JPS6211207A - Metallic magnetic fluid - Google Patents

Metallic magnetic fluid

Info

Publication number
JPS6211207A
JPS6211207A JP14930585A JP14930585A JPS6211207A JP S6211207 A JPS6211207 A JP S6211207A JP 14930585 A JP14930585 A JP 14930585A JP 14930585 A JP14930585 A JP 14930585A JP S6211207 A JPS6211207 A JP S6211207A
Authority
JP
Japan
Prior art keywords
dpa
polyamine
magnetic fluid
dispersion medium
dispersant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14930585A
Other languages
Japanese (ja)
Other versions
JPH0433121B2 (en
Inventor
Isao Nakatani
功 中谷
Takao Furubayashi
孝夫 古林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP14930585A priority Critical patent/JPS6211207A/en
Publication of JPS6211207A publication Critical patent/JPS6211207A/en
Publication of JPH0433121B2 publication Critical patent/JPH0433121B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Lubricants (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a metallic magnetic fluid having excellent stability and durability by dispersing ferromagnetic metallic particles into a dispersion medium liquid under a colloidal state by using a dispersant of succinic acid polyamine or benzil polyamine. CONSTITUTION:A Langmuir membrane consisting of a surface active agent of dibenzil polyamine (DPA) is lined onto a dispersion medium liquid of alkyl naphthalene, Co is vacuum-deposited on the membrane, thus acquiring colloid composed of C fine particles coated with DPA, alkyl naphthalene and excess DPA. Colloid is diluted with lower hydrocarbon such as benzene, and secondary particles, the particle size of Co therein increases through heat treatment, are precipitated. The secondary particles are dried, thus obtaining semi-solid cake. Toluene and DPA are added to the cake, and a magnetic fluid employing toluene as a dispersion medium liquid is obtained through ultrasonic treatment. Succinic acid polyamine can also be used in place of DPA.

Description

【発明の詳細な説明】 一1i ごノ 産業上の利用分野 本発明は金属磁性流体に関する。更に詳しくは特定の分
散剤を用いることにより、極めて安定で耐久性の優れた
金属磁性流体を提供するにある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a metal magnetic fluid. More specifically, by using a specific dispersant, it is possible to provide a metal magnetic fluid that is extremely stable and has excellent durability.

磁性流体は液体状の磁石であシ、真空回転軸シール、イ
ンクジェットプリンター、比重差分離等の分野ですでに
利用もしくは利用が検討されている。これらの分野のほ
か、電波吸収剤、熱エネルギー変換作業物質、磁気光字
素等への幅広い分野への応用が考えられる。
Magnetic fluids are already being used or are being considered for use in fields such as liquid magnets, vacuum rotary shaft seals, inkjet printers, and specific gravity separation. In addition to these fields, applications in a wide range of fields such as radio wave absorbers, thermal energy conversion working materials, and magneto-optical elements can be considered.

従来技術 金属磁性流体は、強磁性金属粒子を分散媒液例えば鉱油
、水中に分散剤を用いてコロイド状としたものであり、
その製造法としては、(リコバルトカルボニル(Cow
 (Co )s )の熱分解法、(2)活性液面蒸着法
が知られている。
Conventional metal magnetic fluids are made by colloidally forming ferromagnetic metal particles in a dispersion medium such as mineral oil or water using a dispersant.
Its production method includes (licobalt carbonyl (Cow)
(Co ) s ) thermal decomposition method and (2) active liquid surface deposition method are known.

前記(すの方法においては、分散剤としてアクリルニト
リル−スチレン共重合体が用いられていた。しかし、こ
の分散剤は紫外線で重合し易いため、活性界面蒸着法に
用いることはできない。活性液面蒸着法において、本発
明者はさきに1次のような分散剤が使用し得られること
を提示した。
In the above method, an acrylonitrile-styrene copolymer was used as a dispersant.However, this dispersant is easily polymerized by ultraviolet light, so it cannot be used in the active interfacial deposition method.Active liquid level In the vapor deposition method, the present inventor has previously proposed that the following dispersant can be used.

(1) 硫酸エステルfJ[、(2)スルホン酸エステ
ル塩類、(3)カルボン酸エステル塩類、(4)リン酸
エステル塩類、(+1)アミン塩類、(6)アミノ酸型
界面活性剤、(7)ベタイン型界面活性剤、(8)ポリ
エチレンオキサイド型非イオン界面活性剤、(9)多価
アルコール型非イオン界面活性剤、(14アミド類及び
イミド類、α9金属フエネート類、(ロ)極性基を持つ
ポリメタアクリレート、 しかし、金属磁性流体は使用する分散剤によりその安定
性、耐久性が影響され、優れた安定性と耐久性を持つた
めには分散剤の選択が重要であることが分った。
(1) Sulfate ester fJ[, (2) Sulfonic acid ester salts, (3) Carboxylic acid ester salts, (4) Phosphate ester salts, (+1) Amine salts, (6) Amino acid type surfactant, (7) betaine type surfactant, (8) polyethylene oxide type nonionic surfactant, (9) polyhydric alcohol type nonionic surfactant, (14 amides and imides, α9 metal phenates, (b) polar group However, the stability and durability of metal magnetic fluids are affected by the dispersant used, and it has been found that the selection of the dispersant is important in order to have excellent stability and durability. Ta.

発明の目的 本発明の目的は分散剤を特定し、安定性ならびに耐久性
に優れた金属磁性流体を一提供するにある。
OBJECTS OF THE INVENTION An object of the present invention is to specify a dispersant and provide a metal magnetic fluid with excellent stability and durability.

発明の構成 本発明者は前記目的を達成すべく、各種の分散剤を使用
して活性界面蒸着法によって試験を行った。
Structure of the Invention In order to achieve the above object, the present inventor conducted tests using various dispersants and an active interface deposition method.

活性界面蒸着法は第1図に示す真空蒸着過程ωと熱処理
凝集再分散過程ら)からなっている。
The active interface deposition method consists of a vacuum deposition process ω and a heat treatment aggregation/redispersion process shown in FIG.

先ず、分散媒液■上に分散剤の膜■を作り、その上に強
磁性金属を真空蒸発して強磁性金属微粒子■を発生させ
る。これにより、強磁性金属微粒子■は分散剤■に覆わ
れて分散媒液■中に分散させる。(cL工矧) このコロイド分散液■を不活性ガス雰囲気下で加熱処理
すると二次粒子の沈殿■が生成し、この沈殿を分離して
ケーキ■となし、これを分散媒液■中に分散剤を用いて
再分散させる。
First, a dispersant film (2) is formed on the dispersion medium (2), and a ferromagnetic metal is vacuum evaporated onto the film to generate ferromagnetic metal fine particles (2). As a result, the ferromagnetic metal fine particles (2) are covered with the dispersant (2) and dispersed in the dispersion medium (2). (cL engineering) When this colloidal dispersion liquid (■) is heated under an inert gas atmosphere, a secondary particle precipitate (■) is generated, and this precipitate is separated to form a cake (■), which is dispersed in a dispersion medium liquid (■). redisperse using an agent.

(b工程) この方法により各種分散剤を用いて試験した結果、分散
剤が硫酸エステル塩類、スルホン酸エステル塩類、カル
ボン酸エステル塩類はいす。
(Step b) As a result of testing using various dispersants using this method, it was found that the dispersants were sulfuric acid ester salts, sulfonic acid ester salts, and carboxylic acid ester salts.

れも熱処理凝集再分散の際、分散作用が弱く、粒子が凝
集すると共に強磁性金属微粒子の粒径制御が困難である
。リン酸エステル塩類、アミン塩類、アミノ酸型界面活
性剤、ベタイン型界面活性剤、ポリエチレンオキサイド
型非イオン界面活性剤、多価アルコール型非イオン界面
活性剤、金属フェネート類及び極性基を持つポリメタア
クリレートは、いずれも熱処理凝集再分散の際、分散作
用が弱く、粒子が凝集する。
In both cases, during heat treatment aggregation and redispersion, the dispersion effect is weak, the particles aggregate, and it is difficult to control the particle size of the ferromagnetic metal fine particles. Phosphate ester salts, amine salts, amino acid type surfactants, betaine type surfactants, polyethylene oxide type nonionic surfactants, polyhydric alcohol type nonionic surfactants, metal phenates, and polymethacrylates with polar groups. In both cases, the dispersion effect is weak during heat treatment agglomeration and redispersion, and the particles agglomerate.

また、ポリエチレンオキサイド型非イオン界面活性剤は
前記の欠点のほか、真空蒸着の際、輻射熱により分解あ
るいは重合を起すなどの欠点があった。
In addition to the above-mentioned drawbacks, polyethylene oxide type nonionic surfactants also have drawbacks such as decomposition or polymerization due to radiant heat during vacuum deposition.

これに対し、ポリアミン、特に(1)一般式(ただし、
Rはポリブテニル基、またはアルキル基を、nは2以上
を表わす) で示されるポリブテニルコハク酸ポリアミン(2)一般
式 (ただし、R,nは前記と同じものを表わす)で示され
るジベンジルポリアミンを使用すると。
On the other hand, polyamines, especially (1) general formula (however,
R is a polybutenyl group or an alkyl group, and n is 2 or more) Polybutenyl succinic acid polyamine (2) Dibenzyl represented by the general formula (R and n are the same as above) When using polyamines.

前記の各種分散剤を使用する場合におこる欠点がなく、
次に述べるような優れた作用効果があシ、安定で且つ耐
久性の金属磁性流体が得られることを究明し得た。
There are no drawbacks that occur when using the various dispersants mentioned above,
It has been found that a stable and durable metallic magnetic fluid with excellent functions and effects as described below can be obtained.

前記分散剤を使用すると、 1)真空蒸着の際、強磁性金属蒸気の付着性がよいため
、高濃度の磁性流体が得られる。
When the dispersant is used, 1) ferromagnetic metal vapor has good adhesion during vacuum deposition, so a highly concentrated magnetic fluid can be obtained.

2)この分散剤は耐熱性であシ、蒸発源から放射される
光、紫外線によって重合あるいは分解を起すことが少な
く、長時間の蒸発に耐えることができる。
2) This dispersant is heat resistant, hardly polymerized or decomposed by light or ultraviolet rays emitted from the evaporation source, and can withstand evaporation for a long time.

3)蒸着生成物を熱処理することにより、その粒子径を
制御できる。そのため、金属磁性流体の磁性を制御する
ことが可能である。
3) By heat-treating the vapor deposition product, its particle size can be controlled. Therefore, it is possible to control the magnetism of the metal magnetic fluid.

4)この分散剤の分子は強磁性金属微粒子の表面に強く
吸着されるため、耐酸化性の優れた金属磁性流体となし
得る。
4) Since the molecules of this dispersant are strongly adsorbed on the surface of the ferromagnetic metal fine particles, a metal magnetic fluid with excellent oxidation resistance can be obtained.

5)その分散作用も優れ、凝集し難く安定なものとなし
得る。
5) It has an excellent dispersing effect and is difficult to aggregate and can be made stable.

6)耐酸化性でかつ分散もよいので、鉄、コバルト、ニ
ッケル及びこれらの合金または化合物からなる金属磁性
流体を作ることができる。
6) Since it is oxidation resistant and has good dispersibility, metal magnetic fluids made of iron, cobalt, nickel, and alloys or compounds thereof can be made.

等の優れた作用効果を奏し得られる。Excellent effects such as these can be achieved.

この知見に基いて本発明を完成したものである。The present invention was completed based on this knowledge.

本発明の要旨は、強磁性金属微粒子を分散媒液中に、コ
ハク酸ポリアミンまたはベンジルポリアミンの分散剤を
用いてコロイド状に分散させたことを特徴とする金属磁
性流体にある。
The gist of the present invention resides in a metal magnetic fluid characterized in that fine ferromagnetic metal particles are colloidally dispersed in a dispersion medium using a dispersant of succinic acid polyamine or benzyl polyamine.

分散媒液としては、水、鉱油が用いられる。Water and mineral oil are used as the dispersion medium.

次に実施例にようその製法ならびに作用効果を示す。Next, the manufacturing method and the effects of the weeds will be shown in Examples.

実施例1゜ アルキルナフタリン(C+aHsyM)の分散媒液上に
、ジベンジルポリアミン(前記一般式のRの分子量=1
000、n=4)の界面活性剤からなるジングミュア膜
を張り、その上に金属コバルトを真空蒸着してコバル)
61粒子を発生させた。とれてより、ジベンジルポリア
ミンで覆われたコバルト微粒子とアルキルナフタリンと
余剰のジベンジルポリアミンからなるコロイドが得られ
た。
Example 1 On a dispersion medium of alkylnaphthalene (C+aHsyM), dibenzylpolyamine (molecular weight of R in the above general formula = 1
A Singmuir film consisting of a surfactant of 000, n = 4) is applied, and metallic cobalt is vacuum-deposited on top of it to form a cobalt film (cobal).
61 particles were generated. A colloid consisting of fine cobalt particles covered with dibenzyl polyamine, alkylnaphthalene, and excess dibenzyl polyamine was obtained.

このコロイドをベンゼンなどの低級炭化水素で希釈して
粘性吟下ばて別の容器に移し、アルゴン雰囲気下で27
0℃で40分間加熱した。この加熱処理により、コバル
ト粒子は粒径が増大すると共に、二次粒子を形成して沈
殿した。この沈殿を不活性ガス中で乾燥し半固体状のケ
ーキを得た。このケーキ10PK対1.で、トルエン5
cc、ジベンジルポリアミン(前記と同じ)1.5fを
加え、超音波による再分散処理を行った。これによシト
ルエンを分散媒液としたコバルト磁性流体が得られた。
This colloid was diluted with a lower hydrocarbon such as benzene, transferred to another container under a viscous strainer, and heated under an argon atmosphere for 27 hours.
Heated at 0°C for 40 minutes. As a result of this heat treatment, the cobalt particles increased in particle size, formed secondary particles, and precipitated. This precipitate was dried in an inert gas to obtain a semi-solid cake. This cake is 10PK for 1. So, toluene 5
cc and 1.5 f of dibenzyl polyamine (same as above) were added, and redispersion treatment was performed using ultrasonic waves. As a result, a cobalt magnetic fluid using citoluene as a dispersion medium was obtained.

この磁性流体の飽和磁化の大きさは室温で約300ガウ
スであった。
The magnitude of saturation magnetization of this magnetic fluid was about 300 Gauss at room temperature.

実施例2゜ 実M例1.0ジベンジルポリアミンに代え、コハク酸ポ
リアミン(前記一般式Rの分子量=750、n=4)を
使用して、実施例1.と同様にして、トルエンを分散媒
液としたコバルト磁性流体を作った。
Example 2 Practical Example 1.0 Example 1. In the same manner as above, a cobalt magnetic fluid was prepared using toluene as the dispersion medium.

この磁性流体の飽和磁化の大きさは室温で約400ガウ
スであった。
The magnitude of saturation magnetization of this magnetic fluid was about 400 Gauss at room temperature.

発明の効果 本発明の金属磁性流体は、従来のそれに比べて極めて安
定でかつ耐久性の優れた効果を有する。
Effects of the Invention The metal magnetic fluid of the present invention is extremely stable and has excellent durability compared to conventional fluids.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は界面活性蒸着法によって金属磁性流体を製造す
る過程の模式図で、第1図(a)は真空蒸着過程図、第
1図(b)は熱処理凝集再分散過程図である。 に分散媒液    2:分散剤の膜 3:強磁性金属微粒子 4:強磁性金属微粒子 5:分散剤    6;コロイド分散液7:二次粒の沈
殿  8:ケーキ 9:分散媒液 特許出願人 科学技術庁金属材料技術研究所長中  川
  龍 −
FIG. 1 is a schematic diagram of the process of manufacturing a metal magnetic fluid by the surface active deposition method, FIG. 1(a) is a diagram of the vacuum deposition process, and FIG. 1(b) is a diagram of the heat treatment aggregation and redispersion process. Dispersion medium liquid 2: Dispersant film 3: Ferromagnetic metal fine particles 4: Ferromagnetic metal fine particles 5: Dispersant 6; Colloidal dispersion liquid 7: Precipitation of secondary particles 8: Cake 9: Dispersion medium liquid Patent applicant Science Ryu Kawa, Director, Metal Materials Technology Research Institute, Technology Agency −

Claims (1)

【特許請求の範囲】[Claims]  強磁性金属微粒子を分散媒液中に、コハク酸ポリアミ
ンまたはベンジルポリアミンの分散剤を用いてコロイド
状に分散させたことを特徴とする金属磁性流体。
A metal magnetic fluid characterized in that ferromagnetic metal fine particles are colloidally dispersed in a dispersion medium using a dispersant of succinic acid polyamine or benzyl polyamine.
JP14930585A 1985-07-09 1985-07-09 Metallic magnetic fluid Granted JPS6211207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14930585A JPS6211207A (en) 1985-07-09 1985-07-09 Metallic magnetic fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14930585A JPS6211207A (en) 1985-07-09 1985-07-09 Metallic magnetic fluid

Publications (2)

Publication Number Publication Date
JPS6211207A true JPS6211207A (en) 1987-01-20
JPH0433121B2 JPH0433121B2 (en) 1992-06-02

Family

ID=15472236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14930585A Granted JPS6211207A (en) 1985-07-09 1985-07-09 Metallic magnetic fluid

Country Status (1)

Country Link
JP (1) JPS6211207A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222504A (en) * 1989-02-25 1990-09-05 Cosmo Oil Co Ltd Manufacture of magnetic fluid
JPH02239603A (en) * 1989-03-14 1990-09-21 Cosmo Sogo Kenkyusho:Kk Magnetic fluid composition
GB2283757A (en) * 1993-08-16 1995-05-17 Scient Discoveries Ltd Lubricant or fuel additive displaying the selective transfer phenomenon
US5587111A (en) * 1990-03-29 1996-12-24 Vacuum Metallurgical Co., Ltd. Metal paste, process for producing same and method of making a metallic thin film using the metal paste
EP1329488A1 (en) * 2000-10-13 2003-07-23 Ulvac, Inc. Ink-jet ink and process for producing the same
EP1349135A4 (en) * 2000-12-04 2005-01-12 Ulvac Inc Method of forming electrode for flat panel display
JP5030267B2 (en) * 2004-04-16 2012-09-19 独立行政法人物質・材料研究機構 Method for producing metal colloid pigment, conductive paste material or conductive ink material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222504A (en) * 1989-02-25 1990-09-05 Cosmo Oil Co Ltd Manufacture of magnetic fluid
JPH02239603A (en) * 1989-03-14 1990-09-21 Cosmo Sogo Kenkyusho:Kk Magnetic fluid composition
US5587111A (en) * 1990-03-29 1996-12-24 Vacuum Metallurgical Co., Ltd. Metal paste, process for producing same and method of making a metallic thin film using the metal paste
US5750194A (en) * 1990-03-29 1998-05-12 Vacuum Metallurgical Co., Ltd. Process for producing a metal paste
US5966580A (en) * 1990-03-29 1999-10-12 Vacuum Metallurgical Co., Ltd. Process for making a thin film using a metal paste
GB2283757A (en) * 1993-08-16 1995-05-17 Scient Discoveries Ltd Lubricant or fuel additive displaying the selective transfer phenomenon
EP1329488A1 (en) * 2000-10-13 2003-07-23 Ulvac, Inc. Ink-jet ink and process for producing the same
EP1329488A4 (en) * 2000-10-13 2004-12-01 Ulvac Inc Ink-jet ink and process for producing the same
EP1349135A4 (en) * 2000-12-04 2005-01-12 Ulvac Inc Method of forming electrode for flat panel display
JP5030267B2 (en) * 2004-04-16 2012-09-19 独立行政法人物質・材料研究機構 Method for producing metal colloid pigment, conductive paste material or conductive ink material

Also Published As

Publication number Publication date
JPH0433121B2 (en) 1992-06-02

Similar Documents

Publication Publication Date Title
US4280918A (en) Magnetic particle dispersions
JPS6211207A (en) Metallic magnetic fluid
JPS60162704A (en) Production of magnetic fluid
Yan et al. Synthesis and Assembly of Monodisperse High‐Coercivity Silica‐Capped FePt Nanomagnets of Tunable Size, Composition, and Thermal Stability from Microemulsions
JPH03163805A (en) Super paramagnetic compound material
JPS6116793B2 (en)
JPH11260620A (en) Improved manufacture of oil-based magnetic fluid
JP3187844B2 (en) Magnetic fluid with high saturation magnetization
JPH0423802B2 (en)
JP2004244484A (en) Heat transfer medium
JPH03104806A (en) Method for manufacturing magnetic fluid
JPH05500732A (en) superparamagnetic liquid colloid
JPH04157615A (en) Treating method of magnetic powder
JPS5925905A (en) Production of acicular ferrous ferromagnetic metallic powder
JP2819699B2 (en) Manufacturing method of magnetic fluid
JPH0433122B2 (en)
JPH01315103A (en) Manufacture of magnetic fluid composition
JP3023795B2 (en) Water-based magnetic fluid and method for producing the same
JPS59227730A (en) Preparation of magnetic powder
TW202414450A (en) Soft-magnetic metal powder, production method for same, and resin composition
JPS58180596A (en) Preparation of magnetic fluid containing synthetic oil as dispersion medium
JPH02239603A (en) Magnetic fluid composition
Hadjipanayis et al. Ultrafine magnetic particles
KR100203022B1 (en) Preparing method of magnetic fluid
JPH04149025A (en) Magnetic fluid

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term