JPS6211207A - Metallic magnetic fluid - Google Patents
Metallic magnetic fluidInfo
- Publication number
- JPS6211207A JPS6211207A JP14930585A JP14930585A JPS6211207A JP S6211207 A JPS6211207 A JP S6211207A JP 14930585 A JP14930585 A JP 14930585A JP 14930585 A JP14930585 A JP 14930585A JP S6211207 A JPS6211207 A JP S6211207A
- Authority
- JP
- Japan
- Prior art keywords
- dpa
- polyamine
- magnetic fluid
- dispersion medium
- dispersant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/44—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Lubricants (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
一1i
ごノ 産業上の利用分野
本発明は金属磁性流体に関する。更に詳しくは特定の分
散剤を用いることにより、極めて安定で耐久性の優れた
金属磁性流体を提供するにある。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a metal magnetic fluid. More specifically, by using a specific dispersant, it is possible to provide a metal magnetic fluid that is extremely stable and has excellent durability.
磁性流体は液体状の磁石であシ、真空回転軸シール、イ
ンクジェットプリンター、比重差分離等の分野ですでに
利用もしくは利用が検討されている。これらの分野のほ
か、電波吸収剤、熱エネルギー変換作業物質、磁気光字
素等への幅広い分野への応用が考えられる。Magnetic fluids are already being used or are being considered for use in fields such as liquid magnets, vacuum rotary shaft seals, inkjet printers, and specific gravity separation. In addition to these fields, applications in a wide range of fields such as radio wave absorbers, thermal energy conversion working materials, and magneto-optical elements can be considered.
従来技術
金属磁性流体は、強磁性金属粒子を分散媒液例えば鉱油
、水中に分散剤を用いてコロイド状としたものであり、
その製造法としては、(リコバルトカルボニル(Cow
(Co )s )の熱分解法、(2)活性液面蒸着法
が知られている。Conventional metal magnetic fluids are made by colloidally forming ferromagnetic metal particles in a dispersion medium such as mineral oil or water using a dispersant.
Its production method includes (licobalt carbonyl (Cow)
(Co ) s ) thermal decomposition method and (2) active liquid surface deposition method are known.
前記(すの方法においては、分散剤としてアクリルニト
リル−スチレン共重合体が用いられていた。しかし、こ
の分散剤は紫外線で重合し易いため、活性界面蒸着法に
用いることはできない。活性液面蒸着法において、本発
明者はさきに1次のような分散剤が使用し得られること
を提示した。In the above method, an acrylonitrile-styrene copolymer was used as a dispersant.However, this dispersant is easily polymerized by ultraviolet light, so it cannot be used in the active interfacial deposition method.Active liquid level In the vapor deposition method, the present inventor has previously proposed that the following dispersant can be used.
(1) 硫酸エステルfJ[、(2)スルホン酸エステ
ル塩類、(3)カルボン酸エステル塩類、(4)リン酸
エステル塩類、(+1)アミン塩類、(6)アミノ酸型
界面活性剤、(7)ベタイン型界面活性剤、(8)ポリ
エチレンオキサイド型非イオン界面活性剤、(9)多価
アルコール型非イオン界面活性剤、(14アミド類及び
イミド類、α9金属フエネート類、(ロ)極性基を持つ
ポリメタアクリレート、
しかし、金属磁性流体は使用する分散剤によりその安定
性、耐久性が影響され、優れた安定性と耐久性を持つた
めには分散剤の選択が重要であることが分った。(1) Sulfate ester fJ[, (2) Sulfonic acid ester salts, (3) Carboxylic acid ester salts, (4) Phosphate ester salts, (+1) Amine salts, (6) Amino acid type surfactant, (7) betaine type surfactant, (8) polyethylene oxide type nonionic surfactant, (9) polyhydric alcohol type nonionic surfactant, (14 amides and imides, α9 metal phenates, (b) polar group However, the stability and durability of metal magnetic fluids are affected by the dispersant used, and it has been found that the selection of the dispersant is important in order to have excellent stability and durability. Ta.
発明の目的
本発明の目的は分散剤を特定し、安定性ならびに耐久性
に優れた金属磁性流体を一提供するにある。OBJECTS OF THE INVENTION An object of the present invention is to specify a dispersant and provide a metal magnetic fluid with excellent stability and durability.
発明の構成
本発明者は前記目的を達成すべく、各種の分散剤を使用
して活性界面蒸着法によって試験を行った。Structure of the Invention In order to achieve the above object, the present inventor conducted tests using various dispersants and an active interface deposition method.
活性界面蒸着法は第1図に示す真空蒸着過程ωと熱処理
凝集再分散過程ら)からなっている。The active interface deposition method consists of a vacuum deposition process ω and a heat treatment aggregation/redispersion process shown in FIG.
先ず、分散媒液■上に分散剤の膜■を作り、その上に強
磁性金属を真空蒸発して強磁性金属微粒子■を発生させ
る。これにより、強磁性金属微粒子■は分散剤■に覆わ
れて分散媒液■中に分散させる。(cL工矧)
このコロイド分散液■を不活性ガス雰囲気下で加熱処理
すると二次粒子の沈殿■が生成し、この沈殿を分離して
ケーキ■となし、これを分散媒液■中に分散剤を用いて
再分散させる。First, a dispersant film (2) is formed on the dispersion medium (2), and a ferromagnetic metal is vacuum evaporated onto the film to generate ferromagnetic metal fine particles (2). As a result, the ferromagnetic metal fine particles (2) are covered with the dispersant (2) and dispersed in the dispersion medium (2). (cL engineering) When this colloidal dispersion liquid (■) is heated under an inert gas atmosphere, a secondary particle precipitate (■) is generated, and this precipitate is separated to form a cake (■), which is dispersed in a dispersion medium liquid (■). redisperse using an agent.
(b工程)
この方法により各種分散剤を用いて試験した結果、分散
剤が硫酸エステル塩類、スルホン酸エステル塩類、カル
ボン酸エステル塩類はいす。(Step b) As a result of testing using various dispersants using this method, it was found that the dispersants were sulfuric acid ester salts, sulfonic acid ester salts, and carboxylic acid ester salts.
れも熱処理凝集再分散の際、分散作用が弱く、粒子が凝
集すると共に強磁性金属微粒子の粒径制御が困難である
。リン酸エステル塩類、アミン塩類、アミノ酸型界面活
性剤、ベタイン型界面活性剤、ポリエチレンオキサイド
型非イオン界面活性剤、多価アルコール型非イオン界面
活性剤、金属フェネート類及び極性基を持つポリメタア
クリレートは、いずれも熱処理凝集再分散の際、分散作
用が弱く、粒子が凝集する。In both cases, during heat treatment aggregation and redispersion, the dispersion effect is weak, the particles aggregate, and it is difficult to control the particle size of the ferromagnetic metal fine particles. Phosphate ester salts, amine salts, amino acid type surfactants, betaine type surfactants, polyethylene oxide type nonionic surfactants, polyhydric alcohol type nonionic surfactants, metal phenates, and polymethacrylates with polar groups. In both cases, the dispersion effect is weak during heat treatment agglomeration and redispersion, and the particles agglomerate.
また、ポリエチレンオキサイド型非イオン界面活性剤は
前記の欠点のほか、真空蒸着の際、輻射熱により分解あ
るいは重合を起すなどの欠点があった。In addition to the above-mentioned drawbacks, polyethylene oxide type nonionic surfactants also have drawbacks such as decomposition or polymerization due to radiant heat during vacuum deposition.
これに対し、ポリアミン、特に(1)一般式(ただし、
Rはポリブテニル基、またはアルキル基を、nは2以上
を表わす)
で示されるポリブテニルコハク酸ポリアミン(2)一般
式
(ただし、R,nは前記と同じものを表わす)で示され
るジベンジルポリアミンを使用すると。On the other hand, polyamines, especially (1) general formula (however,
R is a polybutenyl group or an alkyl group, and n is 2 or more) Polybutenyl succinic acid polyamine (2) Dibenzyl represented by the general formula (R and n are the same as above) When using polyamines.
前記の各種分散剤を使用する場合におこる欠点がなく、
次に述べるような優れた作用効果があシ、安定で且つ耐
久性の金属磁性流体が得られることを究明し得た。There are no drawbacks that occur when using the various dispersants mentioned above,
It has been found that a stable and durable metallic magnetic fluid with excellent functions and effects as described below can be obtained.
前記分散剤を使用すると、
1)真空蒸着の際、強磁性金属蒸気の付着性がよいため
、高濃度の磁性流体が得られる。When the dispersant is used, 1) ferromagnetic metal vapor has good adhesion during vacuum deposition, so a highly concentrated magnetic fluid can be obtained.
2)この分散剤は耐熱性であシ、蒸発源から放射される
光、紫外線によって重合あるいは分解を起すことが少な
く、長時間の蒸発に耐えることができる。2) This dispersant is heat resistant, hardly polymerized or decomposed by light or ultraviolet rays emitted from the evaporation source, and can withstand evaporation for a long time.
3)蒸着生成物を熱処理することにより、その粒子径を
制御できる。そのため、金属磁性流体の磁性を制御する
ことが可能である。3) By heat-treating the vapor deposition product, its particle size can be controlled. Therefore, it is possible to control the magnetism of the metal magnetic fluid.
4)この分散剤の分子は強磁性金属微粒子の表面に強く
吸着されるため、耐酸化性の優れた金属磁性流体となし
得る。4) Since the molecules of this dispersant are strongly adsorbed on the surface of the ferromagnetic metal fine particles, a metal magnetic fluid with excellent oxidation resistance can be obtained.
5)その分散作用も優れ、凝集し難く安定なものとなし
得る。5) It has an excellent dispersing effect and is difficult to aggregate and can be made stable.
6)耐酸化性でかつ分散もよいので、鉄、コバルト、ニ
ッケル及びこれらの合金または化合物からなる金属磁性
流体を作ることができる。6) Since it is oxidation resistant and has good dispersibility, metal magnetic fluids made of iron, cobalt, nickel, and alloys or compounds thereof can be made.
等の優れた作用効果を奏し得られる。Excellent effects such as these can be achieved.
この知見に基いて本発明を完成したものである。The present invention was completed based on this knowledge.
本発明の要旨は、強磁性金属微粒子を分散媒液中に、コ
ハク酸ポリアミンまたはベンジルポリアミンの分散剤を
用いてコロイド状に分散させたことを特徴とする金属磁
性流体にある。The gist of the present invention resides in a metal magnetic fluid characterized in that fine ferromagnetic metal particles are colloidally dispersed in a dispersion medium using a dispersant of succinic acid polyamine or benzyl polyamine.
分散媒液としては、水、鉱油が用いられる。Water and mineral oil are used as the dispersion medium.
次に実施例にようその製法ならびに作用効果を示す。Next, the manufacturing method and the effects of the weeds will be shown in Examples.
実施例1゜
アルキルナフタリン(C+aHsyM)の分散媒液上に
、ジベンジルポリアミン(前記一般式のRの分子量=1
000、n=4)の界面活性剤からなるジングミュア膜
を張り、その上に金属コバルトを真空蒸着してコバル)
61粒子を発生させた。とれてより、ジベンジルポリア
ミンで覆われたコバルト微粒子とアルキルナフタリンと
余剰のジベンジルポリアミンからなるコロイドが得られ
た。Example 1 On a dispersion medium of alkylnaphthalene (C+aHsyM), dibenzylpolyamine (molecular weight of R in the above general formula = 1
A Singmuir film consisting of a surfactant of 000, n = 4) is applied, and metallic cobalt is vacuum-deposited on top of it to form a cobalt film (cobal).
61 particles were generated. A colloid consisting of fine cobalt particles covered with dibenzyl polyamine, alkylnaphthalene, and excess dibenzyl polyamine was obtained.
このコロイドをベンゼンなどの低級炭化水素で希釈して
粘性吟下ばて別の容器に移し、アルゴン雰囲気下で27
0℃で40分間加熱した。この加熱処理により、コバル
ト粒子は粒径が増大すると共に、二次粒子を形成して沈
殿した。この沈殿を不活性ガス中で乾燥し半固体状のケ
ーキを得た。このケーキ10PK対1.で、トルエン5
cc、ジベンジルポリアミン(前記と同じ)1.5fを
加え、超音波による再分散処理を行った。これによシト
ルエンを分散媒液としたコバルト磁性流体が得られた。This colloid was diluted with a lower hydrocarbon such as benzene, transferred to another container under a viscous strainer, and heated under an argon atmosphere for 27 hours.
Heated at 0°C for 40 minutes. As a result of this heat treatment, the cobalt particles increased in particle size, formed secondary particles, and precipitated. This precipitate was dried in an inert gas to obtain a semi-solid cake. This cake is 10PK for 1. So, toluene 5
cc and 1.5 f of dibenzyl polyamine (same as above) were added, and redispersion treatment was performed using ultrasonic waves. As a result, a cobalt magnetic fluid using citoluene as a dispersion medium was obtained.
この磁性流体の飽和磁化の大きさは室温で約300ガウ
スであった。The magnitude of saturation magnetization of this magnetic fluid was about 300 Gauss at room temperature.
実施例2゜
実M例1.0ジベンジルポリアミンに代え、コハク酸ポ
リアミン(前記一般式Rの分子量=750、n=4)を
使用して、実施例1.と同様にして、トルエンを分散媒
液としたコバルト磁性流体を作った。Example 2 Practical Example 1.0 Example 1. In the same manner as above, a cobalt magnetic fluid was prepared using toluene as the dispersion medium.
この磁性流体の飽和磁化の大きさは室温で約400ガウ
スであった。The magnitude of saturation magnetization of this magnetic fluid was about 400 Gauss at room temperature.
発明の効果
本発明の金属磁性流体は、従来のそれに比べて極めて安
定でかつ耐久性の優れた効果を有する。Effects of the Invention The metal magnetic fluid of the present invention is extremely stable and has excellent durability compared to conventional fluids.
第1図は界面活性蒸着法によって金属磁性流体を製造す
る過程の模式図で、第1図(a)は真空蒸着過程図、第
1図(b)は熱処理凝集再分散過程図である。
に分散媒液 2:分散剤の膜
3:強磁性金属微粒子
4:強磁性金属微粒子
5:分散剤 6;コロイド分散液7:二次粒の沈
殿 8:ケーキ
9:分散媒液
特許出願人 科学技術庁金属材料技術研究所長中 川
龍 −FIG. 1 is a schematic diagram of the process of manufacturing a metal magnetic fluid by the surface active deposition method, FIG. 1(a) is a diagram of the vacuum deposition process, and FIG. 1(b) is a diagram of the heat treatment aggregation and redispersion process. Dispersion medium liquid 2: Dispersant film 3: Ferromagnetic metal fine particles 4: Ferromagnetic metal fine particles 5: Dispersant 6; Colloidal dispersion liquid 7: Precipitation of secondary particles 8: Cake 9: Dispersion medium liquid Patent applicant Science Ryu Kawa, Director, Metal Materials Technology Research Institute, Technology Agency −
Claims (1)
ンまたはベンジルポリアミンの分散剤を用いてコロイド
状に分散させたことを特徴とする金属磁性流体。A metal magnetic fluid characterized in that ferromagnetic metal fine particles are colloidally dispersed in a dispersion medium using a dispersant of succinic acid polyamine or benzyl polyamine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14930585A JPS6211207A (en) | 1985-07-09 | 1985-07-09 | Metallic magnetic fluid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14930585A JPS6211207A (en) | 1985-07-09 | 1985-07-09 | Metallic magnetic fluid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6211207A true JPS6211207A (en) | 1987-01-20 |
JPH0433121B2 JPH0433121B2 (en) | 1992-06-02 |
Family
ID=15472236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14930585A Granted JPS6211207A (en) | 1985-07-09 | 1985-07-09 | Metallic magnetic fluid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6211207A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02222504A (en) * | 1989-02-25 | 1990-09-05 | Cosmo Oil Co Ltd | Manufacture of magnetic fluid |
JPH02239603A (en) * | 1989-03-14 | 1990-09-21 | Cosmo Sogo Kenkyusho:Kk | Magnetic fluid composition |
GB2283757A (en) * | 1993-08-16 | 1995-05-17 | Scient Discoveries Ltd | Lubricant or fuel additive displaying the selective transfer phenomenon |
US5587111A (en) * | 1990-03-29 | 1996-12-24 | Vacuum Metallurgical Co., Ltd. | Metal paste, process for producing same and method of making a metallic thin film using the metal paste |
EP1329488A1 (en) * | 2000-10-13 | 2003-07-23 | Ulvac, Inc. | Ink-jet ink and process for producing the same |
EP1349135A4 (en) * | 2000-12-04 | 2005-01-12 | Ulvac Inc | Method of forming electrode for flat panel display |
JP5030267B2 (en) * | 2004-04-16 | 2012-09-19 | 独立行政法人物質・材料研究機構 | Method for producing metal colloid pigment, conductive paste material or conductive ink material |
-
1985
- 1985-07-09 JP JP14930585A patent/JPS6211207A/en active Granted
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02222504A (en) * | 1989-02-25 | 1990-09-05 | Cosmo Oil Co Ltd | Manufacture of magnetic fluid |
JPH02239603A (en) * | 1989-03-14 | 1990-09-21 | Cosmo Sogo Kenkyusho:Kk | Magnetic fluid composition |
US5587111A (en) * | 1990-03-29 | 1996-12-24 | Vacuum Metallurgical Co., Ltd. | Metal paste, process for producing same and method of making a metallic thin film using the metal paste |
US5750194A (en) * | 1990-03-29 | 1998-05-12 | Vacuum Metallurgical Co., Ltd. | Process for producing a metal paste |
US5966580A (en) * | 1990-03-29 | 1999-10-12 | Vacuum Metallurgical Co., Ltd. | Process for making a thin film using a metal paste |
GB2283757A (en) * | 1993-08-16 | 1995-05-17 | Scient Discoveries Ltd | Lubricant or fuel additive displaying the selective transfer phenomenon |
EP1329488A1 (en) * | 2000-10-13 | 2003-07-23 | Ulvac, Inc. | Ink-jet ink and process for producing the same |
EP1329488A4 (en) * | 2000-10-13 | 2004-12-01 | Ulvac Inc | Ink-jet ink and process for producing the same |
EP1349135A4 (en) * | 2000-12-04 | 2005-01-12 | Ulvac Inc | Method of forming electrode for flat panel display |
JP5030267B2 (en) * | 2004-04-16 | 2012-09-19 | 独立行政法人物質・材料研究機構 | Method for producing metal colloid pigment, conductive paste material or conductive ink material |
Also Published As
Publication number | Publication date |
---|---|
JPH0433121B2 (en) | 1992-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4280918A (en) | Magnetic particle dispersions | |
JPS6211207A (en) | Metallic magnetic fluid | |
JPS60162704A (en) | Production of magnetic fluid | |
Yan et al. | Synthesis and Assembly of Monodisperse High‐Coercivity Silica‐Capped FePt Nanomagnets of Tunable Size, Composition, and Thermal Stability from Microemulsions | |
JPH03163805A (en) | Super paramagnetic compound material | |
JPS6116793B2 (en) | ||
JPH11260620A (en) | Improved manufacture of oil-based magnetic fluid | |
JP3187844B2 (en) | Magnetic fluid with high saturation magnetization | |
JPH0423802B2 (en) | ||
JP2004244484A (en) | Heat transfer medium | |
JPH03104806A (en) | Method for manufacturing magnetic fluid | |
JPH05500732A (en) | superparamagnetic liquid colloid | |
JPH04157615A (en) | Treating method of magnetic powder | |
JPS5925905A (en) | Production of acicular ferrous ferromagnetic metallic powder | |
JP2819699B2 (en) | Manufacturing method of magnetic fluid | |
JPH0433122B2 (en) | ||
JPH01315103A (en) | Manufacture of magnetic fluid composition | |
JP3023795B2 (en) | Water-based magnetic fluid and method for producing the same | |
JPS59227730A (en) | Preparation of magnetic powder | |
TW202414450A (en) | Soft-magnetic metal powder, production method for same, and resin composition | |
JPS58180596A (en) | Preparation of magnetic fluid containing synthetic oil as dispersion medium | |
JPH02239603A (en) | Magnetic fluid composition | |
Hadjipanayis et al. | Ultrafine magnetic particles | |
KR100203022B1 (en) | Preparing method of magnetic fluid | |
JPH04149025A (en) | Magnetic fluid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |