JPS60192742A - Flame-retardant polyolefin resin composition - Google Patents

Flame-retardant polyolefin resin composition

Info

Publication number
JPS60192742A
JPS60192742A JP59047170A JP4717084A JPS60192742A JP S60192742 A JPS60192742 A JP S60192742A JP 59047170 A JP59047170 A JP 59047170A JP 4717084 A JP4717084 A JP 4717084A JP S60192742 A JPS60192742 A JP S60192742A
Authority
JP
Japan
Prior art keywords
flame
zeolite
flame retardant
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59047170A
Other languages
Japanese (ja)
Inventor
Toshinobu Imahama
敏信 今濱
Yosaburo Tanaka
田中 洋三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP59047170A priority Critical patent/JPS60192742A/en
Publication of JPS60192742A publication Critical patent/JPS60192742A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:A flame-retardant resin composition improved in dripping and generation of organic gases on burning, by the incorporation of a specified quantity of zeolite powders into a polyolefin resin. CONSTITUTION:A resin composition obtained by incorporating 5-150pts.wt. powders of natural and/or synthetic zeolites (A) with an average particle diameter of 30mum or less, shown by the formula [where M is K, Na, Ca, Fe or Zn; a is the valence of the cation; X is 0.1-20; Y is 0-20 (the number of moles of water of crystallization)]; 0-30pts.wt. halogenated organic flame retardant and/ or halogenated organophosphorus flame retardant (B); and 0-15pts.wt. antimony and/or boron flame-retarding assistant (C) into 100pts.wt. olefin resin. Examples of the natural zeolites include chabazite and clinoptilolite, and examples of the synthetic zeolites include zeolite A and zeolite Z.

Description

【発明の詳細な説明】 本発明は難燃性を有するポリオレフィン系樹脂組成物に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polyolefin resin composition having flame retardancy.

近年、プラスチックの難燃化を主目的に、ついで燃焼時
の発生有毒ガスの減少化、火グレの防止あるいは価格の
低下等を目的として無機充填剤を比較的多量に混合する
ことが試みられている。例、tはポリプロピレン中に炭
酸カルシウムを多量に混合した組成物が知られ、又特公
昭46−29577号及び特公昭46−29613号で
はポリエチレンやポリプロピレンに無機増量材である石
膏を30乃至90重量%、必要に応じゴム系増粘剤と共
に添加した組成物が提案されている。
In recent years, attempts have been made to mix relatively large amounts of inorganic fillers primarily to make plastics flame retardant, but also to reduce toxic gases generated during combustion, prevent fire glare, and lower prices. There is. For example, t is known to have a composition in which a large amount of calcium carbonate is mixed in polypropylene, and in Japanese Patent Publication No. 46-29577 and Japanese Patent Publication No. 46-29613, 30 to 90 weight of gypsum, an inorganic filler, is added to polyethylene or polypropylene. %, optionally with a rubber-based thickener.

しかしながら、これらの組成物においては、樹脂を単に
不燃性の無機物質で増量もしくは希釈した効果しかなく
、添加した無機物には、マ) IJソックス脂を難燃化
させる機能は本質的に有していない。
However, in these compositions, the effect is simply to increase or dilute the resin with a nonflammable inorganic substance, and the added inorganic substance does not essentially have the function of making IJ sock fat flame retardant. do not have.

一方、無機物質のうち、水酸化アルミニウム。On the other hand, among inorganic substances, aluminum hydroxide.

水酸化マグネシウム等に難燃化作用のあることが知られ
ている。これらの無機物質を添加するとマトリックス樹
脂の着火時に無機物質は脱水されるため難燃性が発現さ
れると一般に考えられている。
Magnesium hydroxide and the like are known to have a flame retardant effect. It is generally believed that when these inorganic substances are added, flame retardancy is developed because the inorganic substances are dehydrated when the matrix resin is ignited.

しかしながら、高密度ボリ−チレン、結晶性ポリプロピ
レンあるいは硬質ポリ塩化ビニル等の如き成形加工温度
の比較的高い樹脂にこうした無機物質を混合しても、成
形加工温度で無機物質に含まれている水分の脱水が一部
起る。
However, even if these inorganic substances are mixed with resins that have relatively high molding temperatures, such as high-density polyethylene, crystalline polypropylene, or rigid polyvinyl chloride, the moisture contained in the inorganic substances will evaporate at the molding temperature. Some dehydration occurs.

したがって成形品の難燃性は添加した無機物質の機能低
下に伴ない、減少が避けられない。そればかりか成形品
には脱水による気泡が発生し、表面が粗面になるととも
に強度の著しい低下等の欠点が発現する。さらに、これ
ら無機物質は一般的に他の難燃剤、例えば有機ノ・ロゲ
ン化物、有機すン化合物、ハロゲン化有機リン化合物等
に比べて難燃剤としての機能が劣るため後者に比べ配合
量を多くせざるを得ない。このため、樹脂本来の物性、
特に機械的物性が損なわれるため、用途分野が限定され
るという問題点もあった。
Therefore, the flame retardancy of the molded article inevitably decreases as the function of the added inorganic substance decreases. Moreover, bubbles are generated in the molded product due to dehydration, resulting in a rough surface and other defects such as a significant decrease in strength. Furthermore, these inorganic substances generally have inferior flame retardant functions compared to other flame retardants, such as organic no-logides, organosun compounds, and halogenated organophosphorus compounds, so they should be added in larger amounts than the latter. I have no choice but to do it. For this reason, the original physical properties of the resin,
In particular, there was a problem in that the field of application was limited because the mechanical properties were impaired.

ここに発明者らは上記の諸問題全解決し得るような優れ
た難燃性ポリオレフィン系組成物の開発を目指し鋭意検
討を行なった結果、この発明を完成するに至ったもので
ある。
The inventors have conducted extensive studies aimed at developing an excellent flame-retardant polyolefin composition that can solve all of the above-mentioned problems, and as a result have completed this invention.

即ち、この発明はポリオレフィン系樹脂100重量部に
対し、一般式M、、0 # A40.@ X810.拳
YH,0(式中、M : K、 Na、 Oa、 Fe
、 Znからなる金属元素の1種以上、a:陽イオンの
原子価、x:(Li−20の数値、Y:0〜20の数値
で示される結晶水のモル数)によって示され、30ミク
ロンメーター以下の平均粒子径をもつ天然産及び/又は
合成のゼオライト粉末を5乃至150重量部、およびハ
ロゲン化有機系難燃剤及び/又はハロゲン化有機リン系
難燃剤を0乃至30重量部、およびアンチモン系及び/
又はホウ素系難燃助剤を0乃至15重量部配合したこと
を特徴とする難燃性ポリオレフィン系樹脂組成物である
That is, in this invention, the general formula M, 0 # A40. @X810. Fist YH, 0 (in the formula, M: K, Na, Oa, Fe
, one or more metal elements consisting of Zn, a: valence of cation, x: (value of Li-20, Y: number of moles of crystal water indicated by a value of 0 to 20), 30 microns 5 to 150 parts by weight of naturally produced and/or synthetic zeolite powder with an average particle size of 0.05 to 1.5 liters, 0 to 30 parts by weight of a halogenated organic flame retardant and/or a halogenated organophosphorus flame retardant, and antimony. system and/
Alternatively, it is a flame-retardant polyolefin resin composition characterized in that it contains 0 to 15 parts by weight of a boron-based flame retardant aid.

本発明の組成物は従来の無機難燃剤を配合した組成物の
有する長所、すなわち燃焼時の発生有毒ガスの減少、火
ダレの防止および安価等の長所を持っている。
The composition of the present invention has the advantages of conventional compositions containing inorganic flame retardants, such as reduction in toxic gases generated during combustion, prevention of flame sag, and low cost.

さらに本発明の組成物は、従来の無機難燃剤を配合した
組成物に比べ、その難燃性において著しく高いばかりで
なく、成形加工時での発泡及びそれに伴なう成形品の粗
面9機械的強度低下等が認められない。
Furthermore, the composition of the present invention not only has significantly higher flame retardancy than compositions containing conventional inorganic flame retardants, but also has foaming during molding and the resulting rough surface of the molded product. No decrease in physical strength was observed.

本発明に用いるポリオレフィン系樹脂としては低密度、
中密度あるいは高密度のポリエチレン。
The polyolefin resin used in the present invention has low density,
Medium or high density polyethylene.

ポリプロピレン、ポリブチレン、ポリペンテンまたはこ
れらの共重合体ならびにこれらを主体とする変性重合体
、又はこれらの混和物である。
Polypropylene, polybutylene, polypentene, copolymers thereof, modified polymers mainly composed of these, or mixtures thereof.

ここでいう変性重合体とは、たとえばポリオレフィン中
に他のα−オレフィンやビニル化合物などを共重合した
もの、または他の重合体を附加したものである。前記共
重合体または変性重合体の具体例を示せば、たとえばエ
チレン−酢酸ビニル共重合体、エチレン−エチルアクリ
レート共重合体。
The modified polymer referred to herein is, for example, a polyolefin copolymerized with another α-olefin or a vinyl compound, or a polyolefin to which another polymer is added. Specific examples of the copolymer or modified polymer include ethylene-vinyl acetate copolymer and ethylene-ethyl acrylate copolymer.

エチレン−プロピレン共重合体、エチレン−プロビレ/
−ジエン系三元共重合体、塩素化ポリエチレンなどがあ
げられる。
Ethylene-propylene copolymer, ethylene-propylene/
-Diene terpolymer, chlorinated polyethylene, etc.

本発明を構成する一要素であるゼオライトとは一般式M
51p−A40.−XSiO!−YH,Oを有している
ものである。但し、式中のMはに、 Na、 Oa、 
Fe、 Znからなる1種以上の金属元素の陽イオンで
あり、aはその陽イオンの原子価であり、又は11〜2
0の数値であL yは0乃至20の数値で示される結晶
水のモル数である。当該一般式を有しておれば、天然産
のものでも合成されたものでもいづれのゼオライトでも
使用できる。天然ゼオライトとしてはチャパブイト。ク
リノプチロライト、エリオナイト9モルデナイトなどが
挙げられ、合成ゼオライトとしてはいわゆるゼオライト
A、ゼオライト2、ゼオライトY、ゼオライトL、シャ
パサイト。
Zeolite, which is one of the elements constituting the present invention, has the general formula M
51p-A40. -XSiO! -YH, O. However, M in the formula is Na, Oa,
A cation of one or more metal elements consisting of Fe, Zn, a is the valence of the cation, or 11 to 2
The value is 0, and Ly is the number of moles of water of crystallization expressed as a value from 0 to 20. Any zeolite, whether naturally produced or synthesized, can be used as long as it has the general formula. Chapavite is a natural zeolite. Examples of the synthetic zeolites include clinoptilolite, erionite 9 mordenite, and so-called zeolite A, zeolite 2, zeolite Y, zeolite L, and chapasite.

モルデナイトなどが挙げられる。Examples include mordenite.

本発明におけるゼオライト粉末は50ミクロンメーター
(μm)以下の平均粒子径を有す粉末である。平均粒子
径が50μmより大であると樹脂加工製品の表面が粗面
になると同時に製品の力学的物性の低下が大きくなり好
ましくない。
The zeolite powder in the present invention is a powder having an average particle size of 50 micrometers (μm) or less. If the average particle diameter is larger than 50 μm, the surface of the resin-processed product will become rough, and at the same time, the mechanical properties of the product will deteriorate significantly, which is not preferable.

本発明の効果を得るに必要なゼオライトの配合量はポリ
オレフィン系樹脂100重量部に対し5乃至150重量
部である。5重量部より少では難燃性に乏しく、150
重量部より大では製品の成形加工が困難となる。
The amount of zeolite required to obtain the effects of the present invention is 5 to 150 parts by weight per 100 parts by weight of the polyolefin resin. If it is less than 5 parts by weight, flame retardancy is poor;
If the amount exceeds parts by weight, it becomes difficult to mold the product.

本発明のハロゲン系難燃剤としては、ヘキサブロムベン
ゼン、デカブロムビフェニル、テカプロムジフェニルエ
ーテル、テトラブロムビス−フェノールA、4.4’−
ビス(2,5−ジブロムプロポキシ)−テトラブロムビ
スフェノールA、2.5−ジブロムプロポキシトリブロ
ムフェノール等に代表される芳香族臭素化合物又は芳香
族塩素化合物おヨヒパークロロシクロデカン、ヘキサブ
ロムシクロドデカン、ドデカクロロペンタシクロデカン
等に代表される脂環族臭素化合物又は脂環族塩素化合物
およびトリス(クロロエチル)ホスフェート。
Examples of the halogen flame retardant of the present invention include hexabromobenzene, decabromo biphenyl, tecaprom diphenyl ether, tetrabromo bis-phenol A, 4.4'-
Aromatic bromine compounds or aromatic chlorine compounds such as bis(2,5-dibromopropoxy)-tetrabromobisphenol A, 2,5-dibromopropoxytribromophenol, yohyperchlorocyclodecane, hexabromocyclo Alicyclic bromine compounds or alicyclic chlorine compounds represented by dodecane, dodecachloropentacyclodecane, etc., and tris (chloroethyl) phosphate.

トリス(2,!l−シフロムグロビル)ホスフェート。Tris(2,!l-sifuromeglovir) phosphate.

トリス(2−クロロピロピル)ホスフェート等に代表さ
れる有41ff41Jン〜ハロゲン化物および塩素化パ
ラフィン、塩素化ポリエチレン等に代表される脂肪族塩
素化合物又は脂肪族臭素化合物である。
These include halides such as tris(2-chloropropyl) phosphate and aliphatic chlorine compounds or aliphatic bromine compounds such as chlorinated paraffin and chlorinated polyethylene.

本発明の効果を得るに必要なハロゲン系難燃剤の配合量
はポリオレフィン系樹脂100重量部に対し0乃至30
重量部である。本発明の組成物に対し、要求される成形
加工性と難燃性とに応じ、ハロゲン系難燃剤の配合量を
増加させることが可能であるが、30重量部をこえると
、燃焼時にハロゲン化水素、−酸化炭素等の有毒ガスの
発生が激しくなり好ましくない。30重量部以下では前
記有毒ガスの発生はほとんど認められない。この理由は
明らかでないが、強いて挙げるとすれば樹脂に配合した
ゼオライト粒子のもつ極性分子に対する特有の吸着能の
ためとも考えられる。
The amount of halogen flame retardant necessary to obtain the effects of the present invention is 0 to 30 parts by weight per 100 parts by weight of the polyolefin resin.
Parts by weight. It is possible to increase the amount of halogenated flame retardant added to the composition of the present invention depending on the moldability and flame retardance required, but if it exceeds 30 parts by weight, halogenation occurs during combustion. This is undesirable as the generation of toxic gases such as hydrogen and carbon oxide becomes intense. When the amount is 30 parts by weight or less, generation of the above-mentioned toxic gas is hardly observed. Although the reason for this is not clear, it may be due to the unique adsorption ability of the zeolite particles blended into the resin for polar molecules.

本発明のアンチモン系難燃助剤としては三酸化アンチモ
ン、アンチモン酸カリ、四酸化ニアンチモン等を代表と
して挙げうる。ホウ素系難燃助剤としては、ホウ酸亜鉛
等を代表として挙げうる。
Representative antimony-based flame retardant aids of the present invention include antimony trioxide, potassium antimonate, diantimony tetroxide, and the like. A representative example of the boron-based flame retardant aid is zinc borate.

本発明の効果を得るに必要な該難燃助剤の配合量はオレ
フィン系樹脂100重量部に対し0乃至15重量部であ
る。15重量部より多針に配合しても添加効果の向上は
望めない。
The amount of the flame retardant aid required to obtain the effects of the present invention is 0 to 15 parts by weight per 100 parts by weight of the olefin resin. Even if more needles than 15 parts by weight are blended, no improvement in the effect of addition can be expected.

本発明の難燃性ポリオレフィン系組成物に対しては、さ
らに通常の染料、顔料などの着色剤、滑剤、耐熱安定剤
、紫外線吸収剤、離型剤などの有機物質、無機物質を任
意的に配合することができる。
The flame-retardant polyolefin composition of the present invention may optionally contain organic and inorganic substances such as coloring agents such as dyes and pigments, lubricants, heat stabilizers, ultraviolet absorbers, and mold release agents. Can be blended.

本発明組成物の成分は種々の周知の工程で混合すること
ができる。たとえば熱ロール上でオレフィン系樹脂を溶
融させ、ついでその溶融樹脂にゼオライト、ハロゲン系
難燃剤、難燃助剤及び必要に応じて適宜前記の他の添加
剤を混合することができる。
The components of the compositions of the present invention can be combined in a variety of well-known steps. For example, an olefin resin can be melted on a heated roll, and then zeolite, a halogen flame retardant, a flame retardant aid, and other additives mentioned above can be mixed as appropriate into the molten resin.

本発明にがかる難燃性ポリオレフィン系樹脂組成物の成
形に際しては、押出成形、射出成形、圧縮成形、フィル
ム成形などの通常の成形方法に適用することができる。
When molding the flame-retardant polyolefin resin composition according to the present invention, conventional molding methods such as extrusion molding, injection molding, compression molding, and film molding can be applied.

以下に実施例により本発明の効果について説明するがこ
れにより本発明は何等限定されることはない。
The effects of the present invention will be explained below with reference to Examples, but the present invention is not limited by these in any way.

実施例1 155±5”Cの熱ロール上で500grの低密度ポリ
エチレン(東洋曹達工業社製PB172)と500 g
、の合成A型ゼオライト(東洋曹達工業社製トヨビルダ
ー、平均粒子径1.6μm)とを混合し、その混線物を
3龍厚みのシートで取り出した。該シートをペレタイザ
ーにかけ、ゼオライト濃縮物(マスターパッチ)のベレ
ッ)を得た。該マスターパッチと低密度ポリエチレン(
東洋曹達工業社製pK170)とを20/100の重量
比でリボンプレンダーを用いてペレット混合を行なった
Example 1 500g of low-density polyethylene (PB172 manufactured by Toyo Soda Kogyo Co., Ltd.) and 500g on a 155±5”C hot roll
was mixed with synthetic type A zeolite (TOYOBUILDER manufactured by Toyo Soda Kogyo Co., Ltd., average particle size: 1.6 μm), and the mixed material was taken out in a sheet with a thickness of 3 mm. The sheet was run through a pelletizer to obtain a zeolite concentrate (master patch). The master patch and low density polyethylene (
pK170 (manufactured by Toyo Soda Kogyo Co., Ltd.) at a weight ratio of 20/100 using a ribbon blender.

該混合ベレットを501111インフレ加工機を用いて
80μm厚のフィルムを得た。フィルムの表面は、非常
にスムースであり、フィルムの透明性が高く、ゼオライ
トは樹脂マトリックスによく分散しており気泡、ゼオラ
イト凝集物に起因する「プツ」は全く認められなかった
。該フィルムの難燃性をスガ試験機社製のMVBB難燃
試験機を用いて測定した。このフィルムの難燃性はa 
55 El/1nchと非常に高かった。また燃焼時の
火ダレ性も極めて少なかった。結果を表1に示した。
A film with a thickness of 80 μm was obtained from the mixed pellet using a 501111 inflation processing machine. The surface of the film was very smooth, the film had high transparency, the zeolite was well dispersed in the resin matrix, and no bubbles or "spots" caused by zeolite aggregates were observed. The flame retardancy of the film was measured using an MVBB flame retardant tester manufactured by Suga Test Instruments. The flame retardancy of this film is a
It was very high at 55 El/1 nch. Also, the flame sag during combustion was extremely low. The results are shown in Table 1.

比較例1 実施例1で用いたゼオライトの代り忙水酸化アルミニウ
ムを用いた以外は実施例1と@・同じ処方0手順、操作
で80μm厚のフィルムを得た。該フィルムの表面はザ
ラザラしており、透明性がほとんどなくフィルム中に気
泡及び/又は凝集物に起因した「プッ」が多数認められ
た。
Comparative Example 1 A film with a thickness of 80 μm was obtained using the same recipe, procedure, and operation as in Example 1, except that aluminum hydroxide was used instead of the zeolite used in Example 1. The surface of the film was rough, had almost no transparency, and many "pops" caused by air bubbles and/or aggregates were observed in the film.

このフィルムの難燃性は2.638/1nchと実施例
1の結果と比べて非常に劣っていた。さらに火ダレ性が
極めて大きかった。結果を表1に示した。
The flame retardancy of this film was 2.638/1 nch, which was very inferior to the result of Example 1. Furthermore, the fire resistance was extremely high. The results are shown in Table 1.

比較例2 実施例1で用いたゼオライトの代りに有機物で表面処理
した水酸化マグネシウムを用いた以外は実施例1と0・
同じ処方1手順、操作で80μm厚のフィルムを得た。
Comparative Example 2 Example 1 and 0.
A film with a thickness of 80 μm was obtained using the same recipe and one procedure.

このフィルムの表面はスムースであり、透明性も高くフ
ィルム中に「プッ」は全く認められなかった。これは用
いた水酸化マグネシウムが表面処理されているためと考
えられる。このフィルムの難燃性は!h 01 e/1
nchと実施例1の結果と比べて非常に劣っていた。さ
らに火ダレ性が極めて大きかった。結果を表1に示した
The surface of this film was smooth, the transparency was high, and no "poop" was observed in the film. This is thought to be due to the surface treatment of the magnesium hydroxide used. How flame retardant is this film? h 01 e/1
The results were very inferior to those of nch and Example 1. Furthermore, the fire resistance was extremely high. The results are shown in Table 1.

実施例2 500 gr、の低密度ポリエチレン(東洋曹達工業社
製pH72)と、500gr、の合成A型ゼオライト(
実施例1と同じ)と、50grの芳香族臭素化合物難燃
剤(セイテック社製、B T q s )と15i、の
三酸化アンチモ/(日本精鉱社製、ATOX−8)とを
155±5°C17)熱ロール上で混練し3m厚みのシ
ートで取シ出した。この後は実施例1と同様な処方2手
順、操作で80μm厚のフィルムを得た。
Example 2 500 gr of low density polyethylene (manufactured by Toyo Soda Kogyo Co., Ltd., pH 72) and 500 gr of synthetic type A zeolite (
(same as in Example 1), 50 gr of an aromatic bromine compound flame retardant (B Tq s, manufactured by Seitec), and 15 i of antimony trioxide/(ATOX-8, manufactured by Nippon Seiko Co., Ltd.) at 155 ± 5 °C17) The mixture was kneaded on a heated roll and taken out as a 3 m thick sheet. Thereafter, a film with a thickness of 80 μm was obtained using the same recipe 2 procedure and operation as in Example 1.

このフィルムの表面は非常にスムースであシ、フィルム
の透明性が高く、ゼオライト、有機難燃剤。
The surface of this film is very smooth and transparent, and the film is made of zeolite and organic flame retardants.

三酸化アンチモン等が樹脂マトリックスによく分散して
おり、気泡及び/又は凝集物に起因する「プッ」は全く
認められなかった。このフィルムの難燃性は極めて高く
、自消性であpMVssの燃焼速度を測定できない程で
あった。さらに、火ダレ性は全く認められず、ハロゲン
化水素等の有毒ガスは発生しなかった。結果を表1に示
した。
Antimony trioxide and the like were well dispersed in the resin matrix, and no "poop" caused by bubbles and/or aggregates was observed. The flame retardance of this film was extremely high, and it was so self-extinguishing that the burning rate of pMVss could not be measured. Furthermore, no fire sagging was observed, and no toxic gases such as hydrogen halides were generated. The results are shown in Table 1.

比較例3 実施例2で用いたゼオライトの代りに水酸化アルミニウ
ムを用いた以外は実施例2と[相][株]同じ処方1手
順、操作で80μm厚のフィルムを得た。該フィルムの
表面はザラザラしており透明性がほとんどなくフィルム
中に気泡及び/又は凝集物に起因した「プッ」が多数認
められた。このフィルムの難燃性は4.80 s/1n
chであった。燃焼中、ハロゲン化水素臭が強かった。
Comparative Example 3 A film with a thickness of 80 μm was obtained using the same recipe and procedure as in Example 2 except that aluminum hydroxide was used in place of the zeolite used in Example 2. The surface of the film was rough and had almost no transparency, and many "pops" caused by air bubbles and/or aggregates were observed in the film. The flame retardancy of this film is 4.80 s/1n
It was ch. During combustion, there was a strong hydrogen halide odor.

結果を表1に示した。The results are shown in Table 1.

実施例5 200 gr、のエチレン−酢ビ共雇合樹脂(東洋曹達
工業社製UE535)と160gT、のゼオライト(実
施例1と同じ)とを130〜155°Cの熱ロールを用
いて混練した。得られた混線シートを圧縮成形機を用い
て成形温度150℃、成形樹脂圧力100へメメ、冷却
時間5分等の成形条件の下で成形し、2關厚板及び5 
mm厚板を得た。2騙板からに65Q15号ダ/ペルを
用いて試験片を得て、Jより K 7210に準じた引
張り試験(引張り速度200 am/m1n)を行なっ
た。また3u板を用いてJ工El K 7201に準じ
て難燃性の指標となる酸素指数を測定した。引張り降伏
強度85に9/Cdt、伸び220チと高い機械的強度
を示した。
Example 5 200g of ethylene-vinyl acetate co-op resin (UE535 manufactured by Toyo Soda Kogyo Co., Ltd.) and 160gT of zeolite (same as Example 1) were kneaded using a heated roll at 130 to 155°C. . The obtained mixed wire sheet was molded using a compression molding machine under molding conditions such as a molding temperature of 150°C, a molding resin pressure of 100°C, and a cooling time of 5 minutes.
A mm thick plate was obtained. A test piece was obtained from the No. 2 plate using a No. 65Q15 da/pel, and a tensile test (tensile speed 200 am/m1n) according to K 7210 from J was conducted. Further, the oxygen index, which is an indicator of flame retardancy, was measured using a 3U plate according to J.E. El K 7201. It exhibited high mechanical strength with a tensile yield strength of 85/9/Cdt and an elongation of 220 inches.

結果を表1に示した。The results are shown in Table 1.

また酸素指数は259であり、難燃性も優れていた。3
鴎板の切断面を顕微鏡で観察したところ、気泡、凝集物
は全く認められなかった。
Moreover, the oxygen index was 259, and the flame retardance was also excellent. 3
When the cut surface of the seaweed plate was observed under a microscope, no air bubbles or aggregates were observed.

比較例4 実施例3で用いたゼオライトの代りに平均粒子径4μm
の水酸化アルミニウムを用いた以外は実施例3と■■同
じ処方9手順、操作で試験片を得て、機械的強度及び難
燃性の試験を行なった。このものは機械的強度も難燃性
も実施例3の組成物に比べて著しく劣っていた。3關板
の切断面には、気泡の跡、凝集物が若干認められた。結
果を表1に示した。
Comparative Example 4 Instead of the zeolite used in Example 3, an average particle size of 4 μm was used.
A test piece was obtained using the same recipe 9 procedure and operation as in Example 3, except that aluminum hydroxide was used, and mechanical strength and flame retardancy tests were conducted. This composition was significantly inferior to the composition of Example 3 in both mechanical strength and flame retardancy. Traces of air bubbles and some aggregates were observed on the cut surface of the third plate. The results are shown in Table 1.

実施例4 下記の各粉末をリボンプレンダーで混合した後、60°
CXa時間乾燥した。該乾燥物を1オンスの射出成形機
を用いて樹脂温度250°Cの条件下で試験片(厚さ1
騙の5号ダンベル及び4鵡厚のプレート)を成形した。
Example 4 After mixing the following powders with a ribbon blender,
Dry for CXa time. The dried product was molded into test pieces (thickness 1
A No. 5 dumbbell and a No. 4 thick plate) were molded.

グンペルを機械的強度の測定(引張速度50竺/m1n
)に、またプレートを難燃性の試験に供した。試験はそ
れぞれ J工8 K 7210.JI8 K7201に準拠した
。表1に示したように、この組成物は降伏強さ565 
ki/cdt、酸素指数24.5と優れた物性を有して
いた。燃焼中、臭化水素の臭いが全くしなかった。フレ
ートの切断面を顕微鏡で観察したところ、気泡の跡、凝
集物は全く認められなかった。
Measurement of mechanical strength of Gumpel (tensile speed 50 threads/m1n)
), and the plates were also subjected to flame retardancy tests. Each test is J Engineering 8K 7210. Compliant with JI8 K7201. As shown in Table 1, this composition has a yield strength of 565
It had excellent physical properties with ki/cdt and oxygen index of 24.5. There was no odor of hydrogen bromide during combustion. When the cut surface of the freight was observed under a microscope, no traces of air bubbles or aggregates were observed.

比較例5 ゼオライトの代りに平均粒子径4μmの水酸化アルミニ
ウムを用いた以外は実施例4と[相]■同じ処方1手順
、操作で試験片を得た。表1に示したように機械的強度
も難燃性も実施例4に比べて劣っていた。燃焼中の臭化
水素の臭いが強かった。プレートの断面には気泡跡がか
なり観察された。
Comparative Example 5 A test piece was obtained using the same recipe 1 procedure and operation as in Example 4, except that aluminum hydroxide with an average particle diameter of 4 μm was used in place of zeolite. As shown in Table 1, both mechanical strength and flame retardancy were inferior to Example 4. The smell of hydrogen bromide during combustion was strong. Considerable air bubble traces were observed on the cross section of the plate.

Claims (1)

【特許請求の範囲】 ポリオレフィン系樹脂100重量部に対し←)一般式 
MjfO−A40.−XSiO,−YH,0式中、M 
: K、 Na、 Oa、 Fe、 Znからなる金属
元素の1種以上 a:陽イオンの原子価 X:[11〜20の数値 Y:0〜20の数値で示めされる 結晶水のモル数 によって示され、50ミクロンメーター以下の平均粒子
径をもつ天然産及び/ヌは合成のゼオライト粉末を5乃
至150重量部 (ロ) ハロゲン化有機系難燃剤及び/又はハロゲン化
有機リン系難燃剤を0乃至30重量部(ハ) アンチモ
ン系及び/又はホウ素系難燃助剤を0乃至15重量部 とを配合した難燃性ポリオレフィン系樹脂組成物。
[Claims] Based on 100 parts by weight of polyolefin resin ←) General formula
MjfO-A40. -XSiO, -YH,0 in the formula, M
: One or more metal elements consisting of K, Na, Oa, Fe, and Zn a: Valence of cation 5 to 150 parts by weight of naturally occurring and/or synthetic zeolite powder with an average particle size of 50 microns or less (b) halogenated organic flame retardant and/or halogenated organophosphorus flame retardant. 0 to 30 parts by weight (c) A flame-retardant polyolefin resin composition containing 0 to 15 parts by weight of an antimony-based and/or boron-based flame retardant aid.
JP59047170A 1984-03-14 1984-03-14 Flame-retardant polyolefin resin composition Pending JPS60192742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59047170A JPS60192742A (en) 1984-03-14 1984-03-14 Flame-retardant polyolefin resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59047170A JPS60192742A (en) 1984-03-14 1984-03-14 Flame-retardant polyolefin resin composition

Publications (1)

Publication Number Publication Date
JPS60192742A true JPS60192742A (en) 1985-10-01

Family

ID=12767588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59047170A Pending JPS60192742A (en) 1984-03-14 1984-03-14 Flame-retardant polyolefin resin composition

Country Status (1)

Country Link
JP (1) JPS60192742A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199654A (en) * 1986-02-27 1987-09-03 Nitto Kasei Kk Stabilized flame-retardant thermoplastic resin composition
US4785042A (en) * 1985-09-13 1988-11-15 Idemitsu Petrochemical Co., Ltd. Polyethylene resin composition containing amorphous aluminosilicates for improved films
EP0629678A1 (en) * 1993-06-18 1994-12-21 Elf Atochem S.A. Fireproofing compositions for mixtures of synthetic resins comprising a zeolite
EP0629677A1 (en) * 1993-06-18 1994-12-21 Elf Atochem S.A. Fireproofing compositions for synthetic resins comprising a zeolite
FR2841254A1 (en) * 2002-06-24 2003-12-26 Atofina FLAME RETARDANT COMPOSITIONS BASED ON POLYAMIDE AND POLYOLEFIN
JP2020015812A (en) * 2018-07-25 2020-01-30 矢崎総業株式会社 Resin composition and covered electric wire using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104966A (en) * 1980-01-17 1981-08-21 Pennwalt Corp Zeolite as smoke inhibitor for halogenated polymer
JPS57177033A (en) * 1981-04-23 1982-10-30 Kosei:Kk Resin additive composition
JPS5859245A (en) * 1981-10-05 1983-04-08 Toa Nenryo Kogyo Kk Antistatic polypropylene film
JPS5922944A (en) * 1982-07-30 1984-02-06 Mitsubishi Petrochem Co Ltd Resin composition for extrusion molding
JPS59129240A (en) * 1983-01-12 1984-07-25 Toyo Soda Mfg Co Ltd Low-density polyethylene resin composition
JPS59184238A (en) * 1983-04-05 1984-10-19 Showa Denko Kk Propylene polymer composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104966A (en) * 1980-01-17 1981-08-21 Pennwalt Corp Zeolite as smoke inhibitor for halogenated polymer
JPS57177033A (en) * 1981-04-23 1982-10-30 Kosei:Kk Resin additive composition
JPS5859245A (en) * 1981-10-05 1983-04-08 Toa Nenryo Kogyo Kk Antistatic polypropylene film
JPS5922944A (en) * 1982-07-30 1984-02-06 Mitsubishi Petrochem Co Ltd Resin composition for extrusion molding
JPS59129240A (en) * 1983-01-12 1984-07-25 Toyo Soda Mfg Co Ltd Low-density polyethylene resin composition
JPS59184238A (en) * 1983-04-05 1984-10-19 Showa Denko Kk Propylene polymer composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4785042A (en) * 1985-09-13 1988-11-15 Idemitsu Petrochemical Co., Ltd. Polyethylene resin composition containing amorphous aluminosilicates for improved films
JPS62199654A (en) * 1986-02-27 1987-09-03 Nitto Kasei Kk Stabilized flame-retardant thermoplastic resin composition
JPH0546863B2 (en) * 1986-02-27 1993-07-15 Nitto Kasei Co Ltd
EP0629678A1 (en) * 1993-06-18 1994-12-21 Elf Atochem S.A. Fireproofing compositions for mixtures of synthetic resins comprising a zeolite
EP0629677A1 (en) * 1993-06-18 1994-12-21 Elf Atochem S.A. Fireproofing compositions for synthetic resins comprising a zeolite
FR2841254A1 (en) * 2002-06-24 2003-12-26 Atofina FLAME RETARDANT COMPOSITIONS BASED ON POLYAMIDE AND POLYOLEFIN
EP1375594A1 (en) * 2002-06-24 2004-01-02 Atofina Flame retardant compositions based on polyamide and polyolefine
US7235604B2 (en) 2002-06-24 2007-06-26 Atofina Polyamide- and polyolefin-based fire-retarded compositions
JP2020015812A (en) * 2018-07-25 2020-01-30 矢崎総業株式会社 Resin composition and covered electric wire using the same

Similar Documents

Publication Publication Date Title
US4234469A (en) Flame retarding polyolefin resin blend composition
PT1907473E (en) Flame retardant polymeric compositions
JP2002322322A (en) Flame retardant polyolefin composition
EP0427173B1 (en) Self-extinguishing polymeric compositions
JPS60192742A (en) Flame-retardant polyolefin resin composition
JPS5924736A (en) Flame-retarding polystyrene resin composition
US4879332A (en) Halogen-free flame resisting synthetic resin composition
US4147741A (en) Anti-drip additive system for fire retardant polypropylene
US4059650A (en) Anti-drip additive system for fire retardant polypropylene
US20050215695A1 (en) Stabilized flame retardant additives and their use
JP3648032B2 (en) Flame retardant resin composition
JPWO2002074852A1 (en) Flame retardant polyolefin resin composition
JPH0127104B2 (en)
JPH04100843A (en) Flame-retardant styrenic resin composition
JP3550184B2 (en) Flame retardant polyolefin resin foam
JP3030726B2 (en) Method for producing flame-retardant resin composition
JPS61252256A (en) Flame-retardant propylene polymer composition
GB2300860A (en) Flame retardant styrene polymer
JPS61231048A (en) Self-fire-extinguishing polycarbonate composition
JP3015574B2 (en) Flame retardant resin composition
JPH06184372A (en) Flame-retardant polypropylene resin composition
JPS60170667A (en) Flame-retardant resin composition having excellent heat-discoloration resistance
JP3030909B2 (en) Flame retardant resin composition
JPH0366344B2 (en)
JPH04117443A (en) Flame-retardant thermoplastic styrene resin composition