JPS6211088A - Method of concentrating alcohol - Google Patents

Method of concentrating alcohol

Info

Publication number
JPS6211088A
JPS6211088A JP60150918A JP15091885A JPS6211088A JP S6211088 A JPS6211088 A JP S6211088A JP 60150918 A JP60150918 A JP 60150918A JP 15091885 A JP15091885 A JP 15091885A JP S6211088 A JPS6211088 A JP S6211088A
Authority
JP
Japan
Prior art keywords
alcohol
tank
membrane separation
vapor
flash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60150918A
Other languages
Japanese (ja)
Other versions
JPH051710B2 (en
Inventor
Hideo Suematsu
末松 日出雄
Kazuo Harada
和夫 原田
Kenji Kida
建次 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP60150918A priority Critical patent/JPS6211088A/en
Publication of JPS6211088A publication Critical patent/JPS6211088A/en
Publication of JPH051710B2 publication Critical patent/JPH051710B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

PURPOSE:To improve extremely productivity of highly concentrated alcohol, by fermenting alcohol with low concentration to give unrefined alcohol, distilling the alcohol to form alcohol-containing vapor, condensing the vapor and subjecting it to membrane separation treatment by a specific method. CONSTITUTION:A fermentation raw material such as biomass alcohol, etc., is fed to the fermentation tank 1 and alcohol fermentations is carried out by yeast culture. Then, the unrefined alcohol produced by the fermentation is taken out from the fermentation tank 1, fed to the flash tank 3 and distilled. Further, the flash vapor comprising the alcohol and water prepared in the distillation is condensed in the condenser 7, fed to the membrane separation tank 5 and subjected to membrane separation treatment by pervaporation method, to give continuously highly concentrated alcohol.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、バイオマス・アルコールのような低濃度ア
ルコールを濃縮して高濃度のアルコールを連続的に得る
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for continuously obtaining high concentration alcohol by concentrating low concentration alcohol such as biomass alcohol.

この明li1において、パーベーパレーション(per
VaparatiOn)法すなわち「浸透気化法」ない
し「透過蒸発法」なる用語は、透過膜の二次側を一次側
より減圧状態にし、−次側に液相の混合物を供給して混
合物中の主として特定成分を二次側へ気相で膜透過させ
て、該成分の濃度を高める膜分離方法をいう。
In this Akili1, pervaporation (pervaporation)
The term "pervaporation method" or "pervaporation method" refers to the method in which the pressure on the secondary side of the permeable membrane is lower than that on the primary side, and a mixture of liquid phases is supplied to the secondary side to remove the main components in the mixture. A membrane separation method in which components are passed through a membrane in a gas phase to the secondary side to increase the concentration of the components.

従来技術およびその問題点 発酵法により高濃度のアルコールを得る方法としては、
酒類の醸造において見られるように、回分法を採用して
発酵菌である酵母を再利用しない方法もあるが、いわゆ
るバイオマスから発酵アルコールを連続生産しようとす
る場合には、凝集沈降性Wg母を用いたり固定化菌体を
用いたりして、発酵槽から菌体が流出するのを防止し、
さらに発酵槽内のもろみの一部を槽外に抜き出して、槽
内のアルコール濃度を調節することにより、菌体の死滅
を防止するとともに発酵速度を速める方法が行なわれて
いる。
Conventional technology and its problems As a method of obtaining high concentration alcohol by fermentation method,
As seen in the brewing of alcoholic beverages, there are methods that adopt a batch method and do not reuse yeast, which is the fermenting bacteria, but when trying to continuously produce fermented alcohol from so-called biomass, it is necessary to use a coagulant-sedimentation Wg mother. or by using immobilized bacterial cells to prevent bacterial cells from flowing out of the fermenter.
Furthermore, a method is being used in which a portion of the mash in the fermenter is extracted to the outside of the tank to adjust the alcohol concentration in the tank to prevent bacterial cells from dying and to speed up the fermentation rate.

従来、上記のようなバイオマスからのアルコールの連続
生産プロセスにおいては、第9図に示すように、発酵槽
(81)から抜き出したもろみを蒸留塔(82)に導い
て蒸留し、アルコールの濃度を^める方法がとられてい
た。なお、同図において(83)はコンデンサ、(84
)はリボイラである。しかしこの方法では、アルコール
の濃度を目標値まで高めるには、多量の熱エネルギーを
消費する大型の多段蒸留塔が必要である上に、アルコー
ル・水系混合物には共沸点があるため、通常の蒸留では
アルコールの濃縮濃度に限界があった。
Conventionally, in the continuous production process of alcohol from biomass as described above, as shown in Figure 9, the mash extracted from the fermenter (81) is guided to the distillation column (82) and distilled to reduce the concentration of alcohol. A method was used to In addition, in the same figure, (83) is a capacitor, (84
) is a reboiler. However, this method requires a large multi-stage distillation column that consumes a large amount of thermal energy in order to increase the alcohol concentration to the target value, and since the alcohol/water mixture has an azeotropic point, it is difficult to increase the concentration of alcohol to the target value. However, there was a limit to the concentrated concentration of alcohol.

この発明は、上記のような点に鑑みてなされ、熱エネル
ギーの多量消費や共沸点に起因する濃縮限界といった問
題を完全に克服することのできるアルコール濃縮法を提
供することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide an alcohol concentration method that can completely overcome problems such as large consumption of thermal energy and concentration limits caused by azeotropic points.

問題点の解決手3段 この発明によるアルコール、濃縮法は、上記目的の達成
のために、アルコールの連続生産プロセスにおいて、発
酵槽から抜き出したもろみを蒸発処理に付し、生じた蒸
気を凝縮した後バーベーパレージ・コン法による膜分離
処理に付して高濃度アルコールを得ることを特徴とする
Three Ways to Solve the Problems In order to achieve the above objectives, the alcohol concentration method according to the present invention involves subjecting mash extracted from a fermenter to evaporation treatment in a continuous alcohol production process, and condensing the resulting vapor. It is characterized by obtaining highly concentrated alcohol by subjecting it to membrane separation treatment using the barbage separation method.

上記もろみは、例えば、発酵槽内のアルコール濃度を調
節して菌体の死滅を防止するとともに発酵速度を速める
ために、発酵槽内のもろみの一部を槽外に扱き出したも
のである。
The above-mentioned mash is, for example, a part of the mash in the fermenter that is taken out of the fermenter in order to adjust the alcohol concentration in the fermenter to prevent bacterial cells from dying and to speed up the fermentation rate.

この発明の好適な実施態様においては、蒸発手段として
フラッシュ蒸留を適用する。
In a preferred embodiment of the invention, flash distillation is applied as the evaporation means.

実  施  例 つぎに、この発明を実施例によりさらに具体的に説明す
る。
EXAMPLES Next, the present invention will be explained in more detail with reference to examples.

実施例1 第1図において、発酵原料バイオマスは発酵槽(1)内
で酵母の培養によりアルコール発酵に付される。そして
バイオマスの発酵により生じたもろみは、槽内のアルコ
ール濃度を調節することにより、菌体の死滅を防止する
とともに発酵速度を速めるために、槽外に一部抜き出さ
れる。こうして抜き出されたもろみは予熱器(2)で熱
せられた後、減圧状態にあるフラッシュ槽(3〉内にフ
ラッシュされる。このフラッシュ蒸留により、アルコー
ルと水を主成分とするフラッシュ蒸気が生成するととも
に、もろみ中の菌体や固形成分などが蒸留残として槽底
に残る。
Example 1 In FIG. 1, fermentation raw material biomass is subjected to alcoholic fermentation by culturing yeast in a fermenter (1). A portion of the mash produced by fermentation of the biomass is extracted outside the tank in order to prevent bacterial cells from dying and to speed up the fermentation rate by adjusting the alcohol concentration in the tank. The mash extracted in this way is heated in a preheater (2) and then flashed into a flash tank (3) under reduced pressure.This flash distillation produces flash steam whose main components are alcohol and water. At the same time, bacterial cells and solid components in the mash remain at the bottom of the tank as distillation residue.

フラッシュ蒸気は、同種(3)内のデミスタ(4)を通
過することにより蒸気中の微小液滴が除去さ机た後、凝
縮器(7)で凝縮され、ついで凝縮液が膜分離槽(5)
に導かれる。同種(5)の内部は透過膜(6)によって
−次側と二次側に2区分せられており、二次側は頁中ポ
ンプなどにより一次側より減圧状態になされている。ま
た透過膜(6)としては、アルコールを水より選択的に
透過するシリコンゴム系の膜が用いられている。そして
フラッシュ蒸気の凝縮液が同種(5)の−次側に供給さ
れると、その中のアルコール分が優先的に透過膜(6)
を気相で透過する。パーベーパレーション法による膜分
離の結果、二次側からB度アルコール蒸気が得られる。
The flash vapor passes through a demister (4) in the same type (3) to remove minute droplets in the vapor, and then is condensed in a condenser (7), and then the condensate is passed through a membrane separation tank (5). )
guided by. The interior of the same type (5) is divided into two sections, a downstream side and a secondary side, by a permeable membrane (6), and the secondary side is brought into a lower pressure state than the primary side by means of a pump or the like. Further, as the permeable membrane (6), a silicone rubber membrane is used which selectively permeates alcohol over water. When the flash vapor condensate is supplied to the next side of the same type (5), the alcohol content therein is preferentially transferred to the permeable membrane (6).
permeates in the gas phase. As a result of membrane separation using the pervaporation method, B degree alcohol vapor is obtained from the secondary side.

一次側に残った低濃度アルコールは膜分離槽(5)を出
た後、フラッシュ槽(3)から出た蒸留残と合流し、合
流液の一部は発酵槽(1)の底部に戻され、残部は系外
に扱き出される。
After leaving the membrane separation tank (5), the low concentration alcohol remaining on the primary side joins with the distillation residue from the flash tank (3), and a part of the combined liquid is returned to the bottom of the fermenter (1). , the remainder is handled outside the system.

透過膜は上記のものに限定されず、透過物質に対する選
択性、透過速度などを考慮して選定される。また上記シ
リコンゴム系の膜の代りに、水をアルコールより選択的
に透過する酢酸セルロース系の膜が用いられると、−次
側から高濃度アルコールが得られる。
The permeable membrane is not limited to those mentioned above, and is selected in consideration of selectivity to permeable substances, permeation rate, etc. Furthermore, if a cellulose acetate membrane that transmits water more selectively than alcohol is used instead of the silicone rubber membrane, high concentration alcohol can be obtained from the negative side.

第1図のフローではもろみはフラッシュ蒸留に付される
前に予熱されるので、発酵時より高温になり、その結果
もろみ中の菌体が死滅ないし損傷するおそれがある。こ
のような場合にはフラッシュ蒸留前の予熱を省き、フラ
ッシュ槽内をより減圧状態にして低温でフラッシュ蒸留
を行ない、蒸留残を発酵槽へ戻す途中で加熱して発酵温
度を調節し、菌体の死滅ないし損傷を防止する方法がと
られる。
In the flow shown in FIG. 1, the mash is preheated before it is subjected to flash distillation, so the temperature becomes higher than that during fermentation, and as a result, the microorganisms in the mash may be killed or damaged. In such cases, preheating before flash distillation is omitted, the pressure inside the flash tank is reduced further, flash distillation is performed at a low temperature, and the distillation residue is heated on the way back to the fermenter to adjust the fermentation temperature and the bacterial cells are heated. Measures are taken to prevent death or damage.

つぎに、気液平衡関係を示す第2図と膜の分離性能を示
す第3図とを基に、アルコール濃縮の過程について説明
する。発酵槽から抜き出した液相もろみのアルコール濃
度をXAとすると、フラッシュ蒸発によって得られる気
相のアルコール濃度は、第2図の気液平衡線によりYA
となる。この場合、フラッシュ蒸気はもちろんデミスタ
により微小液滴が完全に除去されたものであることが必
要条件である。ついで第3図に示す分離性能を有するア
ルコール選択透過膜を内装した膜分離槽の一次側に、ア
ルコール濃度YAの上記フラッシュ蒸気の凝縮液が供給
されると、二次側のアルコール濃度は同図よりYBまで
高められる。こうして得られた111度YBがまだ目標
値まで達していない場合には、上記膜分離槽(5)の後
流側にさらに凝縮器と膜分離槽が直列に配設され、上記
濃度、Y Bのアルコール含有蒸気が上記と同様に凝縮
され、凝縮液がパーベーパレーション法により膜分離処
理に付される。その結果、第3図によりアルコール濃度
はYCまで高められる。
Next, the alcohol concentration process will be explained based on FIG. 2 showing the vapor-liquid equilibrium relationship and FIG. 3 showing the separation performance of the membrane. If the alcohol concentration of the liquid phase mash extracted from the fermenter is XA, the alcohol concentration of the gas phase obtained by flash evaporation is YA according to the vapor-liquid equilibrium line in Figure 2.
becomes. In this case, it is necessary that not only the flash vapor but also the minute droplets be completely removed by the demister. Next, when the condensate of the flash vapor having an alcohol concentration of YA is supplied to the primary side of the membrane separation tank equipped with an alcohol selective permeation membrane having the separation performance shown in Figure 3, the alcohol concentration on the secondary side will be as shown in Figure 3. It can be raised to YB. If the 111 degrees YB obtained in this way has not yet reached the target value, a condenser and a membrane separation tank are further arranged in series on the downstream side of the membrane separation tank (5), and the above concentration, Y B The alcohol-containing vapor is condensed in the same manner as above, and the condensate is subjected to membrane separation treatment by pervaporation. As a result, the alcohol concentration is increased to YC as shown in FIG.

実施例2 第4図は膜分離層が2基直列に配設された例を示す。前
流側の槽(5)には実施例1の場合と同じくアルコール
選択透過膜(6)が内装され、後流側の槽(21)には
逆に水選択透過膜(22)が内装されている。そして前
流側の槽(5)の二次側から出たアルコール含有蒸気は
凝縮器(24)で凝縮された復、後流側の槽(21)の
−次側に供給され、同一次側から高濃度アルコールが得
られ、同WI(21)の二次側から低濃度アルコール蒸
気が流出し、凝縮器(23)で凝縮せられる。この実施
例の他の構成は実施例1のものと全く同じである。
Example 2 FIG. 4 shows an example in which two membrane separation layers are arranged in series. The upstream side tank (5) is equipped with an alcohol selectively permeable membrane (6) as in Example 1, and the downstream side tank (21) is equipped with a water selectively permeable membrane (22). ing. The alcohol-containing vapor coming out of the secondary side of the tank (5) on the upstream side is condensed in the condenser (24) and then supplied to the downstream side of the tank (21) on the downstream side. High concentration alcohol is obtained from the WI (21), and low concentration alcohol vapor flows out from the secondary side of the same WI (21) and is condensed in the condenser (23). The other configuration of this embodiment is exactly the same as that of the first embodiment.

この実施例は、もろみのアルコール濃度が低くて、膜分
離槽1基ではアルコール濃縮濃度が目標値まで達しない
場合に、特に好適である。
This embodiment is particularly suitable when the alcohol concentration of the mash is low and the alcohol concentration cannot reach the target value with one membrane separation tank.

また膜分離槽は2基とも同種の選択透過膜を内装したも
のでもよく、さらに必要に応じて3基以上配設されても
よい。
Further, both membrane separation tanks may be equipped with the same type of selectively permeable membrane, or three or more may be provided as necessary.

実施例3 第5図は凝縮器を膜分離槽内に組込んだ例を示す。この
例では透過膜(31)は膜分離槽(32)内に水平ない
しほぼ水平に配され、槽内の上部空間に冷媒管(33)
が配されて、同空間が凝縮器(34)となされている。
Example 3 FIG. 5 shows an example in which a condenser is incorporated into a membrane separation tank. In this example, the permeable membrane (31) is arranged horizontally or almost horizontally in the membrane separation tank (32), and the refrigerant pipe (33) is installed in the upper space of the tank.
is arranged, and the same space serves as a condenser (34).

そしてフラッシュ槽から来たフラッシュ蒸気は凝縮器(
34)に導入されてここで凝縮され、透過膜(31)上
に溜った凝縮液がパーベーパレーション法による膜分離
処理に付される。こうして二次側から高濃度アルコール
蒸気が得られる。このように凝縮器と膜分離槽を一体化
することにより、装貿のコンパクト化および設備費の節
減が果たせる。
The flash steam coming from the flash tank is then sent to the condenser (
34), where it is condensed, and the condensate collected on the permeable membrane (31) is subjected to membrane separation treatment by pervaporation. In this way, highly concentrated alcohol vapor is obtained from the secondary side. By integrating the condenser and the membrane separation tank in this way, it is possible to make the equipment more compact and reduce equipment costs.

実施例4 第6図はやはり凝縮器を膜分離槽内に組込んだ例を示す
。この例では、透過膜(41)は膜分離槽(42)内に
垂直に近い状態で傾斜せられ、−次側の槽内頂部に液分
配器(43)が配されて、そのスリット(44)が透過
膜(41)の−次側上端部に連絡している。そして液分
配器(43)の上方に冷媒管(45)が配され、槽内頂
部が凝縮器(46)となされている。
Embodiment 4 FIG. 6 also shows an example in which a condenser is incorporated into a membrane separation tank. In this example, the permeable membrane (41) is tilted almost vertically in the membrane separation tank (42), and a liquid distributor (43) is arranged at the top of the tank on the next side. ) is connected to the upper end of the -next side of the permeable membrane (41). A refrigerant pipe (45) is arranged above the liquid distributor (43), and the top of the tank serves as a condenser (46).

この構成の膜分離槽(42)では、フラッシュ槽から来
たフラッシュ蒸気は凝縮器(46)で凝縮され、液分配
器(43)に溜った凝縮液はここから透過膜(41)の
−次側上面を薄い流下液膜を形成して流下し、流下中に
パーベーパレーション法による膜分離が行なわれる。こ
うして二次側から高濃度アルコール蒸気が得られ、−次
側の底部に流下液が溜まる。
In the membrane separation tank (42) with this configuration, the flash vapor coming from the flash tank is condensed in the condenser (46), and the condensed liquid accumulated in the liquid distributor (43) is sent from there to the next stage of the permeation membrane (41). A thin falling liquid film is formed on the side upper surface and flows down, and membrane separation is performed by pervaporation while flowing down. In this way, highly concentrated alcohol vapor is obtained from the secondary side, and the flowing liquid accumulates at the bottom of the negative side.

この実施例は、−次側の液相を流動状態におくことによ
り、透過膜近傍の液相側の物質移動に関する境膜抵抗を
減少させ、さらにいわゆる濃度分極を防止しようとする
ものである。
This embodiment aims to reduce the film resistance related to mass transfer on the liquid phase side near the permeable membrane and to prevent so-called concentration polarization by keeping the liquid phase on the negative side in a fluid state.

実施例5 第7図はフラッシュ槽を膜力11tllt内に組込んだ
例を示す。この例では第6図に示す膜分離槽(51)の
−次側にフラッシュ槽(52)が配設され、同種(52
)のデミスタ(53)を通過したフラッシュ蒸気が凝縮
器(54)で凝縮され、凝縮液が傾斜状の透過膜(55
)上を流下するようになされている。
Embodiment 5 FIG. 7 shows an example in which a flash tank is incorporated into a membrane tank 11tllt. In this example, a flash tank (52) is provided on the downstream side of the membrane separation tank (51) shown in FIG.
) The flash vapor that has passed through the demister (53) is condensed in the condenser (54), and the condensed liquid is passed through the inclined permeation membrane (55
) so that it flows down from above.

(56)は液分配器、(57)は冷媒管である。(56) is a liquid distributor, and (57) is a refrigerant pipe.

実施例に の実施例はフラッシュ蒸留装置の代りに第8図に示す小
型の蒸留塔(61)または蒸発器を用いる例である。こ
の場合、底部に加熱器(62)があるので、予熱器によ
るもろみの予熱は必要でない。そし゛C塔頂から出たア
ルコール・水系蒸気が膜分離槽の一次側に供給され、塔
底から出た蒸留残が発酵槽に戻される。
The embodiment is an example in which a small distillation column (61) or an evaporator shown in FIG. 8 is used instead of a flash distillation apparatus. In this case, since there is a heater (62) at the bottom, there is no need to preheat the mash using a preheater. The alcohol/water vapor coming out of the top of the C column is then supplied to the primary side of the membrane separation tank, and the distillation residue coming out of the bottom of the column is returned to the fermentation tank.

なお、この実施例の場合も、蒸留塔または蒸発器の頂部
に透過膜を内装して、これらの内部に膜分離槽を組込ん
でもよい。
In the case of this embodiment as well, a permeable membrane may be provided at the top of the distillation column or evaporator, and a membrane separation tank may be incorporated therein.

発明の効果 以上の次第で、この発明によれば、発酵槽から扱き出し
だもろみを蒸発処理に付し、生じた蒸気をパーベーパレ
ーション法による膜分離処理に付すので、上記蒸発処理
によってもろみ中の菌体や固形成分などを蒸留残として
分離除去することができて、これらが後流側の膜分離工
程に行くのを完全に防止することができる上に、アルコ
ール濃度の高いフラッシュ蒸気を膜分離工程に供給する
ことができる。
In addition to the effects of the invention, according to the present invention, the mash taken out from the fermenter is subjected to evaporation treatment, and the generated vapor is subjected to membrane separation treatment by pervaporation. It is possible to separate and remove bacterial cells and solid components as a distillation residue, completely preventing them from going to the membrane separation process on the downstream side. It can be fed to a separation process.

こうしてこの発明のアルコール濃縮法によれば、アルコ
ールの連続生産プロセスにおいて、高濃度アルコールの
生産性を大幅に向上することができる上に、本明細書の
冒頭で説明した熱エネルギーの多量消費や共沸点に起因
する濃縮限界といった従来法の問題点を完全に解消する
ことができる。
Thus, according to the alcohol concentration method of the present invention, productivity of highly concentrated alcohol can be greatly improved in the continuous production process of alcohol, and in addition, it is possible to reduce the consumption of a large amount of thermal energy as explained at the beginning of this specification. The problems of conventional methods such as the concentration limit due to boiling point can be completely solved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1.4.5.6.7および8はこの発明の実施例1.
2.3および4を示すフロー・チャート、第2図はアル
コール・水系の気液平衡関係を示すグラフ、第3図はア
ルコール濃度と膜の分離係数の関係を示すグラフ、第9
図は従来例を示すフロー・チャートである。 以  上 ?S炒1711/1−IL社(Wt、’/、)纏 0り 因 気和フルコール鷹度  (Wt・0ん)ミ じ 区 第5図 涜喪 ロ]ロロ酊 手続補正書 昭和60年11月r日 1、事件の表示   昭和60年特許願第150918
号2、発明の名称   アルコール濃縮法3、補正をす
る者 事件との関係    特許出願人 住  所  大阪市西区江戸堀1丁目6番14号氏名8
名称   (511)日立の船株式会社4、代 理 人 外  4  名 5、補正命令の日付   昭和60年10月29  日
6、補正により増加する発明の数 7、補正の対象 明細書の図面の簡単な説明の欄。 8、補正の内容 明細書12頁14行「8は」を「8図は」に訂正する。
1.4.5.6.7 and 8 are embodiments 1. of this invention.
Flow chart showing 2.3 and 4, Figure 2 is a graph showing the vapor-liquid equilibrium relationship of alcohol/water system, Figure 3 is a graph showing the relationship between alcohol concentration and membrane separation coefficient, and Figure 9 is a graph showing the relationship between alcohol concentration and membrane separation coefficient.
The figure is a flow chart showing a conventional example. that's all? S 1711/1-IL company (Wt, '/,) 轻 0 りいんきわ ふるGor Takado (Wt 0 n) Miji-ku Figure 5 blasphemy ro] Roro drunkenness procedure amendment book November 1985 r day 1, case description 1985 patent application no. 150918
No. 2, Title of the invention Alcohol concentration method 3, Relationship with the case of the person making the amendment Patent applicant address 1-6-14 Edobori, Nishi-ku, Osaka Name 8
Name (511) Hitachi no Sene Co., Ltd. 4, Agent: 4 non-human agents 5: Date of amendment order: October 29, 1985 6: Number of inventions increased by amendment 7: Subject of amendment: Brief description of drawings in the specification An explanation column. 8. In the detailed description of the amendment, page 12, line 14, "8 wa" is corrected to "8 fig. wa".

Claims (3)

【特許請求の範囲】[Claims] (1)アルコールの連続生産プロセスにおいて、発酵槽
から抜き出したもろみを蒸発処理に付し、生じた蒸気を
凝縮させた後パーベーパレーシヨン法による膜分離処理
に付して高濃度アルコールを得ることを特徴とするアル
コール濃縮法。
(1) In the continuous alcohol production process, the mash extracted from the fermenter is subjected to evaporation treatment, the resulting vapor is condensed, and then subjected to membrane separation treatment using the pervaporation method to obtain high concentration alcohol. An alcohol concentration method characterized by:
(2)上記もろみが、発酵槽内のアルコール濃度を調節
して菌体の死滅を防止するとともに発酵速度を速めるた
めに、発酵槽内のもろみの一部を槽外に抜き出したもの
である特許請求の範囲第1項記載の方法。
(2) A patent in which the above-mentioned mash is obtained by extracting a portion of the mash from inside the fermenter to the outside of the fermenter in order to adjust the alcohol concentration in the fermenter to prevent the death of bacterial cells and to speed up the fermentation rate. The method according to claim 1.
(3)蒸発手段としてフラッシュ蒸留を適用する特許請
求の範囲第1または2項記載の方法。
(3) The method according to claim 1 or 2, wherein flash distillation is applied as the evaporation means.
JP60150918A 1985-07-08 1985-07-08 Method of concentrating alcohol Granted JPS6211088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60150918A JPS6211088A (en) 1985-07-08 1985-07-08 Method of concentrating alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60150918A JPS6211088A (en) 1985-07-08 1985-07-08 Method of concentrating alcohol

Publications (2)

Publication Number Publication Date
JPS6211088A true JPS6211088A (en) 1987-01-20
JPH051710B2 JPH051710B2 (en) 1993-01-08

Family

ID=15507243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60150918A Granted JPS6211088A (en) 1985-07-08 1985-07-08 Method of concentrating alcohol

Country Status (1)

Country Link
JP (1) JPS6211088A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257468A (en) * 1987-12-24 1989-10-13 Kyowa Hakko Kogyo Co Ltd Preparation of alcoholic beverage
JPH07184628A (en) * 1993-12-27 1995-07-25 Mitsui Eng & Shipbuild Co Ltd Treatment of fermentation waste liquid
WO2010070716A1 (en) * 2008-12-15 2010-06-24 株式会社前川製作所 Method of producing ethanol and apparatus therefor
JP2010240565A (en) * 2009-04-03 2010-10-28 Honda Motor Co Ltd Ethanol water solution concentrating method
KR101031348B1 (en) 2009-02-02 2011-04-27 대한민국 Do it yourself brewing system and method for manufacture of liquor thereof
US8496731B2 (en) 2007-03-15 2013-07-30 Mitsubishi Heavy Industries, Ltd. Method for transporting fluid
US8585904B2 (en) 2008-03-14 2013-11-19 Mitsubishi Heavy Industries, Ltd. Dehydration system and dehydration method
US9149769B2 (en) 2007-03-15 2015-10-06 Mitsubishi Heavy Industries, Ltd. Dehydration system and dehydration method
JP2017171631A (en) * 2016-03-25 2017-09-28 三菱ケミカル株式会社 Method for recovering ethanol
JP2018064514A (en) * 2016-10-20 2018-04-26 株式会社ジェイコム Production method and production equipment for bioethanol
JP2020511125A (en) * 2017-03-20 2020-04-16 ランザテク,インコーポレイテッド Processes and systems for product recovery and cell recycling

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08324709A (en) * 1995-05-30 1996-12-10 Kawasaki Heavy Ind Ltd Transporter with automatic high-rise warehouse

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257468A (en) * 1987-12-24 1989-10-13 Kyowa Hakko Kogyo Co Ltd Preparation of alcoholic beverage
JPH07184628A (en) * 1993-12-27 1995-07-25 Mitsui Eng & Shipbuild Co Ltd Treatment of fermentation waste liquid
US8858798B2 (en) 2006-10-05 2014-10-14 Mitsubishi Heavy Industries, Ltd. Dehydration method
US8496731B2 (en) 2007-03-15 2013-07-30 Mitsubishi Heavy Industries, Ltd. Method for transporting fluid
US9149769B2 (en) 2007-03-15 2015-10-06 Mitsubishi Heavy Industries, Ltd. Dehydration system and dehydration method
US8585904B2 (en) 2008-03-14 2013-11-19 Mitsubishi Heavy Industries, Ltd. Dehydration system and dehydration method
WO2010070716A1 (en) * 2008-12-15 2010-06-24 株式会社前川製作所 Method of producing ethanol and apparatus therefor
KR101031348B1 (en) 2009-02-02 2011-04-27 대한민국 Do it yourself brewing system and method for manufacture of liquor thereof
JP2010240565A (en) * 2009-04-03 2010-10-28 Honda Motor Co Ltd Ethanol water solution concentrating method
JP2017171631A (en) * 2016-03-25 2017-09-28 三菱ケミカル株式会社 Method for recovering ethanol
JP2018064514A (en) * 2016-10-20 2018-04-26 株式会社ジェイコム Production method and production equipment for bioethanol
JP2020511125A (en) * 2017-03-20 2020-04-16 ランザテク,インコーポレイテッド Processes and systems for product recovery and cell recycling

Also Published As

Publication number Publication date
JPH051710B2 (en) 1993-01-08

Similar Documents

Publication Publication Date Title
CN102037128B (en) Purification treatment method for fermented alcohol
Gryta et al. Ethanol production in membrane distillation bioreactor
CN101952451B (en) Ethanol recovery process and apparatus for biological conversion of syngas components to liquid products
US8252350B1 (en) Ethanol recovery from fermentation broth
US4822737A (en) Process for producing ethanol by fermentation
JPS6211088A (en) Method of concentrating alcohol
WO2009107840A1 (en) Method of purifying fermented alcohol
JPH01502479A (en) Method for continuous fermentation of carbohydrate-containing media using bacteria
SU1303034A3 (en) Method for producing ethanol
US20210348113A1 (en) Method and system for producing products by fermentation
Strathmann et al. Continuous removal of ethanol from bioreactor by pervaporation
Fan et al. Energy efficient of ethanol recovery in pervaporation membrane bioreactor with mechanical vapor compression eliminating the cold traps
CN106754259A (en) A kind of synthesis gas that ferments produces the system and its processing method of alcohols
JPH08252434A (en) Manufacture of highly concentrated alcohol
JPS5821629A (en) Preparation of anhydrous ethanol
CN110922302A (en) Differential pressure distillation dehydration production process of fuel ethanol double-negative-pressure rough distillation tower
CN102180768B (en) Method for preparing anhydrous alcohol
RU2044773C1 (en) Method for fermentation of carbohydrate-containing mediums with the help of bacteria which produce butanol, acetone, ethanol and/or isopropanol and device for its realization
US4680263A (en) Continuous alcohol manufacturing process using immobilized microorganism
JPS6211087A (en) Method of concentrating alcohol
JP2676900B2 (en) Method for producing ethanol concentrate
RU2405831C2 (en) Method of extracting organic solvents from fermentation media
CN103421660B (en) A kind of base wine and membrane distillation method thereof of the double aromatic white spirit through film distillation upgrading
CN103695301B (en) A kind of device improving biomass fuel alcohol fermentation efficiency and technique
SU582274A1 (en) Method of producing alcohol