JPS62112055A - Method and device for discriminating kind of buried tube - Google Patents

Method and device for discriminating kind of buried tube

Info

Publication number
JPS62112055A
JPS62112055A JP60251501A JP25150185A JPS62112055A JP S62112055 A JPS62112055 A JP S62112055A JP 60251501 A JP60251501 A JP 60251501A JP 25150185 A JP25150185 A JP 25150185A JP S62112055 A JPS62112055 A JP S62112055A
Authority
JP
Japan
Prior art keywords
buried pipe
buried
vibration
analysis
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60251501A
Other languages
Japanese (ja)
Other versions
JPH0575064B2 (en
Inventor
Kunio Kiyokudan
邦夫 極檀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ITO KENSETSU KK
Original Assignee
ITO KENSETSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITO KENSETSU KK filed Critical ITO KENSETSU KK
Priority to JP60251501A priority Critical patent/JPS62112055A/en
Publication of JPS62112055A publication Critical patent/JPS62112055A/en
Publication of JPH0575064B2 publication Critical patent/JPH0575064B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To accurately and easily discriminate the kind of a buried tube by placing the buried tube in impact vibration, analyzing attenuated vibrations by fast Fourier transform, and taking the pattern analysis of an attenuation factor. CONSTITUTION:The ground is digged so that the buried tube 1 is exposed nearly by length 4d (d = tube diameter). A percussion device 3 consists of a guide body and a percussion rod 5, which is fallen along the guide body 4 to strike the buried tube 1 with the percussion rod 5, thereby placing the buried tube 1 in impact vibration. The outputs of impact vibration detection sensors 6 composed of piezoelectric acceleration converters fitted by adhesion at a position A1 or A2 by or under the percussion position of the percussion rod 5 and at a position B which is the tube diameter (d) away from right below the percussion position are inputted to an arithmetic unit 10 through an amplifier 7, a filter circuit 8, and an AD converting circuit 9. The unit 10 records the input vibration waveform for hundreds of milliseconds, accesses vibration waveform of unit time length, takes a fast Fourier transform analysis and the pattern analysis of the attenuation factor, thereby outputting the results to an analyzing device 11. Consequently, the kind of the tube 1 is decided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、埋設管の種類の判別方法および装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for determining the type of buried pipe.

〔従来の技術〕[Conventional technology]

ガス管交換等の工事現場において、管の種類つまりガス
管かあるいは水道管かが不明の埋設管に遭遇することか
ある。これは、ガス管と水道管との径、材質が同じであ
ったためであるが、工事の進行上その埋設管がガス管か
水道管かを迅速にしかも正確に判別する必要がある。一
般に、この埋設管の種類の判別は熟練した技術者がハン
マーで埋設管を叩き、埋設管の打撃&を注意して聞くこ
とにより埋設管の種類を判別している。
At construction sites such as gas pipe replacement, you may come across buried pipes whose type, ie, whether they are gas pipes or water pipes, is unknown. This is because the diameter and material of the gas pipe and water pipe are the same, but as construction progresses, it is necessary to quickly and accurately determine whether the buried pipe is a gas pipe or a water pipe. Generally, the type of buried pipe is determined by having a skilled engineer strike the buried pipe with a hammer and carefully listening to the impact of the buried pipe.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

人間の主観による判断では、周囲の環境や心身の状態に
J:って左右され易く信頼性に欠けている。
Judgments based on human subjectivity lack reliability as they are easily influenced by the surrounding environment and mental and physical state.

また、例えば特開昭58−223714号公報に示され
ているように、容器の外部から容器内部の液体の有無を
超音波を用いて検知する方法がある。この超畠波による
方法とは、液体を収納した8器の壁に向けて一定の角度
でf1音波を入射し、入射された超音波の反射波を容器
壁面から検出し、この検出された超音波の強度から容器
内の液体を検知できるというものであり、これを応用し
て埋設管の種類を判別することができると考えられる。
Furthermore, as disclosed in, for example, Japanese Unexamined Patent Publication No. 58-223714, there is a method of detecting the presence or absence of liquid inside a container from the outside of the container using ultrasonic waves. This ultrasonic wave method involves injecting f1 sound waves at a fixed angle toward the walls of eight vessels containing liquid, detecting the reflected waves of the incident ultrasonic waves from the walls of the vessels, and detecting the reflected waves from the walls of the vessels. The liquid in the container can be detected from the intensity of the sound waves, and it is thought that this can be applied to determine the type of buried pipe.

しかし、工事現場での埋設管は数十年間以上地中に埋設
されている場合が多いので管の外側表面は、局部的に腐
食あるいは損傷などがあるため、滑かな面に緊密に設胃
しなければならない超音波の送受信部センサの当接が極
めて困難であること、水道管内面には水中に溶けている
物質の付着および腐食の進行により甚しい凹凸があるこ
とや外側表面の腐食等によって超音波は送信、受信の両
方に吸収拡散効果を受けるので、H3音波の反射波の減
衰強度の高精度測定が困Mr:あること、さらに工事現
場という環境は掘削内部の土質が地下水により汚泥化し
測定作業が悪条件下になりやすいことや施工機械の振動
の影響などの種々の阻害要因のため、超音波による埋設
管の種類の判別装置は実用化されていない。
However, as buried pipes at construction sites are often buried underground for decades or more, the outside surface of the pipes may be locally corroded or damaged, so they must be placed tightly on a smooth surface. It is extremely difficult to make contact with the ultrasonic transmitter/receiver sensor, and the inner surface of the water pipe is extremely uneven due to adhesion of substances dissolved in the water and progression of corrosion. Since ultrasonic waves are subject to absorption and diffusion effects during both transmission and reception, it is difficult to accurately measure the attenuation intensity of the reflected waves of H3 sound waves.Moreover, in the environment of a construction site, the soil inside the excavation is turned into sludge by groundwater. Due to various impeding factors, such as the fact that measurement work is likely to be carried out under adverse conditions and the influence of vibrations from construction machinery, an apparatus for identifying the type of buried pipe using ultrasonic waves has not been put into practical use.

従って、現在でも建設工事関係者にとっては、工事施工
中に管種不明の埋設管に遭遇した場合は工11を中断し
て、所定の手続きを踏み許可を得て埋設管の種類を調べ
るまで数日間持機しなければならないので、そのつと多
くの人dと多大な時間及び経費を無駄に要するという問
題があった。
Therefore, even today, if a person involved in construction work encounters a buried pipe of unknown type during construction, he or she must stop the construction work 11 and wait until the specified procedure is completed, permission is obtained, and the type of buried pipe is investigated. Since the machine had to be held for several days, there was a problem in that it required many people and a great deal of time and money.

本発明は上述のような点に鑑みなされたもので、埋設管
の種類を正確かつ容易に判別することができる埋設管の
種類の判別方法および装置を提供するこを目的とするも
のである。
The present invention has been made in view of the above-mentioned points, and it is an object of the present invention to provide a method and apparatus for determining the type of buried pipe that can accurately and easily identify the type of buried pipe.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の埋設管の種類の判別方法は、掘削し露出させた
埋設管1を衝打して埋設管1に衝撃振動を発生させ、そ
の埋設管1に生じる減衰振動を検出し、この減衰振動の
高速フーリエ変換分析および減衰率のパターン分析の結
果から埋設管1の種類を判別するようにしたものである
The method of determining the type of buried pipe of the present invention is to impact the buried pipe 1 that has been excavated and exposed to generate impact vibration in the buried pipe 1, detect the damped vibration generated in the buried pipe 1, and detect the damped vibration. The type of buried pipe 1 is determined from the results of fast Fourier transform analysis and attenuation rate pattern analysis.

本発明の埋設管の種類の判別装置は、埋設管1を衝打し
て埋設管1にviJ撃振動を発生ざばる衝打装置3と、
その埋設管1に生じる減衰振動を検出する′fJ撃振動
検出センサ6と、この衝撃振動検出センサ6が検出した
減衰振動を記録しその減衰振動を高速フーリエ変換分析
および減衰率のパターン分析をする演算装置10と、こ
の演算装置10による分析結果から埋設管1の種類を判
別する分析装置11とからなるものである。
The buried pipe type discrimination device of the present invention includes an impact device 3 that impacts the buried pipe 1 to generate viJ shock vibration in the buried pipe 1;
A 'fJ percussion vibration detection sensor 6 detects the damped vibration occurring in the buried pipe 1, and the damped vibration detected by the impact vibration detection sensor 6 is recorded, and the damped vibration is subjected to fast Fourier transform analysis and pattern analysis of the damping rate. It consists of a calculation device 10 and an analysis device 11 that determines the type of buried pipe 1 based on the analysis result by the calculation device 10.

〔作用〕[Effect]

本発明は、埋設管を衝打して発生さけた衝撃振動の減衰
特性によって、埋設管の種類を判別するようにしたもの
である。
The present invention is designed to determine the type of buried pipe based on the damping characteristics of impact vibrations that are avoided when the buried pipe is hit.

〔実施例) 以下、本発明の一実施例の構成を図面を参照して説明す
る。
[Embodiment] Hereinafter, the configuration of an embodiment of the present invention will be described with reference to the drawings.

第1図および第2図において、1はガスあるいは水道の
埋設管で、この埋設管1は地中2の数十cmから数mの
深さに埋設されており、管交換等の工事時において埋設
管1の種類を判別する際に、埋設管1の管長が約4d以
上(d=埋設管1の管径)露出するように掘削される。
In Figures 1 and 2, 1 is a buried gas or water pipe, and this buried pipe 1 is buried underground 2 at a depth of several tens of centimeters to several meters. When determining the type of buried pipe 1, excavation is performed so that about 4 d or more of the length of buried pipe 1 (d=pipe diameter of buried pipe 1) is exposed.

3は埋設管1にlii撃振動を発生させる衝撃装置で、
この衝撃装置3は、露出された埋設管1の中央り面に配
置される筒状のガイド休4と、このガイド休4内を移動
自在な衝打外5とから構成され、ガイド休4に沿って衝
打外5を落Tc5uることにより、衝打外5が埋設管1
を衝−打して、埋設管1に雨?振動を発生させる。
3 is an impact device that generates impact vibration in the buried pipe 1;
This impact device 3 is composed of a cylindrical guide rest 4 disposed on the central surface of the exposed buried pipe 1, and an impact outer part 5 that is movable inside the guide rest 4. By dropping the impact outside 5 along Tc5u, the impact outside 5 connects to the buried pipe 1.
Did it rain on buried pipe 1? generate vibrations.

6は埋設管1の振動を検出する圧電形加速度変換薫から
なる函]−7振動検出レン()で、上記衝打外5の衝打
位置の約90度の横位置Δ1あるいは約180度の真下
位置へ2 (A1とA2とは王事現県の埋設管1の埋設
状況により選択する)と、絢打位;6の真下から管径d
だけずれた位置Bとに、2個のセンサ6,6がそれぞれ
接首して取付けられる。
6 is a box consisting of a piezoelectric acceleration converter for detecting the vibration of the buried pipe 1] -7 is a vibration detection lens ( ), which is located at a lateral position Δ1 of about 90 degrees or about 180 degrees of the impact position of the above-mentioned impact outside 5. Directly below position 2 (A1 and A2 are selected depending on the burial situation of buried pipe 1 in Ouji Prefecture), and from directly below position 6, pipe diameter d
Two sensors 6, 6 are attached to the position B, which is offset by the same amount.

上記ヒンナ6,6は、第2図に示すように、増幅器7に
接続されており、センサ6.6で検出された振動が増幅
器7で増幅されてフィルタ回路8を通過され、AD変換
回路ってデジタル変換されてaii G1装置10に入
力される。
The hinges 6, 6 are connected to an amplifier 7, as shown in FIG. The data is digitally converted and input to the AII G1 device 10.

この演紳装置10は、入力された振動波形を数百ミリ秒
間にわたって記録し、次に、その記録の中から中位時間
長さく例えば0〜40m5ec)の振動波形を呼出して
、高速フーリエ変換(以後F F T’と呼ぶ)分析お
よび減衰率のパターン分析を行ない、分析装置11に出
力する。この分析装置11による分析動作は、上記記録
の中から呼出す中位時間長さを一定時間ずつずらして(
例えば4〜44m5ecというように4 m5ecずつ
ずらす)、記録した振動波形の全域にわたって行なう。
This performance device 10 records the input vibration waveform for several hundred milliseconds, and then calls out the vibration waveform of a medium length (for example, 0 to 40 m5ec) from the recording and performs fast Fourier transform. Hereinafter referred to as FFT') analysis and pattern analysis of the attenuation rate are performed and output to the analysis device 11. The analysis operation by this analyzer 11 is performed by shifting the intermediate time length recalled from the above record by a fixed time (
For example, the vibration waveform is shifted by 4 m5 ec (eg, 4 to 44 m5 ec) over the entire recorded vibration waveform.

分析装着11は、演算装置10からの出力を分析して埋
設管10種類を判別するもので、この分析装置11には
、判別しようとする管、例えばガス管あるいは各種類の
埋設管1のFF丁分析値および減衰率のパターン分析値
等が予め記録されている。
The analysis device 11 analyzes the output from the arithmetic device 10 to determine the 10 types of buried pipes. The pattern analysis value, the pattern analysis value of the attenuation rate, etc. are recorded in advance.

また、分析装置11による分析結果は、出力装置12か
ら、例えばプリント、充電表示などにより表示さ゛れる
Further, the analysis results by the analyzer 11 are displayed from the output device 12, for example, by printing, charging display, etc.

次に、演算装置10、分析装置11により、振動波形の
FFT分析および減衰率のパターン分析をしてyJ!設
管1の種類を判別する有効性について説明づ゛る。
Next, the arithmetic device 10 and the analysis device 11 perform FFT analysis of the vibration waveform and pattern analysis of the damping rate to obtain yJ! The effectiveness of determining the type of installed pipe 1 will be explained.

地中2に埋設されている埋設管1に衝打棒5の前行によ
って起こされる振動は極めて複雑であるが、′f1撃に
よる振動波形は次式のフーリエ級数で表わすことができ
、 f(t)=a   /2 + Σ (a   cos 
  n ωt+  b、   sin  n ω t 
 )n この式をツー9J分析づることにより、どんな複雑な振
動で(:l、様々な振幅と振lJ数をもつ多数の正弦曲
線、仝弦曲線をそれぞれ手合せた結束として表わUるこ
とが分つでおり、これらの各単振動t、L、合成された
固有振動数を示している。ぞしく、振動は一般に、数個
の主要イヱ固右振動数で構成されているから、振動の波
形分析は、この数個の固有振動数に着目7ればよい。
The vibration caused by the forward movement of the impact rod 5 in the buried pipe 1 buried underground 2 is extremely complex, but the vibration waveform caused by the impact 'f1 can be expressed by the following Fourier series, f(t ) = a /2 + Σ (a cos
n ωt+ b, sin n ω t
)n By conducting a two-way analysis of this equation, it can be expressed as a combination of many sinusoidal curves and sinusoidal curves with various amplitudes and vibration numbers, no matter how complex the vibration (:l). , and shows each of these simple harmonics t, L, and the combined natural frequency. Preferably, since vibration is generally composed of several main natural frequencies, Vibration waveform analysis can be done by focusing on these few natural frequencies.

また、埋設管1内の物体がガスかあるいは水であるかに
より、J!I!設管1の振動の減衰速度が違ってくる。
Also, depending on whether the object inside the buried pipe 1 is gas or water, J! I! The vibration damping speed of installed pipe 1 is different.

これは、振動エネルギがある物体から他の物体に移ると
きに、減衰という現象が起きるためで、例えば2つの物
体の境界により振動エネルギの部分反射が起こるが、こ
のとき振動エネルギのどれだけの部分が反射されるかは
2つの物質の密疫の比に依存する。振動エネルギが鉄な
どのような固体から空気中へ出ようとする場合には、振
動エネルギ【よぽと/νど完全に反射されるが、鉄から
水の中へ進入する振動エネルギは87%は反射し、空気
に比べて反射される串は小さい。従って、埋ム2管1に
一定値の振動エネルギを与えた場合、埋設管1内の物体
がガスであれば埋設管1の振Ωjは長「)間継続し、水
であれば埋設管1の振動は水に吸収されて短時間で減衰
するので、埋設管1内の物p1tこ」、る振動の減衰率
に着目すればにい。
This is because a phenomenon called attenuation occurs when vibrational energy is transferred from one object to another.For example, a part of the vibrational energy is reflected by the boundary between two objects, but in this case, how much of the vibrational energy is reflected? Whether the light is reflected depends on the ratio of the two materials' densities. When vibration energy attempts to escape from a solid material such as iron into the air, it is completely reflected, but 87% of the vibration energy enters water from iron. is reflected, and the reflected skewer is small compared to the air. Therefore, when a fixed value of vibration energy is given to the buried pipe 1, if the object inside the buried pipe 1 is gas, the vibration Ωj of the buried pipe 1 will continue for a long time, and if it is water, the vibration Ωj of the buried pipe 1 will continue for a long time. Since the vibrations are absorbed by water and attenuated in a short time, it is useful to focus on the attenuation rate of the vibrations of the objects inside the buried pipe 1.

なお、衝打による埋設管1の振動は、FFT分析によっ
て分っているように、多数の単振動が複合されたしのぐ
あるが、あらゆる単振動成分が均等に水に吸収され減衰
するわけでなく、埋設管1内の水の固有振動数と関連が
ある固有振動数が顕箸に減衰する。
In addition, as we know from FFT analysis, the vibration of the buried pipe 1 due to impact can be overcome by a combination of many simple harmonics, but not all the simple harmonic components are equally absorbed by the water and attenuated. , the natural frequency related to the natural frequency of the water in the buried pipe 1 is attenuated by the chopsticks.

次に、第4図ないし第18図に示η、ガス管と水心管の
振動の「FTT分析にび減衰率のパターン分析をした実
験れ1.宋に基づいて、ガス管が水道管かの判別につい
で説明り−る。なお、ガス管の実験結果を第4図ないし
第11図に示し、水道管の実験れ1□宋を第12図ない
し第17図に示し、その各図中のい)は振動波形の時間
軸変化を表わし、(B) !、i F F T分析によ
る固有振動数を示している。
Next, as shown in Figures 4 to 18, we conducted an experiment in which we carried out FTT analysis and pattern analysis of the damping rate of the vibrations of gas pipes and water pipes. The results of experiments on gas pipes are shown in Figs. (B) represents the change in the vibration waveform on the time axis, and (B) !, i F F T shows the natural frequency according to the analysis.

第4図(ガス管)J3J:び第12図(水道管)には、
衝打された直後を示し、この状態からは、振動波形、振
動波形の減衰速度、固在振!IIJ数等を比較してb、
ガス管か水道管かを判別するのは非常に困ツ1ぐある。
Figure 4 (gas pipes) J3J: and Figure 12 (water pipes),
It shows the situation immediately after being hit, and from this state, the vibration waveform, the damping speed of the vibration waveform, and the static vibration! Comparing IIJ numbers etc.b,
It is very difficult to determine whether it is a gas pipe or a water pipe.

寸なわら、振動波形のFFT分析ににすj′:Iられる
固有振動数は、ガス管、水道管とら、約0.5.1.5
.3.0にllzにピークが現われるため判別づること
ができない。
However, the natural frequency used in FFT analysis of vibration waveforms is approximately 0.5.1.5 for gas pipes and water pipes.
.. Since a peak appears at llz at 3.0, it cannot be determined.

第7図(ガス管) J3よび第15図(水道管)には、
衝打直後の振動波形を除外して12m5ec経過した後
の波形を示し、この状態からは、水道管の場合、0.5
 K11zに最大固有振動数が現われ、一方、ガス管の
鳴合は、3にfizに最大固自振動数が現われ、これら
の最大固自振動数によって、埋設管1がガス管か水道管
かの判別が容易にできる。
Figure 7 (Gas pipe) J3 and Figure 15 (Water pipe)
Excluding the vibration waveform immediately after the impact, the waveform after 12 m5ec has elapsed is shown, and from this state, in the case of a water pipe, 0.5
The maximum natural frequency appears at K11z, and on the other hand, the maximum natural frequency appears at fiz at 3 in the gas pipe ringing, and these maximum natural frequencies determine whether the buried pipe 1 is a gas pipe or a water pipe. Easy to identify.

また、ガス管では、第11図に示づ−ように、衝打後3
.0にHzの固有振動数が長時間継続するのに対して、
水道管では、第15図に示すように、3.0にfizの
固有振動数は管内の水に吸収されてガス管に比べて短時
間で消滅してJ3す、0.5 KHzの固有振動数だけ
になっている。また、ガス管では衝打による振動波形は
120 m5cclJ過しても継続するのに対して、水
道管では約3 On+secで振動波形は消滅している
In addition, in the case of gas pipes, as shown in Fig. 11, 3.
.. While the natural frequency of 0 Hz continues for a long time,
In water pipes, as shown in Figure 15, the natural frequency of 3.0 fiz is absorbed by the water in the pipe and disappears in a shorter time than in gas pipes, resulting in a natural frequency of 0.5 KHz. There are only numbers. Furthermore, in a gas pipe, the vibration waveform due to impact continues even after 120 m5cclJ, whereas in a water pipe, the vibration waveform disappears after approximately 3 On+sec.

さらに、第18図に、このFFT分析により得た固有振
動数0.5KIIZおよび3.0KIIZの時間変化を
ガス管(破線にて示す)と水道管(実線にて示す)につ
いて示し、水道管の振動波形の分析時間帯を4〜52 
m5ecまでに限定すると、振動が水に吸収される割合
は3.0KIIZの方が大きいことが分る。
Furthermore, Fig. 18 shows the temporal changes in the natural frequencies 0.5KIIZ and 3.0KIIZ obtained by this FFT analysis for gas pipes (indicated by broken lines) and water pipes (indicated by solid lines). The vibration waveform analysis time range is 4 to 52.
When limited to m5ec, it can be seen that the proportion of vibration absorbed by water is greater in 3.0KIIZ.

すなわら、同じ時間帯における0、5にIlzでの固有
振動数の大きさは、ガス管10に対して水道管6の割合
となっており、約40%吸収されていることfT !r
つ、また、3、Oにllzでの固有振動数の大きさは、
ガス管10に対して水道管1の割合となっており約90
%が吸収される。従って、この減衰率のパターンの比較
から、埋設管1がガス管か水道管かを容易に判別するこ
とができる。
In other words, the magnitude of the natural frequency at Ilz between 0 and 5 during the same time period is the ratio of 6 water pipes to 10 gas pipes, and approximately 40% absorption fT! r
Also, the magnitude of the natural frequency at llz in 3, O is,
The ratio is about 10 water pipes to 10 gas pipes, which is approximately 90.
% is absorbed. Therefore, by comparing the attenuation rate patterns, it can be easily determined whether the buried pipe 1 is a gas pipe or a water pipe.

以上−のように、掘削し露出させた埋設管1に衝打装置
3によって衝撃振動を発生さU、減資していく埋設管1
の振動をセンリ6,6で検出し、この減衰振動を演算装
置10で[「−F分析および減衰率のパターン分析を行
なつC分析装置11に出力し、この分析装置11でその
減衰特性を分析して埋設管1の種類を判別し、その判別
結果を出力装置12から表示することによって、埋設管
1の種類すなわちガス管か水道管かが判別される。
As described above, the impact vibration is generated by the impact device 3 on the buried pipe 1 that has been excavated and exposed, and the buried pipe 1 is reduced in capital.
The sensors 6 and 6 detect vibrations of By analyzing and determining the type of buried pipe 1 and displaying the determination result from the output device 12, the type of buried pipe 1, that is, whether it is a gas pipe or a water pipe, is determined.

なお、衝打捧5によって埋設管1に生じる振動には、埋
設管1の材質、管壁の腐蝕等による影)で、埋設管1の
周囲の土壌の拘束状態の違いによる影響などが作用する
が、これらの彰費は、例えば材質、重量笠の安なった数
種類の百打棒5を用いて異なる衝撃振動を発生させ、埋
設管1の2か所に取イ]けた両はンサ6,6により、異
なる振動波形を検出し分析することによりほぼ除去する
ことができる。
In addition, the vibration generated in the buried pipe 1 by the impact shaft 5 is affected by the material of the buried pipe 1, corrosion of the pipe wall, etc.), and the influence of differences in the restraint state of the soil around the buried pipe 1. However, these awards were made by generating different impact vibrations using, for example, several types of 100-hit rods 5 of cheap materials and weights, and placing them at two locations on the buried pipe 1. can be almost eliminated by detecting and analyzing different vibration waveforms.

また、上記実施例では、衝撃振動検出ヒンリ6に圧電形
加速度変換器を使用していたが、埋設管1の状況によっ
ては圧電形加速度変換器の代わりにコンデンサーマイク
ロホンを使用することができ、このマイクロホンの使用
により、埋設管1への接着が不要であることから測定点
を自由に選べ、圧電形加速度変換器と増幅″:$i8が
不要になることから安価で小型になる。
Furthermore, in the above embodiment, a piezoelectric acceleration transducer is used for the impact vibration detection hint 6, but depending on the situation of the buried pipe 1, a condenser microphone can be used instead of the piezoelectric acceleration transducer. By using a microphone, there is no need to bond it to the buried pipe 1, so the measurement point can be freely selected, and a piezoelectric acceleration transducer and amplification are not required, making it inexpensive and compact.

(発明の効果〕 本発明にJ:れば、埋設管を衝打して衝撃3&動を発生
さU、その埋設管に生じた減衰振動の高速フーリエ変換
分析および減衰率のパターン分析を行なって埋設管の種
類を判別づるようにしたので、この埋設管に発生させt
: W撃振動の減資特性に基づいて、pi!設管の種類
を正確かつ容易に判別することができる。
(Effects of the Invention) According to the present invention, when a buried pipe is hit to generate shock and motion, a fast Fourier transform analysis of the damped vibration generated in the buried pipe and a pattern analysis of the damping rate are performed. Since the type of buried pipe can be determined, the amount of t generated in this buried pipe can be determined.
: Based on the capital reduction characteristics of W percussion vibration, pi! The type of installed pipe can be accurately and easily determined.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例を示す衝1」装
置とセンサの位置関係の説明図、第3図はブロック図、
第4図ないし第18図それぞれ実験結果を示す説明図で
ある。 1・・埋設管、3・・衝打装置、6・・、七パ:を系動
検出センサ、10・・演算装置、11・・分析装δ。 $3 図 (B) 第4聞 (A) 第5切 (B) 第 6図 (B) 第7図 (B) 半8 凹 第q 図 %lO1!1 (A) (A) 烙13図 第t4 TtJ 第15面 CB) 寒二I−
1 and 2 are explanatory diagrams of the positional relationship between the device and the sensor showing one embodiment of the present invention, and FIG. 3 is a block diagram.
FIGS. 4 to 18 are explanatory diagrams showing experimental results, respectively. 1. Buried pipe, 3. Impact device, 6.., 7. System motion detection sensor, 10. Arithmetic device, 11. Analysis device δ. $3 Figure (B) 4th stanza (A) 5th cut (B) 6th diagram (B) 7th diagram (B) Half 8 Concave q diagram %lO1!1 (A) (A) Hot 13th diagram t4 TtJ 15th page CB) Kanji I-

Claims (2)

【特許請求の範囲】[Claims] (1)掘削し露出させた埋設管を衝打して埋設管に衝撃
振動を発生させ、その埋設管に生じる減衰振動を検出し
、この減衰振動の高速フーリエ変換分析および減衰率の
パターン分析の結果から埋設管の種類を判別する埋設管
の種類の判別方法。
(1) Excavated and exposed buried pipes are struck to generate shock vibrations in the buried pipes, damped vibrations generated in the buried pipes are detected, and fast Fourier transform analysis of the damped vibrations and pattern analysis of the damping rate are performed. A method for determining the type of buried pipe that determines the type of buried pipe from the results.
(2)埋設管を衝打して埋設管に衝撃振動を発生させる
衝打装置と、その埋設管に生じる減衰振動を検出する衝
撃振動検出センサと、この衝撃振動検出センサが検出し
た減衰振動を記録しその減衰振動を高速フーリエ変換分
析および減衰率のパターン分析をする演算装置と、この
演算装置による分析結果から埋設管の種類を判別する分
析装置とからなることを特徴とする埋設管の種類の判別
装置。
(2) An impact device that impacts a buried pipe to generate impact vibration in the buried pipe, an impact vibration detection sensor that detects the damped vibration generated in the buried pipe, and an impact vibration detection sensor that detects the damped vibration detected by the impact vibration detection sensor. A type of buried pipe characterized by comprising a calculation device that records the damped vibration and performs a fast Fourier transform analysis and a pattern analysis of the damping rate, and an analysis device that determines the type of buried pipe from the analysis results by this calculation device. discrimination device.
JP60251501A 1985-11-09 1985-11-09 Method and device for discriminating kind of buried tube Granted JPS62112055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60251501A JPS62112055A (en) 1985-11-09 1985-11-09 Method and device for discriminating kind of buried tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60251501A JPS62112055A (en) 1985-11-09 1985-11-09 Method and device for discriminating kind of buried tube

Publications (2)

Publication Number Publication Date
JPS62112055A true JPS62112055A (en) 1987-05-23
JPH0575064B2 JPH0575064B2 (en) 1993-10-19

Family

ID=17223744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60251501A Granted JPS62112055A (en) 1985-11-09 1985-11-09 Method and device for discriminating kind of buried tube

Country Status (1)

Country Link
JP (1) JPS62112055A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378420A (en) * 1989-08-17 1991-04-03 Kyushu Electric Power Co Inc Device for monitoring abnormal state of distribution line
JPH0378422A (en) * 1989-08-17 1991-04-03 Kyushu Electric Power Co Inc Detecting device for operation of circuit breaker and switch
JP2007078681A (en) * 2005-09-14 2007-03-29 Krohne Ag Test method of mass flowmeter
JP2008249647A (en) * 2007-03-30 2008-10-16 Chiyoda Corp Method for diagnosing sticking material within pipe
WO2013190973A1 (en) * 2012-06-20 2013-12-27 日本電気株式会社 State determination device for structure and state determination method for structure
JP2018096763A (en) * 2016-12-10 2018-06-21 株式会社ポート電子 Hammering sound discriminating device, and discriminating method
JP2019200139A (en) * 2018-05-16 2019-11-21 東京瓦斯株式会社 Fluid discrimination system and fluid discrimination method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5612535B2 (en) * 2011-04-28 2014-10-22 大阪瓦斯株式会社 Material judgment method of laying cast iron pipe and laying cast iron pipe material judgment system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378420A (en) * 1989-08-17 1991-04-03 Kyushu Electric Power Co Inc Device for monitoring abnormal state of distribution line
JPH0378422A (en) * 1989-08-17 1991-04-03 Kyushu Electric Power Co Inc Detecting device for operation of circuit breaker and switch
JP2007078681A (en) * 2005-09-14 2007-03-29 Krohne Ag Test method of mass flowmeter
JP2008249647A (en) * 2007-03-30 2008-10-16 Chiyoda Corp Method for diagnosing sticking material within pipe
WO2013190973A1 (en) * 2012-06-20 2013-12-27 日本電気株式会社 State determination device for structure and state determination method for structure
JPWO2013190973A1 (en) * 2012-06-20 2016-05-26 日本電気株式会社 Structure state determination apparatus and structure state determination method
JP2018096763A (en) * 2016-12-10 2018-06-21 株式会社ポート電子 Hammering sound discriminating device, and discriminating method
JP2019200139A (en) * 2018-05-16 2019-11-21 東京瓦斯株式会社 Fluid discrimination system and fluid discrimination method

Also Published As

Publication number Publication date
JPH0575064B2 (en) 1993-10-19

Similar Documents

Publication Publication Date Title
US6561032B1 (en) Non-destructive measurement of pipe wall thickness
EP0552044B1 (en) Method and apparatus for detecting the position of an abnormal site of a buried pipe
US5623421A (en) Monitoring pressurized vessels for leaks, ruptures or hard hits
NO160630B (en) PROCEDURE FOR AA TO TRACK A ROUND SEASON UNDER MOVEMENT THROUGH A PIPE PIPE.
JPH03162645A (en) Device for measuring strength of noncontact online type paper
JPS62112055A (en) Method and device for discriminating kind of buried tube
US3409897A (en) Recorder for detecting and locating leaks in pipelines by ultrasonic vibration
Wu et al. Two methods for determining impact-force history on elastic plates
CA2460901A1 (en) System and method for inspecting an industrial furnace or the like
JP2829828B2 (en) Finished surface peeling diagnosis device
JP2010025817A (en) Tube ultrasonic flaw detector by non-contact airborne-ultrasonic wave and method therefor
KR100542651B1 (en) Nondestructive Acoustic Evaluation Device and Method by using Nonlinear Acoustic Responses
JP2005017089A (en) Method and device for inspecting tank
JP2019194541A (en) Elastic wave information acquisition method
JPH11295179A (en) Abnormal place detecting device
JPS60238733A (en) Detection of water leakage
Rewerts et al. The role of propagation characteristics in acoustic emission pipeline leak location
RU2102652C1 (en) Inter-tube flaw detector
RU2620023C1 (en) Method of determining the place of the flow in the pipeline and the device for its implementation
RU2197679C2 (en) Method for locating leak points on liquid-carrying pipeline
JPH08166315A (en) Water leakage detection apparatus
SU603804A1 (en) Leak detector
Boaratti et al. Measurement of stress waves propagation velocities in solid media using wavelet transforms
JP3272798B2 (en) Method and apparatus for detecting abnormal position of buried pipe
Shardakov et al. Experimental study of dynamic deformation processes in gas pipeline

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees