JPS62109960A - Plasma spray-coated heat resistant member - Google Patents

Plasma spray-coated heat resistant member

Info

Publication number
JPS62109960A
JPS62109960A JP24889685A JP24889685A JPS62109960A JP S62109960 A JPS62109960 A JP S62109960A JP 24889685 A JP24889685 A JP 24889685A JP 24889685 A JP24889685 A JP 24889685A JP S62109960 A JPS62109960 A JP S62109960A
Authority
JP
Japan
Prior art keywords
heat resistant
resistant alloy
resistant member
plasma spray
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24889685A
Other languages
Japanese (ja)
Inventor
Yoshikazu Takahashi
高橋 由和
Takao Suzuki
隆夫 鈴木
Masayuki Ito
伊藤 昌行
Hiromitsu Takeda
博光 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24889685A priority Critical patent/JPS62109960A/en
Publication of JPS62109960A publication Critical patent/JPS62109960A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the exfoliation of a ceramic coating layer from a heat resistant alloy material in the stage of coating the ceramic layer on the surface of the heat resistant alloy material to protect the heat resistant alloy material against a high temp. by subjecting the ceramics prepd. by using partially stabilized ZrO2 as matrix and incorporating fine incompletely molten particles of MgO, etc. therein to plasma spraying. CONSTITUTION:The heat resistant coating layer consisting of the ceramics is formed by plasma spraying on the surface of the heat resistant alloy member of a gas turbine, etc. in order to protect said heat resistant alloy member against the high temp. and to extend the service life thereof. The partially stabilized ZrO2 is used as the ceramics to be used and the mixture composed of 1 or >=2 kinds of powders of MgO, CaO, Cr2O3 and CeO having the coefft. of thermal expansion approximate to the coefft. of thermal expansion of the metallic member of the heat resistant alloy member is incorporated and dispersed in the form of the incompletely molten particles therein. The thermal stress between the ceramic layer and the heat resistant alloy member is relieved and the generation of a crack in the ceramic layer and the exfoliation thereof are obviated. The service life of the above-mentioned member is thus considerably extended.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は耐熱部品の高温耐久性向上技術のうちで、特
にプラズマ躊射I!2i−Eこよる耐熱被覆技術に関す
る。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to a technology for improving high-temperature durability of heat-resistant parts, and in particular to plasma radiation I! 2i-E relates to heat-resistant coating technology.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

耐熱合金部品に要求される高温特性は1年々苛酷になり
でゆく。なかでもガスタービン部材としての耐熱合金部
品は、ガスタービンの高温化に伴ない、1400℃以上
のガス温度に耐えることも要求され始めている。しかし
、従来の耐熱合金ではその高温に耐えることは難しく、
タービン部材に8i、N4やSiCのセラミック材料が
考えられているが、その実用化にはまだ時間を要する。
The high-temperature properties required for heat-resistant alloy parts are becoming more severe year by year. In particular, heat-resistant alloy parts used as gas turbine members are now being required to withstand gas temperatures of 1400° C. or more as gas turbines become hotter. However, it is difficult for conventional heat-resistant alloys to withstand such high temperatures.
Ceramic materials such as 8i, N4, and SiC are being considered for turbine components, but it will still take time to put them into practical use.

そこで耐熱合金を冷却しながら高温部材として使用する
方法がとられているが、冷却に伴なう熱効率低下が問題
となっている。そして、現在は、セラミックスの低熱伝
導性を利用した耐熱被損が重要視され始めている。
Therefore, a method has been adopted in which the heat-resistant alloy is used as a high-temperature member while being cooled, but the problem is that the thermal efficiency decreases due to cooling. Nowadays, emphasis is being placed on heat damage resistance that takes advantage of the low thermal conductivity of ceramics.

耐熱被覆は、従来の尉熱合金上に熱伝導度の低いセラミ
ックを被覆し、基材合金を高温より保護する方法である
。この耐熱被覆は、断熱特性が優れ、適度な耐熱膏撃特
性を有し、し乃1も軽量であることが望ましい。これら
をある程度溝たすため、プラズマ蔓射法によりセラミッ
クスを耐熱被損する方法がある。プラズマ溶射法は作粟
性が良好であり、使用する材料に対する訓眼も少なく、
音用な技術である。
Heat-resistant coating is a method of coating a conventional low-temperature alloy with a ceramic having low thermal conductivity to protect the base alloy from high temperatures. This heat-resistant coating preferably has excellent heat-insulating properties, appropriate heat-resistant plastering properties, and is also lightweight. In order to fill these grooves to some extent, there is a method of making ceramics resistant to heat damage by plasma spraying. Plasma spraying has good millet production properties and requires little attention to the materials used.
This is a technology for sound.

ここで、プラズマ溶射によるセラミックス耐熱被覆の応
用範囲を広げるためには、より高温の領域における長寿
命、信頼性を達成しなければならない。
In order to expand the range of applications of ceramic heat-resistant coatings by plasma spraying, it is necessary to achieve long life and reliability in higher temperature regions.

セラミックスの被覆を金属基板上に形成した時、熱膨張
率の差による被覆層の疲労、劣化あるいは接着力の低下
とそれに伴う被覆層のはく離は大きな問題となっている
When a ceramic coating is formed on a metal substrate, fatigue and deterioration of the coating layer due to a difference in coefficient of thermal expansion, or a decrease in adhesive strength and the resulting peeling of the coating layer are serious problems.

従来、熱膨張率の差の少ない金属基材とセラミックス被
覆層を選定したら、被覆層と基材との間にさらlこ熱膨
張率が中間的(こなる層を形成せしめたりする方法が検
討されてきたが、熱応力の緩和のための方法としてはま
だ不十分であった。
Conventionally, after selecting a metal base material and a ceramic coating layer with a small difference in coefficient of thermal expansion, a method of forming a layer with an intermediate coefficient of thermal expansion between the coating layer and the base material was considered. However, it is still insufficient as a method for alleviating thermal stress.

〔発明の目的〕[Purpose of the invention]

本発明は、金24基材とセラミックス耐熱被覆層の間の
熱膨張率の差に趨因する熱応力を緩和し、またセラミッ
クス耐熱被凌層内の応力分布状態を変化させることによ
り、セラミックス耐熱被覆層の長寿rヒ、高信頼化を図
ろうとするものである。
The present invention alleviates the thermal stress caused by the difference in thermal expansion coefficient between the gold 24 base material and the ceramic heat-resistant coating layer, and also changes the stress distribution state within the ceramic heat-resistant coating layer. This is intended to increase the longevity and reliability of the coating layer.

〔発明の概要〕[Summary of the invention]

本発明はプラズマ溶射ζこより形成したセラミックス被
」層内lこ、不完全溶融粉末を混在せしめ、セラミック
ス1の熱膨張率を層全体ζこわたって、あるいは局部的
に変化させ、また、内部の熱応力の分布を変化させるこ
とにより、セラミックス柚頃層と基材金4層の間の熱応
力を緩和しようとするものである。従来法では、金4基
材とセラミックス被覆層の間で熱膨張率は急激に変イヒ
し、フロ熱冷却の際の熱応力は界面に集中する。本発明
によれば、侍台+イ熱膨張率が金属に近い不完全溶融粉
末を分散することにより1金4基材とセラミックス被覆
層の間の応力を緩和することができる。
The present invention mixes incompletely molten powder in the ceramic coating layer formed by plasma spraying to change the thermal expansion coefficient of the ceramic 1 over the entire layer or locally, and to increase the internal heat By changing the stress distribution, the thermal stress between the ceramic yuzu layer and the four base gold layers is alleviated. In the conventional method, the coefficient of thermal expansion changes rapidly between the gold 4 base material and the ceramic coating layer, and thermal stress during flow thermal cooling is concentrated at the interface. According to the present invention, by dispersing the incompletely fused powder whose coefficient of thermal expansion is close to that of metal, it is possible to alleviate the stress between the 1-metal metal 4 base material and the ceramic coating layer.

現在、セラミックス耐熱被覆層の素材としては機械的性
質や熱膨張率などの熱的11)ら1部分安定化酸化ジル
コニウムは最も好ましい。また。
Currently, partially stabilized zirconium oxide is the most preferred material for ceramic heat-resistant coating layers due to thermal properties such as mechanical properties and coefficient of thermal expansion. Also.

不完全溶解粒子としては、熱膨張率が大きく金属基材に
近いものを用いればよい。たとえばMIlo。
As the incompletely dissolved particles, particles having a large coefficient of thermal expansion and close to that of the metal base material may be used. For example, MIlo.

Cr、01 、CaOなどは熱膨張率が大きく、適当で
ある。
Cr, 01, CaO, etc. have a large coefficient of thermal expansion and are suitable.

プラズマ溶射により、このような溶射層(換を形成する
ためには、溶射を行ないながら試験片と溶射ガンの中間
において何らの)の方法ζこより粉末を混入させればよ
い。溶射時の溶射アークの温度はガンから離れるほど低
下する。ガンに近い部分から粉末を導入すると、粉末が
浴融し、互いに固溶してしまり可能性が大きく、2相化
することがむづ力)しい。被溶射物の近傍をこおいて粉
末を導入すれば、未啓解、または不完全な溶解状態のま
ま。
In order to form such a sprayed layer by plasma spraying, powder may be mixed in between the test piece and the spray gun while spraying. The temperature of the thermal spraying arc during thermal spraying decreases as it moves away from the gun. If the powder is introduced from a part close to the gun, there is a high possibility that the powder will melt in the bath and form a solid solution with each other, making it difficult to form two phases. If the powder is introduced near the object to be sprayed, it remains in an undissolved or incompletely dissolved state.

溶射した連射粒子中に巻きこまれて、2層状5態を形成
させることができる。
It can be engulfed in the thermally sprayed continuous particles to form five two-layered particles.

未溶解粒子の導入方法としては、ガス流を用いることな
どが考えられる。
A possible method for introducing undissolved particles is to use a gas flow.

また混入粒子の粒径は、溶射層全体の厚さが数百ミクロ
ン程度であるため% 50μm以Fが最も好ましい。
The particle size of the mixed particles is most preferably 50 μm or less since the thickness of the entire sprayed layer is about several hundred microns.

〔発明の効果〕〔Effect of the invention〕

以上をこ詳述したようζこ、不発明により、従米大きな
問題であったセラミックス耐熱被覆層と金属基材との間
の熱応力は、緩和され、大幅な長寿命化、コストダウン
が得られる。
As detailed above, due to the uninvention, the thermal stress between the ceramic heat-resistant coating layer and the metal base material, which was a major problem in the United States, has been alleviated, resulting in a significant extension of life and cost reduction. .

〔発明の実施声j〕[Voices from implementing the invention]

50mmX50mmX2tのNi基合金(IN931仮
2枚を用意した。板材の両面を粒径1mm のアルミナ
粉でサンドブラスト処理した後、2枚の板にそれぞれ ■まずNi−200r合金を約100μmプラズマ溶射
した。この溶射層は金属結合層であり熱膨張率は基材よ
ジ小さい。
Two sheets of Ni-based alloy (IN931) measuring 50 mm x 50 mm x 2 tons were prepared. After sandblasting both sides of the plate with alumina powder with a particle size of 1 mm, each of the two plates was first plasma sprayed with about 100 μm of Ni-200r alloy. The sprayed layer is a metal bonding layer, and its coefficient of thermal expansion is smaller than that of the base material.

仄(こ8 ut % Y、O,安定(= Z r O,
扮’E 7− ラyニア Hg射し平均約200μmの
被覆層を形成した。
组(ko8 ut % Y, O, stable (= Z r O,
A coating layer having an average thickness of about 200 μm was formed by Hg irradiation.

■■と同様iこNi−20Cr金隅結合層を100μm
溶射した。次に50μm〜10μmのMgO粉末をアル
ゴンガスとともに試験片からの距離10mm、試験片の
上約IQmmから供給しながら、Y−人安定化ら Z r 9粉をプラズマ溶射し200mmの溶射ノーを
形成した。その間に、M、90粉末の供給量を減少させ
上部的100μmlこはほとんどMgOは含まれないよ
うにした。得られた2種類の試験片に1100℃で10
分間加熱、室温で10分間冷却という熱疲労試験を施こ
し、被覆層内での亀裂発生のM無を肉眼観察した。結果
を亀裂発生までの熱サイクル回数として、第1表に示し
た。
Similar to ■■, the Ni-20Cr gold corner bonding layer is 100 μm thick.
Sprayed. Next, while supplying MgO powder of 50 μm to 10 μm with argon gas from a distance of 10 mm from the test piece and about IQ mm above the test piece, Y-stabilized Zr 9 powder was plasma sprayed to form a 200 mm spray nozzle. did. Meanwhile, the amount of M.90 powder fed was reduced so that the top 100 μml contained almost no MgO. The two types of test pieces obtained were heated at 1100°C for 10
A thermal fatigue test of heating for 1 minute and cooling at room temperature for 10 minutes was conducted, and the occurrence of cracks in the coating layer was observed with the naked eye. The results are shown in Table 1 as the number of thermal cycles until cracking occurs.

第1表 この熱疲労試験は、熱衝車特性、耐熱被覆としての断熱
特性、基材の酸化特性を認合評価試渡するものである。
Table 1 This thermal fatigue test is used to evaluate and evaluate the thermal impact vehicle properties, the heat insulation properties as a heat-resistant coating, and the oxidation properties of the base material.

代理人 弁理士  則 近 憲 右 同     竹 花 喜久男Agent Patent Attorney Norihiro Kon Same Bamboo Flower Kikuo

Claims (5)

【特許請求の範囲】[Claims] (1)溶融凝固組織内に不完全または未溶融の粒子を混
在分散せしめた被覆層をプラズマ溶射により形成したこ
とを特徴とするプラズマ溶射被覆耐熱部材。
(1) A plasma spray coated heat-resistant member characterized in that a coating layer in which incomplete or unmelted particles are mixed and dispersed in a melted solidified structure is formed by plasma spraying.
(2)混在させる不完全溶融粒子の熱膨張率が被覆層マ
トリックスのセラミックスよりも大きいことを特徴とす
る特許請求の範囲第1項記載のプラズマ溶射被覆耐熱部
材。
(2) The plasma spray coated heat-resistant member according to claim 1, wherein the thermal expansion coefficient of the incompletely fused particles to be mixed is larger than that of the ceramic of the coating layer matrix.
(3)被覆層マトリックス成分を部分安定化ZrO_2
とした特許請求の範囲第2項記載のプラズマ溶射被覆耐
熱部材。
(3) ZrO_2 partially stabilized coating layer matrix component
A plasma spray coated heat resistant member according to claim 2.
(4)混在不完全溶融粒子を、MgO、CaO、Cr_
2O_3、及びCeOから選ばれた単体または混在物の
粒子であることを特徴とする特許請求の範囲第3項記載
のプラズマ溶射被覆耐熱部材。
(4) Mixed incompletely melted particles are mixed with MgO, CaO, Cr_
The plasma spray coated heat-resistant member according to claim 3, characterized in that the plasma spray coated heat-resistant member is a single particle or a mixed particle selected from 2O_3 and CeO.
(5)混在不完全溶融粒子の粒径が50μm以下である
ことを特徴とする特許請求の範囲第1項及び第4項記載
のプラズマ溶射被覆耐熱部材。
(5) The plasma spray coated heat-resistant member according to Claims 1 and 4, wherein the mixed incompletely fused particles have a particle size of 50 μm or less.
JP24889685A 1985-11-08 1985-11-08 Plasma spray-coated heat resistant member Pending JPS62109960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24889685A JPS62109960A (en) 1985-11-08 1985-11-08 Plasma spray-coated heat resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24889685A JPS62109960A (en) 1985-11-08 1985-11-08 Plasma spray-coated heat resistant member

Publications (1)

Publication Number Publication Date
JPS62109960A true JPS62109960A (en) 1987-05-21

Family

ID=17185048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24889685A Pending JPS62109960A (en) 1985-11-08 1985-11-08 Plasma spray-coated heat resistant member

Country Status (1)

Country Link
JP (1) JPS62109960A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108178A (en) * 2004-09-30 2006-04-20 Toshiba Corp Component for semiconductor manufacturing device and semiconductor manufacturing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108178A (en) * 2004-09-30 2006-04-20 Toshiba Corp Component for semiconductor manufacturing device and semiconductor manufacturing device

Similar Documents

Publication Publication Date Title
US5496644A (en) Plasma sprayed mullite coatings on silicon-base ceramics
JP3983323B2 (en) Method for coating a metal part with a metal adhesion layer for a thermal sprayed ceramic insulation layer and a metal adhesion layer
US7998601B2 (en) Sandwich thermal insulation layer system and method for production
JPS5887273A (en) Parts having ceramic coated layer and their production
KR101511248B1 (en) Extra dense thermal barrier coating structure with vertical cracks and method thereof
JP2010505717A (en) High purity powders and coatings prepared therefrom
CN113388830A (en) Preparation method of high-temperature-resistant anticorrosive ceramic coating
Lima et al. Temperature measurements and adhesion properties of plasma sprayed thermal barrier coatings
JP2002339052A (en) Heat-insulating film coated member and thermal-spray powder
JPH0978258A (en) High-temperature member having thermal insulation coating film and its production
JPH0563555B2 (en)
CN113930710B (en) Thermal barrier coating material, preparation method and application thereof
JPS62109960A (en) Plasma spray-coated heat resistant member
JPS62210329A (en) Ceramic coated heat-resistant material and manufacture thereof
CN110872713A (en) Y/Y2O3Cold spraying preparation method of metal ceramic protective coating
JPS62211387A (en) Production of ceramic coated heat resistant member
JPS6141757A (en) Zro2-base powder for heat insulating coating
JPS61169241A (en) Heat-insulating member
JPS62211390A (en) Ceramic coated heat resistant member and its production
JPH11124662A (en) Self-repairing heat-insulating film and its production
JPH09287065A (en) Heat resistant covered member
JPS63161150A (en) Formation of heat insulating thermally sprayed layer
CN110359004B (en) Atmospheric gas-liquid co-deposition thermal barrier coating and rapid preparation method thereof
JPS60194056A (en) Heat resistant member having ceramic coating layer
JPH01172554A (en) Flame spraying material