JPS62109950A - Steel for nonmagnetic drill collar - Google Patents

Steel for nonmagnetic drill collar

Info

Publication number
JPS62109950A
JPS62109950A JP60249641A JP24964185A JPS62109950A JP S62109950 A JPS62109950 A JP S62109950A JP 60249641 A JP60249641 A JP 60249641A JP 24964185 A JP24964185 A JP 24964185A JP S62109950 A JPS62109950 A JP S62109950A
Authority
JP
Japan
Prior art keywords
steel
less
drill collar
strength
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60249641A
Other languages
Japanese (ja)
Inventor
Terutaka Tsumura
津村 輝隆
Fukukazu Nakazato
中里 福和
Taku Fujio
卓 藤生
Koichiro Kawakami
浩一郎 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP60249641A priority Critical patent/JPS62109950A/en
Publication of JPS62109950A publication Critical patent/JPS62109950A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To develop a steel product having stable nonmagnetism and high yield strength and having excellent ductility, toughness, corrosion resistance, drilling workability and hot workability by using an Mn-Cr-V-N austenitic stainless steel having a specific compsn. as a steel for a nonmagnetic drill collar for excavation of oil wells. CONSTITUTION:The high-Mn nonmagnetic steel having the following compsn. is used as the steel material for the nonmagnetic drill collar for excavation of the oil wells and gas wells: The steel material having the compsn. contg., by wt%, 0.10-0.50% C, <2.0% Si, 20-30% Mn, 0.01-3.00% Ni, 12-20% Cr, [0.1XMn%-0.5]-[0.15XMn%-0.75]% V, 0.1-0.5% N, <0.030% P, <0.010 S, and 0.0005-0.030% in total of >=1 kinds among Ca, Mg, Y and rare earth elements or further contg. >=1 kinds among <1.5% Cu, 0.01-2.00% Mo, 0.01-1.00% Nb, <1.0% Al, and satisfying the formula 20XC%+20XN %+0.5XMn%+Ni%-1.5XV%>=20.5% is used.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、油井やガス井掘削用の非磁性ドリルカラー
111羽に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a non-magnetic drill collar 111 for drilling oil and gas wells.

〈背量技術〉 近年のエネルギー事情は、埋蔵条件の雉易を問わず1世
界各地において新たな油井やガス井の開発を活発1ヒさ
せているが、油井・ガス井の開発において傾斜弁を掘削
する必要のある場合には、何層もの石油層やガス層から
の最も効率の良い生産を確保するため、各井戸毎に掘削
すべき方向や傾斜等が綿密に計画されなければならない
。特に。
<Backlift technology> The energy situation in recent years has led to the active development of new oil and gas wells in all parts of the world, regardless of the availability of reserves. When drilling is necessary, the direction and slope of each well must be carefully planned to ensure the most efficient production from the multiple oil and gas formations. especially.

m上の生産プラットホームからの井戸掘削を余儀なくさ
れるような場合は、これらの計画をより細心に行う必要
がある。
These plans need to be made more carefully if wells must be drilled from a production platform on the ground.

しかも、上記の如き傾斜弁においては、実際の掘削中に
その坑井の方位や傾斜の測定を行って計画通りに掘削が
進んでいる〃S否かを確認し、もしも計画から外れてい
るような場合には直ちにコースの修正を実旌しなければ
ならない等の面倒な作業を必要としていたのである。
Moreover, in the case of the above-mentioned tilt valve, the orientation and inclination of the well are measured during actual drilling to confirm whether the drilling is proceeding as planned or not, and to check if the drilling is proceeding as planned or not. This necessitated troublesome work such as having to immediately make course corrections in such cases.

そこで、このような作業を容易1ヒするため、最近では
、井戸の掘削に当って磁気センサーの使用が試みられて
いる。この場合、磁気センサーは、掘削ビットをドリル
パイプ(二取り付ける中間体としての役割や掘削具に所
要型を負荷する役割等を担った1ドリルカラー”にセッ
トされるのが普通である。
Therefore, in order to make this kind of work easier, recently attempts have been made to use magnetic sensors when drilling wells. In this case, the magnetic sensor is usually set in a drill collar that serves as an intermediate body for attaching the drilling bit to the drill pipe (2) and a drill collar that serves to load the required mold onto the drilling tool.

従って、このようなドリルカラー用の素材としては、前
記磁気センサーの探索精度を低下させないために非磁性
であることが望まれ、また、同時に掘削時の外力1:耐
え得るだけの高耐力をも備えていること等が必要ときれ
ているが、これらの要求特性をまとめると次の通りであ
る。即ち、a)透磁率<1.01. 0.2壬耐力(降伏強さ)≧90 kSi(63,3K
qf /i) 伸び230%、 ンヤルビー吸収エネルギー≧4に、gf−mの諸持ヰを
兼備していること、 b)穴あけiJ[l工i牛(二19れ、ドリルカラー製
品裂きが容易であること、 C)地下深くの厳しい腐食環境に中えるだけの身れた@
食性(例えば耐応力腐食が1れ性)を亘していること。
Therefore, it is desirable that the material for such a drill collar is non-magnetic so as not to reduce the search accuracy of the magnetic sensor, and at the same time, it should have a high proof strength enough to withstand the external force 1 during drilling. These required characteristics are summarized as follows. That is, a) magnetic permeability<1.01. 0.2 kSi (yield strength) ≧90 kSi (63,3K
qf/i) Elongation 230%, absorption energy ≧4, and the characteristics of gf-m, b) Drilling, easy to tear the drill collar product. C) Strong enough to survive the harsh corrosive environment deep underground.
Corrosion resistance (for example, stress corrosion resistance and corrosion resistance).

ところで、従来、非磁性ドリルカラー用材としてはNi
−Cu合金である゛にモネル(卯品名)″や非磁性マン
ガン鋼がf史用されてきたが、これらに1〆剤次のよう
な問題点が指摘されていた。口1]ち、(a)Kモネル
はNi−Cu合金(例えば、”モネルに−500”は6
6 cl)Ni −291Cuをベースとする)であっ
て、極めて高価である、 ■ 従来のM+ Mn系非磁性鋼は、オーステナイトの
安定1じと透磁率の低下並びに高強度化を図るために0
.50 %を越える多謔のCが必要とされ、このため延
性及び靭性が低く、また高C含有の故に切削性、特に穴
あけ加工性も劣る、 ■ 上記従来の扁Mn系非田性tはCr含有量が低く、
従って深層の厳しい腐食環境での耐久外(=碓がある。
By the way, conventionally, Ni has been used as a material for non-magnetic drill collars.
-Cu alloy Monel and non-magnetic manganese steel have been used for a long time, but the following problems have been pointed out with these. a) K Monel is a Ni-Cu alloy (for example, "Monel -500" is 6
6 cl) based on Ni-291Cu) and is extremely expensive. ■ Conventional M+ Mn-based non-magnetic steels are made of 0.5 chloride to stabilize austenite, lower magnetic permeability, and increase strength.
.. A high content of C exceeding 50% is required, resulting in low ductility and toughness. Also, due to the high C content, machinability, especially drilling workability, is also poor. The content is low;
Therefore, it cannot withstand durability in deep, severe corrosive environments.

〈問題点を解決するための手段〉 本発明者等は、上述の如き従来の非磁性ドリルカラー用
材料に指摘されていた問題点を踏まえた上で、廉価にし
て安定した非磁性と高耐力とを具備し、かつ延性、靭性
、耐食性、穴あけ加工性並びに熱間加工性の点でも十分
に満足し得る非磁性ドリルカラー用材料の提供を目指し
て、特にO非磁性である。
<Means for Solving the Problems> Based on the problems pointed out in the conventional non-magnetic drill collar materials as described above, the present inventors have developed an inexpensive, stable non-magnetic material with high proof strength. In particular, the present invention aims to provide a material for a non-magnetic drill collar that is fully satisfactory in terms of ductility, toughness, corrosion resistance, drilling workability, and hot workability.

○ 耐力と延性・靭性とのバランスが良い、○ 穴あけ
加工性が比較的良好である、○ 耐食性も比較的良好で
ある。
○ Good balance between yield strength, ductility and toughness, ○ Relatively good drilling workability, ○ Relatively good corrosion resistance.

○ 熱間加工性が比較的良く、コストも安い、等の観点
刀1ら1低C−高Cr系のhen−Cr −V −N系
オーヌテナイト鋤”(二右目し、その特性を更に改善し
てドリルカラー用材料としての前記要求性蛯を確保丁べ
く、鋭意研究を重ねた結果、「上記″’Mn −Cr 
−V −N糸オーヌテナイI−fJ、Id”1二おいて
、Cr含有川用2幅以上を確保するとともに、20幅を
越える値にMn含有はを調整し、かつC含亙看を0.5
0係以下に制限すると、Cr看を12係以上にしたこと
が主体となって苛酷な腐食環境下での油井やガス井の掘
削にも十分に耐え得る高耐食性が得られるとともC:、
高Mn(ヒが主体となり安定した非磁性がコスト安く確
保され、またC含有量の低減効果が主体となって切削性
、靭性並びに延性が目立って改善される上、こればニ加
えてMn付をも考慮した特定の値にV@有晴を調整する
ことで、M、nの故にV析出物による強rヒ作用が減じ
られるとされている高Mn *ωにおいても、1熱延の
まま”或いは”熱延後の簡単な短時間時効処理”のみで
十分な強1ヒがなされるようになってCψ低域に起因す
る強変低下の保証が可能となり、これらが絡み合って、
耐力、延性、靭性、耐食性並びに穴あけ加工性等の諸性
質に殴れ、かつ安定した非磁性を示すところの、非磁性
ドリルカラー用素材として好適な鋼がコスト安く実現さ
れる」ことを見出Tに至ったのである。
○ From the viewpoints of relatively good hot workability and low cost, etc. As a result of intensive research to ensure the above-mentioned requirements as a material for drill collars, we found that the
-V-N yarn I-fJ, Id"12, ensure 2 or more widths for Cr-containing rivers, adjust Mn content to a value exceeding 20 widths, and adjust C content to 0. 5
If the ratio is limited to 0 or less, high corrosion resistance can be obtained that can sufficiently withstand drilling of oil and gas wells in severe corrosive environments, mainly due to the Cr ratio of 12 or more.
Stable non-magnetism is ensured at a low cost due to high Mn (H), and machinability, toughness, and ductility are significantly improved due to the reduction in C content. By adjusting V@Ariharu to a specific value that takes into consideration the ``Or, ``simple short-time aging treatment after hot rolling'' is enough to achieve sufficient strength, making it possible to guarantee the decrease in strength due to the Cψ low range, and these factors are intertwined,
It was discovered that a steel suitable as a material for non-magnetic drill collars can be realized at a low cost, as it has excellent properties such as yield strength, ductility, toughness, corrosion resistance, and drilling workability, and also exhibits stable non-magnetism. It has come to this.

この発明は、上記知μC:基づいてなさhたものであり
、 非磁性ドリルカラー用鋼を、 c:o、io〜0,50%、 Si:2.O憾以丁、M
n:20超〜30%。
This invention was made based on the above-mentioned knowledge μC: non-magnetic drill collar steel, c: o, io ~ 0.50%, Si: 2. O Sorry, M
n: more than 20 to 30%.

Ni:0.01〜3.0.0fIら、Cr:12〜20
す6、V : [0,1xMn(4)−0,5〕= [
0,15×Mn(%) −0,75] 4%N:0.1
〜0.5憾、 P:0.030壬以丁。
Ni: 0.01-3.0.0fI et al., Cr: 12-20
6, V: [0,1xMn(4)-0,5]=[
0,15×Mn(%) −0,75] 4%N: 0.1
~0.5 Sorry, P: 0.030 Miito.

S:0.010憾以丁。S: 0.010 I'm sorry.

Ca s Mg + Y及び希土類元素の1棟以辷:合
計で0.0005〜0.030憾 を含有する刀1.或いは必要により更(二Cu : 1
.5憾以F、 MO:0.01〜2.00%、 Nb:0.01〜1.00係。
A sword containing a total of 0.0005 to 0.030 pieces of Ca s Mg + Y and rare earth elements 1. Or further as necessary (2 Cu: 1
.. 5. F, MO: 0.01-2.00%, Nb: 0.01-1.00.

IJ : 1. O1以下 のうちの1種以上をも含むとともに残部が実質的にFe
から成り、かつ、式 %式%() を満たTHi分組成に構成した点、 に特徴を有するものである。
IJ: 1. It also contains one or more of O1 or less, and the remainder is substantially Fe.
It is characterized by having a THi component composition that satisfies the formula % formula % ().

次に、この発明の非磁性ドリルカラー用鋼において、構
成成分の含有割合を前記の叩く(二限定した理由を説明
する。
Next, in the non-magnetic drill collar steel of the present invention, the reason why the content ratio of the constituent components is limited to two will be explained.

al  C C成分C=は、オーステナイト相を安定(ヒして非に性
を確保する作用のほか、箋の強度を上昇させる作用をも
頁しているが、その含有けが0.104未満では前記作
用に所望の効果が得られない恐れがあり、一方、0.5
0’lを越えて含有させると延性及び靭性の劣fヒを招
イことに加えて、オーステナイト結晶粒界に多量の炭化
物が析出して応力腐食割れ(二対する感受性が高まるこ
とから、C含有量は0.10〜0.50%と定めた。
Al C The C component C= has the effect of stabilizing the austenite phase and ensuring its properties, as well as increasing the strength of the paper, but if the content is less than 0.104, the above There is a risk that the desired effect may not be obtained;
If the content exceeds 0'L, it will not only lead to poor ductility and toughness, but also cause a large amount of carbides to precipitate at the austenite grain boundaries, increasing the susceptibility to stress corrosion cracking. The amount was determined to be 0.10-0.50%.

fbl  5i Siは鋼の脱酸剤として添加される元素であり、またW
の強変上昇にも有効なものであるが・2・0壬を越えて
含有させても上記効果が飽和するばかりか、逆に非金属
介在物が増加して非磁性ドリルカラー用鋼の清浄度を悪
りヒさせ、かり延性及び靭性をも低下させることから、
S+含耳贋は2.0’l’QJ下と定めた。
fbl 5i Si is an element added as a deoxidizer for steel, and W
However, if the content exceeds 2.0 μm, the above effect will not only be saturated, but also non-metallic inclusions will increase, making it difficult to clean the steel for non-magnetic drill collars. Because it deteriorates the strength and also reduces the ductility and toughness,
S + ear-containing forgeries were determined to be below 2.0'l'QJ.

d  Mn Mnはオーステナイト相を安定にして非磁性酒とするの
に有効な低価格の元素であり、また延性及び靭性な向上
させる作用をも有しているが、その含有量か20幅以下
では上記作1月に顕著性を欠いて所望の効果が得られな
い。しかしながら、MnはV析出物の固溶量ヲ増してV
析出物シーよる強Cヒ作用を減じるので、Mntaを増
すと鏑の強fヒに多量のVを必要とすることとなって却
ってづストと昇を招いてしまうに、、Mn@有Iが30
係を越えると応力腐食割れ発生の危険度が極めて高くな
ることから、Mn@有量は20超〜30憾と定めた。
d Mn Mn is a low-cost element that is effective in stabilizing the austenite phase and making it non-magnetic, and also has the effect of improving ductility and toughness, but if its content is less than 20%, The desired effect cannot be obtained because the above production lacks conspicuousness in January. However, Mn increases the amount of solid solution of V precipitates, and
Since it reduces the strong C effect caused by precipitates, increasing Mnta requires a large amount of V for the strong f-force of the kabura, which in turn leads to stress and rise. 30
Since the risk of stress corrosion cracking is extremely high when the Mn content exceeds 20 to 30.

fdl  Ni Ni1332分には、オーステナイト相を安定1ヒする
とともに憎の靭性を向上する作用があるが、その含有量
が0.01%末滴では上記作用に基づく所望の効果が得
られず、一方、3.00%を越えて添加してもその効果
が飽和してしまってそれ以上の向上効果が期待できない
ばかりか、フヌト上昇を招くことから、Ni含有肴は0
.01〜3.00係と定めた。
fdl Ni Ni1332 has the effect of stabilizing the austenite phase and improving the toughness of the austenite phase, but when its content is 0.01%, the desired effect based on the above effect cannot be obtained; Even if it is added in excess of 3.00%, the effect will be saturated and no further improvement can be expected, and it will also lead to an increase in Ni-containing dishes.
.. 01-3.00 section.

(el   Cr Crは、高Mn m C=高い耐力と±れた耐食性を付
与するために欠かせない成分であるが、その含有量が1
2幅未満では上記効果が十分でなく、一方、20憾を越
えて含有させてもその効果が飽和してしまうばかりρ)
、δ−フェライトを生成させて透磁率を上昇せしめ、非
磁性を損なうようになることから、Cr含有晴は12〜
20憾と定めた。
(el Cr Cr is an indispensable component for imparting high Mn m C = high yield strength and excellent corrosion resistance.
If the width is less than 2, the above effect will not be sufficient, while if the content exceeds 20, the effect will just become saturated.
, Cr-containing fine particles are 12 to 12%, since δ-ferrite is generated, increasing magnetic permeability and impairing non-magnetism.
20 regrets.

げ)  ■ ■5+i、分は、鋼の組織微細1ヒ作用C二加えて強度
を向上させる作用をも符丁るが、この発明の11で番ま
■がV析出物の固溶量を増してVの前記効果を減じるこ
とから、該効果を十分C二発揮せしめるためにはMnt
lとの関係でV含有量を規定しなければならない。
(Ge) ■ ■5+i, min has the effect of increasing the strength of the steel in addition to the microstructural fineness of the steel. Since it reduces the effect of V, in order to fully exhibit the effect of C2, Mnt
The V content must be defined in relation to l.

即ち、第1図は、一連の供試鋼につき、960°Cで全
王丁率60壬の熱間aE唾を終了後空冷した試験片の強
度と延性・靭性バランスとの関係を%In看及びv量と
の関係で整理したグラブであり、図中の「○印」のうち
の左半分が強度状況を、そして右半分が延性・靭性状況
を示している(それぞれ”黒塗り”は所望性能を満足し
ないことを表わす)が、この第1図からも、■含有量が
0、1 x Mn (%)−0,5≦V(矧≦0.15
 ×Mn($1−0.75なる関係を満たすときに良好
な“強度−延性・靭性バランス”を示すことが明らかで
ある。
That is, Figure 1 shows the relationship between the strength and ductility/toughness balance of a series of specimen steels, which were air-cooled after being subjected to hot aE heating at 960°C with a total strength of 60 mm. The left half of the "○ marks" in the figure shows the strength status, and the right half shows the ductility/toughness status (in each case, "black" indicates the desired This indicates that the performance is not satisfied), but from this Figure 1, it can be seen that ■ the content is 0,1
It is clear that a good "strength-ductility/toughness balance" is exhibited when the relationship xMn($1-0.75 is satisfied).

このように、■含有量が[0,I X〜1n(循1−0
.5)憾未満ではV析出物による強1ヒ作用が不十分と
なり、一方−[0,15×Mn(’1)−0バ5〕憾を
越えてVを含有させると延性及び靭性の劣化を来た丁コ
トvhら、v3有看は[: 0.I ×Mn(%)−0
,5〕〜[0,15×Mn(%) −0,751%と定
めた。
In this way, ■ the content is [0, I
.. 5) If the content is less than -[0,15×Mn('1)-0bar5], the strength effect of V precipitates will be insufficient, while if it is added in excess of -[0,15×Mn('1)-0bar5], the ductility and toughness will deteriorate. Came here, vh et al., v3 observation is [: 0. I×Mn(%)−0
,5] to [0,15×Mn(%) −0,751%.

(gl  N N成分は、オーステナイト相を安定にして非磁性とする
のに有効であり、加えて強度上昇作用及び耐応力腐食割
れ住改善作用をも耳しているが、その含有1が01係未
満では前記作用に基づく所望の効果を得難く、一方、0
.5憾を越える添71Dは溜裂造辷極めて困難である上
、熱間加工性の低下をも招くことから、N含有量は0.
1〜05壬と定めた。
(gl N The N component is effective in stabilizing the austenite phase and making it non-magnetic, and I have heard that it also has the effect of increasing strength and improving stress corrosion cracking resistance, but its content 1 is effective in making it non-magnetic. If it is less than 0, it is difficult to obtain the desired effect based on the above action;
.. Addition 71D of more than 5% is extremely difficult to form and also causes a decrease in hot workability, so the N content should be set to 0.
It was set as 1-05.

(hlP、及びS 不可避的不紳物元素であるP及びSの低減は。(hlP, and S The reduction of P and S, which are unavoidable undesirable elements.

Nを添加した溜の熱間加工性教養f二有効であるばかり
か、オーステナイト相のより一層の安定1ヒにも寄与し
非磁性・特性を改善する効果を盲する。そして、これら
の効果はp諧atvo、o 30 %以Fに、S含有は
を0010係以下にそれぞれ規制することで顕著(ヒす
ること刀)ら、P及びS)貸の上限をそれぞれ0.03
04及び0010%とそれぞれ定めた。
Not only is N-added effective in improving the hot workability of the reservoir, but it also contributes to further stabilization of the austenite phase, thereby overriding the effect of improving non-magnetic properties. These effects are noticeable by restricting p and o to less than 30% F and S content to less than 0010% (P and S), respectively, to 0. 03
04 and 0010%, respectively.

iiI  Ca 、Mg r Y+及び赤土類元素(R
EM)この発明に係る鋼の俗製時や熱間加工時の割れを
防止するためには、前述したP及びSの制限(=加えて
、Ca、 Mg 、 Y及び希土類元素の1種又は2種
以上を合計で0.(’)O05〜0.03[’)係添加
するのが有効であるが、これら成分の合計含有り〒(が
0.00054未満では上記効果が十分でなく、一方、
総晴で0.030幅を・處えて含有させると熱間加工性
が却って劣(ヒすることになる。
iii Ca , Mg r Y+ and red earth elements (R
EM) In order to prevent cracking during general production or hot working of the steel according to the present invention, the above-mentioned restrictions on P and S (= in addition, one or two of Ca, Mg, Y, and rare earth elements) are required. It is effective to add more than 0.05 to 0.03 [') of these components in total, but if the total content of these components is less than 0.00054, the above effect is not sufficient; ,
If the content exceeds 0.030 in total, the hot workability will actually deteriorate.

(jl  Cu p Mo p Nb 、及びMこれら
は、いずれも鋼の強度を上げるのに有効な元素であり1
.j、り高強度乞必゛隻とする場合に1種以且の添加が
なされるが、以下、各々の元素についてその他の作用を
も含めて詳述する。
(jl Cu p Mo p Nb, and M These are all elements that are effective in increasing the strength of steel.
.. (j) When higher strength is required, one or more elements are added, and each element will be explained in detail below, including other effects.

1)Cu Cuは強度の向上に有効であるほか、オーステナイト相
を安定にする作用や耐食牲改畏作用をもイ1するが、そ
の含百寸が1.5冬を埠えると熱間加工性の劣1ヒを招
くこと力)ら、Cu含有eは1.5壬以下と定めた。な
お、Cuは微1辻徐υDによってもそれなりの効果を発
揮するが、望ましくは01′4以上の含T[を確保する
のが良い。
1) Cu In addition to being effective in improving strength, Cu also has the effect of stabilizing the austenite phase and improving corrosion resistance, but if its content exceeds 1.5 years, hot processing becomes impossible. The Cu content was determined to be 1.5 mm or less, since it may lead to poor sexual performance. Incidentally, although Cu exhibits a certain effect even with a slight degree of υD, it is desirable to ensure a T content of 01'4 or more.

fi)Mo、及びNb これらの成分には鋼の強度を向上させる作用のほが、耐
食性を改善する作用もあるが、その含有1が各々0.0
1壬未満では前記作用に所望の効果が得られず、一方、
MOが2.OO’lを、モしてNbが1.004をそれ
ぞれ越えて含有させると熱間加工性及び靭性な低下させ
ることから。
fi) Mo and Nb These components have the effect of improving the strength of steel as well as the corrosion resistance, but their content 1 is 0.0
If it is less than 1 liter, the desired effect cannot be obtained; on the other hand,
MO is 2. If OO'l and Nb are contained in excess of 1.004, hot workability and toughness are reduced.

Moa[fiハ0.01〜2.004と、Nbalir
tfは0.01〜1.004とそれぞれ定めた。
Moa [fiha 0.01~2.004, Nbalir
tf was set at 0.01 to 1.004, respectively.

1ff)  M Mは強度の向上に有効であるほか、鋼の脱酸剤としても
好ましい元素であるが、その含有Iが1.0優を越える
と靭性の劣1ヒや透磁率の上昇を来た丁ことから1M含
有暑は1.0係以下と定めた。
1ff) M M is effective in improving strength and is also a preferable element as a deoxidizing agent for steel, but if its content I exceeds 1.0, it may lead to poor toughness and increased magnetic permeability. Therefore, the 1M content was determined to be 1.0 or less.

(kl  C、N 、Mn 、 Ni及びVの組合わせ
この発明において1式 %式% を満足するようCC、N 、Mn、Ni及びVの含有端
を規制することは、鋼に安定して非磁性を確保する上で
欠かせないことであり、上記式の値が20.5未満にな
ると鋼の透磁率を1.01未満に抑えることかで傘ない
(kl Combination of C, N, Mn, Ni, and V In this invention, controlling the content ends of CC, N, Mn, Ni, and V to satisfy the formula % formula % is a stable and non-containing material for steel. This is essential for ensuring magnetism, and if the value of the above formula is less than 20.5, it is impossible to suppress the magnetic permeability of steel to less than 1.01.

第2図は、上記式の値が種々に変(ヒするように成分調
整した鋼について透磁率を測定し、グラフ化したもので
あるが、該第2図からも、前記式の値が20.5以上の
ときに非磁性ドリルカラー用錯に必要とされる透磁率1
.01未満を確保できることがわかる。
Figure 2 is a graph of magnetic permeability measured for steels whose compositions were adjusted so that the values of the above formula changed in various ways. Magnetic permeability 1 required for non-magnetic drill collar complex when .5 or more
.. It can be seen that less than 0.01 can be secured.

この発明の非磁性ドリルカラー用鋼は以上に説明した成
分組成を有し、熱間加工のまま、或いはその後簡単な短
時間時効処理を行うだけで必要特性を確保できるもので
あるが、できれば、その製造に当っては、前記組成の鋳
片又は鋼片に終了温度900℃以上の熱間加工を推した
後空冷相当以上の冷却速度で冷却するか、又は冷却の後
更に750℃以下の温度で なる条件にて時効処理を旋す方法を採用するのが望まし
い。
The non-magnetic steel for drill collars of the present invention has the above-described composition, and can secure the necessary properties as hot-worked or by simply subjecting it to a simple short-time aging treatment. In its production, the slab or steel slab with the above composition is subjected to hot working at a finishing temperature of 900°C or higher, and then cooled at a cooling rate equivalent to or higher than air cooling, or after cooling, it is further heated to a temperature of 750°C or lower. It is desirable to adopt a method of aging treatment under the following conditions.

なぜなら、900℃を下回る温度域では材料の変形抵抗
が太きくなって熱間加工が困難となり、加工設備の大型
fヒが必要となるほか、本発明C:係る溜の如きCr@
有喰の高い成分系では、900°Cを下回る温度域で熱
間加工を旋丁とCr炭fヒ物が結晶粒界に析出して応力
腐食割れに対する感受性が高まったり、靭性の劣化を招
いたりすることが懸念されるからである。
This is because, in a temperature range below 900°C, the deformation resistance of the material increases, making hot working difficult and requiring large processing equipment.
For highly fertile component systems, hot working at temperatures below 900°C may cause Cr carbon particles to precipitate at grain boundaries, increasing susceptibility to stress corrosion cracking and deteriorating toughness. This is because there are concerns that this may occur.

そして、熱間加工終了後に空冷相半以上の冷却速度で冷
却することは、オーステナイト粒の細粒化に有効である
ことに加えて、徐冷による耐応力腐食割れ性の劣fヒを
防止する上でも強く推奨寮れる手段である。
Cooling at a cooling rate of half or more than the air cooling phase after hot working is effective in refining austenite grains, and also prevents deterioration in stress corrosion cracking resistance due to slow cooling. The above is also a highly recommended dormitory option.

更C二、より一層の強(ヒを図るための時効処理温度が
750°Cを上回ると、強(ヒに有効なV析出物が粗大
1ヒしてしまって強度向上効果を喪失したり、Cr炭化
物が析出して靭性や耐応力腐食割れ性な劣fヒしたりす
る恐れがあり、また、750℃以下の温度での時効処理
であっても前記〔PLM〕の値か20.5X103を上
回る条件になると、所謂”過時効状態”を呈し、却って
強ぜ低下と靭性劣fヒを招く結果をもたらしがちなこと
から、熱間加工後の時効処理は先に述べた条件内で実施
するのが良い8続いて、この発明を、実施例により比戟
例と対比しながら説明する。
Furthermore, when the aging treatment temperature for achieving even higher strength exceeds 750°C, the V precipitates that are effective for increasing strength become coarser and the strength improvement effect is lost. There is a risk that Cr carbide will precipitate and deteriorate the toughness and stress corrosion cracking resistance.Also, even if aging treatment is performed at a temperature of 750°C or less, the above [PLM] value of 20.5X103 If the conditions are exceeded, a so-called "over-aged state" will occur, which tends to result in a decrease in strength and poor toughness, so aging treatment after hot working should be carried out within the conditions mentioned above. 8 Next, the present invention will be explained using examples and comparing with comparative examples.

〈実施例〉 実施例 1 まず、第1表に示す個番1〜25の供試鋼をそれぞれ成
分調整して鋼塊に溶製した後1分塊圧延によって鋼片と
なし、次いで該鋼片に全圧下率(断面減少率)が50壬
となるような、終了(仕上げ)@度1030〜930℃
の熱間田延を稚し、その後第2表(二示す条件で冷却し
て、まず熱間加工性の調査を行った。なお、熱間加工性
は、鋼片の表面肌や1表面や端面における割れ発生状況
から総合的に判定し、3段階の評価な誰した。
<Examples> Example 1 First, each of the test steels with individual numbers 1 to 25 shown in Table 1 was melted into a steel ingot by adjusting its composition, and then made into a steel billet by 1-blunt rolling. Finishing (finishing) @ 1030 to 930 degrees Celsius such that the total reduction rate (section reduction rate) is 50 mm.
The hot workability was first investigated by heating the hot rolled sheets and then cooling them under the conditions shown in Table 2 (2). A comprehensive judgment was made based on the occurrence of cracks on the end face, and a three-level evaluation was performed.

次いで、熱間加工性が「鰻」又は「良」と判定さねた供
試鋼についてその他の性能調査を行ったが、これらの結
果を第2表に併せて示した。
Next, other performance investigations were conducted on the test steels whose hot workability was not determined to be "eel" or "good", and the results are also shown in Table 2.

この際、引張り性能は、平行部が14−φの丸棒引張り
試験片を切り出して調査し、衝撃性能は2 rm Vノ
ツチのシャルピー衝隼試験片を切り出して調査した。
At this time, the tensile performance was investigated by cutting out a round bar tensile test piece with a parallel part of 14-φ, and the impact performance was investigated by cutting out a Charpy impact test piece with a 2 rm V-notch.

また、耐食性調査には、次に示す1シングルUペンド試
験法”を採用した。即ち、切り出した10本の試験片を
Uペンド形状となし、このUベンド試験片を80℃の人
工海水中に4週間浸實した後に取出して、光学顕微鏡に
より試験片のUベンド部中央の縦断面における最大割れ
深さを計測する方法である。第2表には、この結果に基
づく耐食性の評価な○印及び×印で示したが、ここでは
In addition, the following 1 single U-bend test method was adopted for the corrosion resistance investigation. In other words, 10 test pieces were cut out into a U-bend shape, and the U-bend test pieces were placed in artificial seawater at 80°C. After soaking for 4 weeks, the test piece is taken out and measured using an optical microscope to measure the maximum crack depth in the longitudinal section at the center of the U-bend.Table 2 shows the evaluation of corrosion resistance based on this result. This is indicated by a and an x mark, but here.

○印・・・・・・10本の試験片のいずれにも応力腐食
割れが生ぜず。
Circle: No stress corrosion cracking occurred in any of the 10 test pieces.

×印・・・・・・10本の試験片のいずれか又は全部に
応力腐食割れが発生、 の2段階で表示した。
×: Stress corrosion cracking occurred in any or all of the 10 test specimens. Displayed in two stages.

穴あけ加工性については、切り出した試験片をB T 
A (Boring  and Trepanning
 As5ociation)加工機にて穿孔加工し、そ
のときの回転数、送り速度、装置の振動状況、工具摩耗
及び表面粗度の観点から総合的に判定して3段階評価で
表示した。
Regarding drilling workability, the cut out test piece was
A (Boring and Trepanning
The holes were drilled using a processing machine (As5ociation), and comprehensively judged from the viewpoints of the rotational speed, feed rate, vibration status of the device, tool wear, and surface roughness, and displayed in a three-level evaluation.

第2表に示される結果からも、本発明鋼は比較鋼に比べ
て強度、廼性、′gJ性、耐食性、穴あけ加工性並びに
熱間加工性等のバランスに潰れていて、非磁性ドリルカ
ラー用面として好適であることがわかる。
The results shown in Table 2 also show that the steel of the present invention has a better balance of strength, toughness, gJ properties, corrosion resistance, drilling workability, hot workability, etc. than the comparative steels, and has a non-magnetic drill collar. It can be seen that it is suitable for use.

実施例 2 第1表に示した本発明鋼1について1分塊圧延によって
得た鋼片を金田下率が40幅となるような熱間圧延を稚
し、その後強制冷却を行ってから一部(二ついては更に
時効処理を罹して引張り性能及び衝撃性能を調査した。
Example 2 A steel billet obtained by one-time block rolling of the invention steel 1 shown in Table 1 was hot-rolled so that the gold reduction ratio was 40, and then forced cooling was performed. (The two samples were further subjected to aging treatment and their tensile performance and impact performance were investigated.

得られた結果を第3表C:併せて示す。The obtained results are also shown in Table 3 C.

第3表1:示される結果からも、本発明鋼は、製造方法
の如何イニよらず非磁性ドリルカラー用鋼として好適な
性能を発揮することがわかる。
Table 3: From the results shown, it can be seen that the steel of the present invention exhibits suitable performance as a steel for non-magnetic drill collars, regardless of the manufacturing method.

く総括的な効果〉 以上に説明した如く、この発明C二よれば、非磁性ドリ
ルカラー用鋼の品質向上釜びにコスト低減に顕著な効果
がもたらされるなど、産業上の有用性には計り知れない
ものカーある。
Overall Effects> As explained above, invention C2 has immeasurable industrial usefulness, such as a remarkable effect on improving the quality of non-magnetic drill collar steel and reducing costs. There is a car that is not there.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、鋼の強度と延性・靭性バランスとの関係をM
n(jt及びV[1との関係で整理したグラフ、第2図
は、透磁率と鋼組成との関係を示すグラフである。 出願人  住友金属工業株式会社 代理人  富 1)和 夫 外2名 〔盪J舷!−1〕 1× Vt有f(!量%ン
Figure 1 shows the relationship between steel strength and ductility/toughness balance.
Figure 2 is a graph organized in relation to n(jt and V[1), and is a graph showing the relationship between magnetic permeability and steel composition. Applicant Sumitomo Metal Industries Co., Ltd. Agent Tomi 1) Kazuo et al. 2 Name [J-board! -1〕 1× Vt f(!Amount %n

Claims (2)

【特許請求の範囲】[Claims] (1) 重量割合にて、 C:0.10〜0.50%、Si:2.0%以下、Mn
:20超〜30%、 Ni:0.01〜3.00%、Cr:12〜20%、V
:〔0.1×Mn(%)−0.5〕〜〔0.15×Mn
(%)−0.75〕%、N:0.1〜0.5%、P:0
.030%以下、S:0.010%以下、 Ca、Mg、Y及び希土類元素の1種以上:合計で0.
0005〜0.030% を含有するとともに残部が実質的にFeから成り、かつ
、式 20×C(%)+20×N(%)+0.5×Mn(%)
+Ni(%)−1.5×V(%)≧20.5を満たす成
分組成に構成されたことを特徴とする非磁性ドリルカラ
ー用鋼。
(1) Weight percentage: C: 0.10-0.50%, Si: 2.0% or less, Mn
: more than 20 to 30%, Ni: 0.01 to 3.00%, Cr: 12 to 20%, V
: [0.1×Mn (%)-0.5] ~ [0.15×Mn
(%) -0.75]%, N: 0.1-0.5%, P: 0
.. 0.030% or less, S: 0.010% or less, one or more of Ca, Mg, Y, and rare earth elements: 0.030% or less in total.
0005 to 0.030%, the remainder substantially consists of Fe, and has the formula 20 x C (%) + 20 x N (%) + 0.5 x Mn (%)
A steel for a non-magnetic drill collar, characterized in that it has a composition satisfying +Ni (%) - 1.5 x V (%)≧20.5.
(2) 重量割合にて、 C:0.10〜0.50%、Si:2.0%以下、Mn
:20超〜30%、 Ni:0.01〜3.005、Cr:12〜205、V
:〔0.1×Mn(%)−0.5〕〜〔0.15×Mn
(%)−0.75〕%、N:0.1〜0.5%、P:0
.030%以下、S:0.010%以下、 Ca、Mg、Y及び希土類元素の1種以上:合計で0.
0005〜0.030% を含有し、更に Cu:1.5%以下、 Mo:0.01〜2.00%、 Nb:0.01〜1.00%、 M:1.0%以下 のうちの1種以上をも含むとともに残部が実質的にFe
から成り、かつ、式 20×C(%)+20×N(%)+0.5×Mn(%)
+Ni(%)−1.5×V(%)≧20.5を満たす成
分組成に構成されたことを特徴とする非磁性ドリルカラ
ー用鋼。
(2) In weight percentage: C: 0.10 to 0.50%, Si: 2.0% or less, Mn
: more than 20 to 30%, Ni: 0.01 to 3.005, Cr: 12 to 205, V
: [0.1×Mn (%)-0.5] ~ [0.15×Mn
(%) -0.75]%, N: 0.1-0.5%, P: 0
.. 0.030% or less, S: 0.010% or less, one or more of Ca, Mg, Y, and rare earth elements: 0.030% or less in total.
0005 to 0.030%, and further contains Cu: 1.5% or less, Mo: 0.01 to 2.00%, Nb: 0.01 to 1.00%, M: 1.0% or less. and the remainder is substantially Fe.
and the formula 20 x C (%) + 20 x N (%) + 0.5 x Mn (%)
A steel for a non-magnetic drill collar, characterized in that it has a composition satisfying +Ni (%) - 1.5 x V (%)≧20.5.
JP60249641A 1985-11-07 1985-11-07 Steel for nonmagnetic drill collar Pending JPS62109950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60249641A JPS62109950A (en) 1985-11-07 1985-11-07 Steel for nonmagnetic drill collar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60249641A JPS62109950A (en) 1985-11-07 1985-11-07 Steel for nonmagnetic drill collar

Publications (1)

Publication Number Publication Date
JPS62109950A true JPS62109950A (en) 1987-05-21

Family

ID=17196041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60249641A Pending JPS62109950A (en) 1985-11-07 1985-11-07 Steel for nonmagnetic drill collar

Country Status (1)

Country Link
JP (1) JPS62109950A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103103444A (en) * 2013-03-04 2013-05-15 内蒙古包钢钢联股份有限公司 Drill collar steel and heat treatment process thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103103444A (en) * 2013-03-04 2013-05-15 内蒙古包钢钢联股份有限公司 Drill collar steel and heat treatment process thereof

Similar Documents

Publication Publication Date Title
JP5526809B2 (en) High corrosion resistance, high strength, non-magnetic stainless steel and high corrosion resistance, high strength, non magnetic stainless steel products and methods for producing the same
CA2477420C (en) Low alloy steel
CN102741440B (en) Steel material for quenching and method of producing same
JP5162954B2 (en) High-strength nonmagnetic stainless steel, high-strength nonmagnetic stainless steel parts, and method for manufacturing the same
JPWO2019186906A1 (en) Austenitic wear resistant steel plate
JP7135464B2 (en) Wear-resistant thick steel plate
EP2799581B1 (en) Wear resistant austenitic steel having superior machinability and toughness in weld heat affected zones thereof and method for producing same
EP2799582B1 (en) Wear resistant austenitic steel having superior ductility and method for producing same
JPH05195153A (en) High-strength spring steel
EP3322830A1 (en) New martensitic stainless steel
EP0280996B1 (en) Austenitic stainless steel combining strength and resistance to intergranular corrosion
JP7135465B2 (en) Wear-resistant thick steel plate
JP3489434B2 (en) High-strength free-cut non-heat treated steel
KR20120053616A (en) Bucket tooth for construction equipment with enhanced abrasion resistance and impact resistance
JP3932995B2 (en) Induction tempering steel and method for producing the same
JPH08170153A (en) Highly corrosion resistant two phase stainless steel
KR20120071615A (en) Wear resistant steel plate having excellent low-temperature toughness and weldability, and method for manufacturing the same
US6454879B1 (en) Process for producing a paramagnetic, corrosion-resistant material and like materials with high yield strength, strength, and ductility
JP5217191B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JPH0218381B2 (en)
JP3297500B2 (en) High-strength steel bar with excellent machinability
JPS62109950A (en) Steel for nonmagnetic drill collar
JPH05239590A (en) Steel excellent in wear resistance
JPS60128242A (en) High manganese steel for nonmagnetic drill collar
JP7464832B2 (en) Bolts and bolt steel