な界面活性剤の溶解した有機溶剤に懸濁分散させる。該
有機溶剤に無機混合粉末100本量部に対し6〜301
量部のウレタン樹脂分になるようにインシアネートとポ
リオールとを溶解させる。次いで、該懸濁液を攪拌しな
から通常の噴霧乾燥装置を用いて乾燥硬化させ、目的の
被覆物を得る。
(A) Spray Drying Method A predetermined amount of a fine inorganic ammonium salt and a surfactant such as antimony trioxide are suspended and dispersed in an organic solvent. 6 to 301 parts per 100 parts of inorganic mixed powder in the organic solvent.
Incyanate and polyol are dissolved so that the amount of the urethane resin is equal to the amount of the urethane resin. Next, the suspension is dried and cured using a conventional spray drying apparatus while stirring to obtain the desired coating.

(B)  in 5itu重合法 所定の比率で測り取った微細な無機アンモニウム塩と三
酸化アンチモンとを界面活性剤を前もって溶解させたポ
リオールに懸濁させ、無機物粒子表面を充分に濡らせる
。該懸濁液を静置又は遠心分離方法で固液分離する。ポ
リオールで表面の樒れた粉末を攪拌した多量のイソシア
ネートに少祉づつ添加してゆく。
(B) In 5 in situ polymerization method Fine inorganic ammonium salt and antimony trioxide measured at a predetermined ratio are suspended in polyol in which a surfactant has been dissolved in advance, and the surfaces of the inorganic particles are sufficiently wetted. The suspension is subjected to solid-liquid separation by standing still or by centrifugation. The powder coated with polyol is added little by little to a large amount of stirred isocyanate.

m合速度の促進のため、液温を昇温させてもよい。1〜
10時間かきまぜ続ける。次いで得られた微細粒子の沈
殿をヂ別し、沈殿を酢酸エチル等の有機溶剤で洗浄する
。得られた沈殿粉末を30〜100℃で乾燥させ、目的
の被覆物を得る。この方法では被覆物の大きさは内部の
無機粉末の大きさとイソシアネートの攪拌速度に依存し
てくる。
The liquid temperature may be increased in order to accelerate the mixing rate. 1~
Continue stirring for 10 hours. The resulting fine particle precipitate is then separated, and the precipitate is washed with an organic solvent such as ethyl acetate. The obtained precipitated powder is dried at 30 to 100°C to obtain the desired coating. In this method, the size of the coating depends on the size of the internal inorganic powder and the stirring speed of the isocyanate.

以上(A)、(B)の操作において、無機アンモニウム
塩とアンチモン系難燃助剤との重量和100瓜量部に対
してポリオールとイソシアネートとが重合して得られろ
ポリウレタンは3〜50重量部が好ましい。ポリウレタ
ン量が多くなるほど被覆は完全となるが、難燃性が劣る
ので好ましくない。また、前記(A)、(B)の各操作
を1回行っただけでなく、得られた被覆物について同一
の操作を数回行って被膜形成を完全にすることも好まし
い方法であり、他の操作との組合せも可能である。
In the above operations (A) and (B), the polyurethane obtained by polymerizing the polyol and isocyanate with respect to 100 parts by weight of the inorganic ammonium salt and antimony-based flame retardant aid is 3 to 50 parts by weight. part is preferred. The greater the amount of polyurethane, the more complete the coating will be, but this is not preferred because the flame retardancy will be poorer. In addition, it is a preferable method to not only perform each of the above operations (A) and (B) once, but also to perform the same operation several times on the obtained coating to complete the film formation. A combination with the operation is also possible.

本発明の難燃剤は、不飽和ポリエステル、エボ樹脂 キ〉7全リエチレン、ポリプロピレン、ポリスチレン、
ポリ酢酸ビニル、ポリアクリレート、ナイロン、ポリメ
タクリレート、ポリアクリロニトリル、ポリカーボネー
ト、ポリウレタン、ポリ塩化ビニル、熱可ソ性ポリエス
テル、ジエン糸プラスチック、フェノール樹脂及びこれ
らの樹脂の2種、3ノ 以上の混合物、並びに共重合体など樹脂の難燃剤として
極めて有効である。
The flame retardant of the present invention includes unsaturated polyester, Evoresin, total polyethylene, polypropylene, polystyrene,
Polyvinyl acetate, polyacrylate, nylon, polymethacrylate, polyacrylonitrile, polycarbonate, polyurethane, polyvinyl chloride, thermosoluble polyester, diene thread plastic, phenolic resin, and mixtures of two, three or more of these resins, and Extremely effective as a flame retardant for resins such as copolymers.

本発明による難燃樹脂組成物は上記の各樹脂に本発明の
難燃剤を配合し、必要に応じて熱安定剤。
The flame retardant resin composition according to the present invention contains the above-mentioned resins, the flame retardant of the present invention, and, if necessary, a heat stabilizer.

酸化防止剤、顔料、滑剤、離形剤等を配合して得られる
。本発明の難燃剤の樹脂に対する使用量は、樹脂の種類
、要求される難燃レベルの程度によって異なるが、通常
樹脂100@量部に対して5〜MC1i量部、好ましく
は10〜50重量部である。
It is obtained by blending antioxidants, pigments, lubricants, mold release agents, etc. The amount of the flame retardant of the present invention to be used in the resin varies depending on the type of resin and the degree of flame retardancy required, but is usually 5 to MC1i parts, preferably 10 to 50 parts by weight, per 100 parts of the resin. It is.

難燃剤の多量の使用は難燃レベルの向上には特に好まし
いが樹脂の物性を往々にして損なう。
Although the use of large amounts of flame retardants is particularly desirable for improving the level of flame retardancy, it often impairs the physical properties of the resin.

本発明による難燃樹脂組成物は通常成形品として電気部
品、家具、建材、輸送材用部品、その他の用途に供され
るが、成形方法としては通常行われている方法、例えば
熱硬化性樹脂の場合は圧縮成形、トランスファー成形、
射出成形、積層成形。
The flame-retardant resin composition of the present invention is usually used as a molded article for electrical parts, furniture, building materials, parts for transportation materials, and other uses. In the case of compression molding, transfer molding,
Injection molding, laminated molding.

熱可塑性樹脂の場合は、押出成形、カレンダー成形、射
出成形等で行われ、樹脂の性質、成形品の形態により、
自由に成形方法を選ぶことができる。
In the case of thermoplastic resins, extrusion molding, calendar molding, injection molding, etc. are used, and depending on the properties of the resin and the form of the molded product,
You can freely choose the molding method.

かくして得られた成形品は、その表面に本発明の難燃剤
の移行、浮き出し及び被覆材であるポリウレタンの熱劣
化による黄変等が全く認められない。また、該成形品を
90%湿度の空気中に静置しておいても、成形品表面へ
の無機アンモニウム塩の析出現象または表面のアセかき
現象が現われないばかりか、常温の水に成形品を浸漬し
た時の吸水率がα1%以下と非常に小さいことから実用
上、耐水性に全く問題がない。本発明の難燃剤を配合し
た成形品は、その切断面の電子顕微鏡観察によれば、難
燃剤の分散性は極めて良好である。
The thus obtained molded article shows no migration or embossment of the flame retardant of the present invention on its surface, and no yellowing due to thermal deterioration of the polyurethane coating material. In addition, even if the molded product is left standing in air with 90% humidity, not only does the precipitation phenomenon of inorganic ammonium salts on the surface of the molded product or the acetation phenomenon on the surface not occur, but the molded product does not appear when exposed to water at room temperature. Since the water absorption rate when immersed is very small at α1% or less, there is no problem with water resistance in practical use. According to an electron microscope observation of a cut surface of a molded article containing the flame retardant of the present invention, the dispersibility of the flame retardant is extremely good.

該成形品の耐衝撃強度は優れている。さら圧難燃性は極
めて高く、さらに有機ハロゲン系難燃剤のような燃焼時
のハロゲン化水素ガスの発生がほとんど認められないだ
けでなく煙の発生量も少ない。
The impact strength of the molded article is excellent. It has extremely high flame retardancy and, unlike organic halogen flame retardants, generates almost no hydrogen halide gas during combustion, and also generates little smoke.

〔実施例〕〔Example〕

以下詳細は実施例をもって示すが、実施例及び比較例中
の部は重量部を示す。尚、実施例および比較例に於いて
実施した各種の試験方法は次の通りである。
Details will be shown below with examples, and parts in the examples and comparative examples indicate parts by weight. The various test methods carried out in the Examples and Comparative Examples are as follows.

・成形後の表面状態 成形直後の被覆材(ウレタン)及び界面活性剤の熱劣化
による黄変化の有無及び48時間後の難燃剤の7リード
の有無を目視にて評価した。
- Surface condition after molding Immediately after molding, the presence or absence of yellowing due to thermal deterioration of the coating material (urethane) and surfactant, and the presence or absence of 7 leads of flame retardant after 48 hours were visually evaluated.

・耐水性 これは以下の(A)、(B)で評価した。·water resistance This was evaluated using (A) and (B) below.

(A)90%RH及び23℃RTで48時間静置後の白
華現象又はアセかき現象の有無を目視忙て評価した。
(A) After standing for 48 hours at 90% RH and 23° C. RT, the presence or absence of efflorescence or ashes was visually evaluated.

(B)  吸水率 ASTM−D−570に準じて次のように測定した。長
さ2+インチ、巾十インチ、厚さ十インチの試験片を5
0℃オープン中で24時間乾燥し、23℃のデシケータ
−中で3時間放冷後、秤量する(a)6試験片?23℃
の純水中に168時間浸せき後、乾燥した布で試験片の
水滴を拭き取り直ちに秤量する(b)。この試験を3本
の試験片につき行い吸水率を求めた。
(B) Water absorption rate Measured as follows according to ASTM-D-570. Five specimens 2+ inches long, 10 inches wide, and 10 inches thick
Dry for 24 hours in an open oven at 0°C, leave to cool in a desiccator at 23°C for 3 hours, and then weigh (a) 6 test pieces? 23℃
After immersing the test piece in pure water for 168 hours, the water droplets on the test piece are wiped off with a dry cloth and immediately weighed (b). This test was performed on three test pieces to determine the water absorption rate.

表中に平均値を記した。Average values are shown in the table.

(a) ・難燃性 J工S K 7201−1972に準じた酸素指数fL
o工)を個定した。
(a) - Oxygen index fL according to Flame Retardant J Engineering S K 7201-1972
o engineering) was determined individually.

・耐衝撃性 J工S K 7110−1977に準じて測定した。・Impact resistance Measured according to J Engineering SK 7110-1977.

・分散性 成形品の切断面を電子顕微鏡で目視し、粗大凝集物の有
無で分散性の良、不良を判定した。
- The cut surface of the dispersible molded product was visually observed using an electron microscope, and the presence or absence of coarse aggregates was used to determine whether the dispersibility was good or bad.

製造例1 試薬特級のメチレンジクロライド150りに花王石ケン
■社製界面活性剤エマルゲン810(ポリオキシエチレ
ンオクチルフェニルエーテル)α49を溶解させる。次
に平均粒子径10ミクロン(最大粒子径40ミクロン)
の塩化アンモニウム微粒子40gと日本精鉱■社製三酸
化アンチモン(アトックスS:平均粒子径1〜2ミクロ
ン)49とをパウダーブレンドした後、前記メチレンジ
クロライド溶液に分散させる。該懸濁液を攪拌しながら
、インシアネートであるフロネートC−2030+日本
ポリウレタン味社製)15g、次にポリオールであるニ
ボランN−125(日本ポリウレタン■社製)2.29
を添加溶解させる。因みに該インシアネートとポリエス
テルから得られるウレタン量は4.09になる。かくし
て得られた懸濁液を攪拌しながら均一懸濁状態のまま噴
霧乾燥を行い、ウレタン被覆塩化アンモニウム系難燃剤
粉末を得た。用いた噴霧乾燥機はヤマト科学社製パルビ
スミニスプレーであり、装置条件は、入口温度70℃、
吸入圧ゲージ目盛5.スプレーガス圧1に9/cITt
、試料液送大量ゲージ目盛5−0であった。得られた微
粉末はウレタンのキユアリングのためオーブンに80℃
×5時間静置した。キユアリング後の微粉末には粉末同
志の凝集は全く認められず、かつセイシン企業■社WS
Kレーザミクロンサイザーにより粒子径を測定したとこ
ろ最大粒子径は45ミクロンであり、平均粒子径は12
ミクロンであった。
Production Example 1 The surfactant Emulgen 810 (polyoxyethylene octylphenyl ether) α49 manufactured by Kao Sekiken ■ is dissolved in 150 ml of reagent grade methylene dichloride. Next, the average particle size is 10 microns (maximum particle size is 40 microns)
After powder-blending 40 g of ammonium chloride fine particles and antimony trioxide (Atox S: average particle size 1 to 2 microns) 49 manufactured by Nihon Seiko Co., Ltd., the mixture was dispersed in the methylene dichloride solution. While stirring the suspension, add 15 g of incyanate Furonate C-2030 + manufactured by Nippon Polyurethane Aji Co., Ltd.), then add 2.29 g of Niboran N-125 (manufactured by Nippon Polyurethane Co., Ltd.) as a polyol.
Add and dissolve. Incidentally, the amount of urethane obtained from the incyanate and polyester is 4.09. The thus obtained suspension was spray-dried in a uniform suspended state while stirring to obtain a urethane-coated ammonium chloride flame retardant powder. The spray dryer used was Pulvis Mini Spray manufactured by Yamato Scientific Co., Ltd. The equipment conditions were: inlet temperature 70°C;
Suction pressure gauge scale 5. Spray gas pressure 1 to 9/cITt
, the sample liquid feeding amount gauge scale was 5-0. The obtained fine powder was placed in an oven at 80°C for curing of the urethane.
It was left still for 5 hours. No agglomeration of powders was observed in the fine powder after curing, and Seishin Enterprise ■ WS
When the particle size was measured using a K laser micron sizer, the maximum particle size was 45 microns, and the average particle size was 12 microns.
It was a micron.

製造例2 製造例1の塩化アンモニウムの代りに最大粒子径53ミ
クロン、平均粒子径12ミクロンの臭化アンモニウムを
使った以外はすべて製造例1と同様の処方、方法でウレ
タンカプセル化微粉末を得た。その粒子径は製造例1と
同等な方法により最大粒子径37ミクロン、平均粒子径
15ミクロンであることがわかった。
Production Example 2 Urethane encapsulated fine powder was obtained using the same recipe and method as Production Example 1, except that ammonium bromide with a maximum particle size of 53 microns and an average particle diameter of 12 microns was used instead of ammonium chloride in Production Example 1. Ta. The particle size was found to be 37 microns in maximum particle size and 15 microns in average particle size using the same method as in Production Example 1.

製造例3 三酸化アンチモンを使用しないことを除いてはすべて製
造例1と同様な処方1手順でウレタンカプセル化塩安微
粉末を得た。粒子径分布は製造例1の粉末と同じであっ
た。
Production Example 3 Urethane-encapsulated ammonium chloride fine powder was obtained by following the same formulation procedure as Production Example 1 except that antimony trioxide was not used. The particle size distribution was the same as the powder of Production Example 1.

実施例1 製造例1で得られた微粉末309を100ノのポリプロ
ピレン(チッ諷化学■社製に−7014)にロールで混
練した。ロール混練条件は温度170°C1混練時間1
0分間であった。得られた混錬物はプレスにより150
 X 150 X 3 (、u)のシートを作製した。
Example 1 The fine powder 309 obtained in Production Example 1 was kneaded with 100 mm of polypropylene (-7014, manufactured by Chichi Kagaku Co., Ltd.) using a roll. Roll kneading conditions are temperature 170°C, kneading time 1
It was 0 minutes. The obtained kneaded material was pressed to 150
A sheet of X 150 X 3 (, u) was produced.

プレス条件は、予熱=200℃×7分、加圧=20°0
℃×6分×100kg/ctd、冷却:水温×3分×1
0(B9/crdであった。このシー)k用いて表1の
各種試験を行った。
Pressing conditions are: preheating = 200°C x 7 minutes, pressure = 20°0
°C x 6 minutes x 100kg/ctd, cooling: water temperature x 3 minutes x 1
0 (B9/crd.This C)k was used to conduct various tests shown in Table 1.

結果を表1に記した。The results are shown in Table 1.

実施例2 製造例2で得られた微粉末を用いた以外はすべて実施例
1と同様な処方1手順で物性を測定した。
Example 2 The physical properties were measured using the same recipe 1 procedure as in Example 1 except that the fine powder obtained in Production Example 2 was used.

実施例3 製造例1の粉末209を1009のポリスチレン(三菱
モンサンド化成■、ダイヤフレックスHT−91)に混
練した。混練は小型ニーダ−にて200℃×15分間行
った。実施例1と同様にしてプレスにより150X15
0X3.wの形状に成形した。測定した物性値を表1に
記した。
Example 3 Powder 209 of Production Example 1 was kneaded into polystyrene 1009 (Diaflex HT-91, manufactured by Mitsubishi Monsando Kasei Corporation). Kneading was performed at 200° C. for 15 minutes using a small kneader. 150×15 by pressing in the same manner as in Example 1.
0X3. It was molded into the shape of W. The measured physical property values are listed in Table 1.

実施例4 製造例1で得られた微粉末20gを1009のPBT(
東し■社製PBT1401)に配合した。
Example 4 20g of the fine powder obtained in Production Example 1 was mixed with 1009 PBT (
It was blended into PBT1401) manufactured by Toshisha.

配合方法は、前記2者の各粉末をパウダーブレンドし、
30Uφの押出しit用い、インジェクション法により
150X150X31+u)の試験プレートを作製した
。測定した物性値を表1に記した。
The blending method is to powder blend the two powders,
A test plate of 150×150×31+u) was prepared by an injection method using an extrusion unit of 30 Uφ. The measured physical property values are listed in Table 1.

比較例1 製造例1で用いた壌安微粉末27.09と三酸化アンチ
モン(アトックス5)109となトライブレンドした混
合粉末を実施例1の微粉末309の代りに用いた以外は
すべて実施例1と同様な処方。
Comparative Example 1 All examples were the same except that a tri-blended mixed powder of 27.09 fine powder of yam and 109 antimony trioxide (Atox 5) used in Production Example 1 was used instead of fine powder 309 of Example 1. Prescription similar to 1.

手順でポリプロピレンに配合し、試験した。試験片の表
面にはブリード、白華現象、アセかき現象が認められる
とともに分散性が全く不良であった。
It was blended into polypropylene according to the procedure and tested. Bleeding, efflorescence, and acetic phenomena were observed on the surface of the test piece, and the dispersibility was completely poor.

比較例2 製造例3で得た微粉末279と3gの三酸化アンチモン
(アトックスS)をトライブレンドした混合粉末sag
を実施例1の粉末の代りに用いた以外はすべて実施例1
と同様な処方9手順でポリプロピレンに配合して物性を
測定した。実施例1に比べて難燃性が特に劣っていた。
Comparative Example 2 Mixed powder sag obtained by tri-blending the fine powder 279 obtained in Production Example 3 and 3 g of antimony trioxide (Atox S)
Example 1 except that the powder of Example 1 was replaced with
It was blended into polypropylene using the same recipe 9 procedure and its physical properties were measured. The flame retardance was particularly poor compared to Example 1.

比較例3 不飽和ポリエステル樹脂1259(商品名工ボラックG
−155AL、日本触媒化学■)、過酸化ヘンジイルペ
ースト12.59、ベンゼン125りの混合溶液に1平
均粒径10μmに粉砕した塩化アンモニウム4009お
よび三酸化アンチモン(日本精鉱社製、アトックス5)
409を加えて混練機(森山製作所製)で分散しながら
減圧下でベンゼンを除去した。得られたペースト状混合
物をテフロン板上に薄くのばし、150℃のオープンに
入れて30分間硬化させた。得られたフィルムを超遠心
粉砕機(三田村理研工業■製)によって50メツシユ以
下の粒子径に粉砕した。この粉末309を実施例1の微
粉末の代りに用いた以外はすべて実施例1と同様な処方
1手順でポリプロピレンに配合し、物性を測定した。実
施例1.2に比べてすべての物性が劣っていた。
Comparative Example 3 Unsaturated polyester resin 1259 (product name: Borac G
Ammonium chloride 4009 and antimony trioxide (manufactured by Nippon Seiko Co., Ltd., ATOX 5) ground to an average particle size of 10 μm in a mixed solution of -155AL, Nippon Shokubai Kagaku ■), hendiyl peroxide paste 12.59, and benzene 125
409 was added and dispersed using a kneader (manufactured by Moriyama Seisakusho), while benzene was removed under reduced pressure. The resulting paste-like mixture was spread thinly on a Teflon plate and placed in an oven at 150°C to cure for 30 minutes. The obtained film was pulverized to a particle size of 50 mesh or less using an ultracentrifugal pulverizer (manufactured by Mitamura Riken Kogyo ■). Except that this powder 309 was used instead of the fine powder of Example 1, it was blended with polypropylene in the same formulation 1 procedure as in Example 1, and the physical properties were measured. All physical properties were inferior to those of Example 1.2.

比較例4 50ミクロンアンダーに微粉砕した塩化アンモニウム1
009と三酸化アンチモン(アトックス5)109とを
加熱装置付ニーグーに投入し攪拌しながら、あらかじめ
メチルヒドロポリシロキサン2.09とジブチルスズジ
オクトエー)[12りを溶解した1、 1.1−トリク
ロロエタン溶液を少量ずつ添加し十分に混合する。次い
で、加熱昇温し溶剤を除去する。粉体温度を150〜1
55℃とし、6時間熱攪拌を続は硬化反応を充分に行わ
せた後室温まで冷却して微粉末を得た。この微粉末30
りを実施例1の微粉末の代りに用いた以外はすべて実施
例1の処方9手順でポリプロピレンに配合し、物性を測
定した。実施例1.2に比べ分散性。
Comparative Example 4 Ammonium chloride 1 finely ground to under 50 microns
009 and antimony trioxide (Atox 5) 109 were placed in a Nigu with a heating device, and while stirring, 1,1,1-trichloroethane in which methylhydropolysiloxane 2.09 and dibutyltin dioctoate) [12] were dissolved in advance. Add the solution little by little and mix thoroughly. Next, the temperature is increased to remove the solvent. Powder temperature 150~1
The mixture was heated to 55° C. and stirred for 6 hours, followed by sufficient hardening reaction, and then cooled to room temperature to obtain a fine powder. This fine powder 30
The mixture was blended into polypropylene in the same manner as in Example 1 except that the powder was used in place of the fine powder in Example 1, and the physical properties were measured. Dispersibility compared to Example 1.2.

耐水性が劣り、難燃性も小さかった。It had poor water resistance and low flame retardancy.

比較例5 臭素系有機難燃剤のデカブロモジフェニルエーテル(東
洋言違工業■社製、BR−100)25りど三酸化アン
チモン(アトックスs)5シとを実施例1の微粉末の代
りに用いた以外はすべて実施例1の処方1手順でポリプ
ロピレンに配合し、物性を測定した。
Comparative Example 5 A brominated organic flame retardant, decabromodiphenyl ether (manufactured by Toyo Genji Kogyo Co., Ltd., BR-100), 25 days of antimony trioxide (Atox S), and 5 days of antimony trioxide (Atox S) were used in place of the fine powder of Example 1. All other ingredients were blended into polypropylene according to the recipe 1 procedure of Example 1, and the physical properties were measured.

実施例2に比べて特にブリードが認められ表面状態が劣
っていた。
Compared to Example 2, bleeding was particularly observed and the surface condition was poor.

Claims (4)

【特許請求の範囲】[Claims] (1)無機アンモニウム塩とアンチモン系難燃助剤との
混合物をウレタン樹脂で被覆した粉末であって、該被覆
粉末の最大粒子径が50ミクロン以下であることを特徴
とする合成樹脂用難燃剤。
(1) A flame retardant for synthetic resins, which is a powder obtained by coating a mixture of an inorganic ammonium salt and an antimony-based flame retardant aid with a urethane resin, the coated powder having a maximum particle size of 50 microns or less. .
(2)無機アンモニウム塩が塩化アンモニウム、臭化ア
ンモニウム、硫酸アンモニウムである特許請求の範囲第
1項記載の合成樹脂用難燃剤。
(2) The flame retardant for synthetic resins according to claim 1, wherein the inorganic ammonium salt is ammonium chloride, ammonium bromide, or ammonium sulfate.
(3)アンチモン系難燃助剤が三酸化アンチモンである
特許請求の範囲第1項記載の合成樹脂用難燃剤。
(3) The flame retardant for synthetic resins according to claim 1, wherein the antimony-based flame retardant aid is antimony trioxide.
(4)混合物が100重量部の無機アンモニウム塩に対
し1乃至30重量部のアンチモン系難助剤を混ぜ合わせ
た混合物である特許請求の範囲第1項記載の合成樹脂用
難燃剤。
(4) The flame retardant for synthetic resins according to claim 1, wherein the mixture is a mixture of 100 parts by weight of an inorganic ammonium salt and 1 to 30 parts by weight of an antimony-based retardant.
JP60250907A 1985-11-11 1985-11-11 Flame retarder for synthetic resin Pending JPS62112639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60250907A JPS62112639A (en) 1985-11-11 1985-11-11 Flame retarder for synthetic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60250907A JPS62112639A (en) 1985-11-11 1985-11-11 Flame retarder for synthetic resin

Publications (1)

Publication Number Publication Date
JPS62112639A true JPS62112639A (en) 1987-05-23

Family

ID=17214797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60250907A Pending JPS62112639A (en) 1985-11-11 1985-11-11 Flame retarder for synthetic resin

Country Status (1)

Country Link
JP (1) JPS62112639A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7585443B2 (en) 2004-05-20 2009-09-08 Albemarle Corporation Pelletized brominated anionic styrenic polymers and their preparation and use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7585443B2 (en) 2004-05-20 2009-09-08 Albemarle Corporation Pelletized brominated anionic styrenic polymers and their preparation and use

Similar Documents

Publication Publication Date Title
EP1710275B1 (en) Stabilized fire retardant
JP2825500B2 (en) Flame-retardant polyolefin resin composition
EP0335165B1 (en) Thermoplastic workable, fiber reinforced polyamide moulding mass, rendered flame-retardant by magnesium hydroxide, procedure for its preparation and its use
EP0185555B1 (en) Polybutylene terephthalate resin composition
KR100190204B1 (en) Process for producing finely divided particles of ii type ammonium polyphosphate
JPS6213380B2 (en)
EP2823018B1 (en) Flame retardant composition for thermoplastic polymers consisting of porous, amorphous glass powder and melamine cyanurate
JP2003535180A (en) Flame retardant polypropylene resin composition
JPS62112639A (en) Flame retarder for synthetic resin
WO1990009418A1 (en) Improved intumescent flame retardant systems
JPH05156072A (en) Nonhalogenous flame retardant system for thermoplastic polymer
US6090316A (en) Melamine and aluminum hydroxide blend and method for making and using the same
JP2528770B2 (en) Flame-retardant polypropylene resin composition and manufacturing method
DE102015015710B4 (en) Complex halogen-free solid flame retardant composition, process for its preparation and polymer molding compositions and their use
JP2879408B2 (en) Flame retardant thermosetting resin composition
JP3080713B2 (en) Flame retardant polyamide resin pellets for injection molding
JPH02263851A (en) Flame-resistant polypropylene resin composition
JPS60192742A (en) Flame-retardant polyolefin resin composition
JPH09104820A (en) Thermoplastic composition with fire resistance
JPH07242817A (en) Polyamide resin composition
JP2594330B2 (en) Aromatic crosslinked polymer bromine substitute powder
JPH0366344B2 (en)
JPH08319418A (en) Flame-retardant polyamide resin composition
JPS61252256A (en) Flame-retardant propylene polymer composition
JP2996774B2 (en) Propylene resin composition