JPS62109905A - Production of composite metallic powder - Google Patents

Production of composite metallic powder

Info

Publication number
JPS62109905A
JPS62109905A JP24963885A JP24963885A JPS62109905A JP S62109905 A JPS62109905 A JP S62109905A JP 24963885 A JP24963885 A JP 24963885A JP 24963885 A JP24963885 A JP 24963885A JP S62109905 A JPS62109905 A JP S62109905A
Authority
JP
Japan
Prior art keywords
powder
molten metal
nozzle
composite
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24963885A
Other languages
Japanese (ja)
Inventor
Hiroaki Komoto
甲元 宏明
Fumio Noda
納田 文男
Yoshio Nishino
西野 良夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP24963885A priority Critical patent/JPS62109905A/en
Publication of JPS62109905A publication Critical patent/JPS62109905A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce composite metallic powder suitable for a sintering material with a simple stage by supplying reinforcing powder having a high m.p. from the upper part of the central hole of a nozzle for spraying molten metal flow and uniformly distributing the reinforcing particles. CONSTITUTION:The molten metal 5 of an Ni-base alloy, etc. having a prescribed compsn. is poured into a tundish 4 and is dropped in the form of the molten metal flow 3 from the bottom of the tundish 4 toward the central hole 1a of the spraying nozzle 1. High-pressure fluid 10 such as gaseous Ar is supplied to the nozzle 1 to form a spraying medium 2 of an inverted circular circular cone shape internally having a negative pressure to the bottom surface of the nozzle 1. The reinforcing powder 8 of the granular or short fiber-like Y2O3, etc. having the high m.p. is supplied through a supply pipe 7 in this state from the upper side of the central hole 1a of the nozzle 1. The reinforcing powder 8 is combined with the molten metal which is pulverized at the top end part of the spraying medium 2. The composite metallic powder 9 in which the reinforcing powder 8 is finely and uniformly dispersed is obtd. by the above- mentioned method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、強度や耐熱性、さらに耐摩耗性などの所定
の特性を有する分散強化型複合焼結金属材料などの製造
に、原料粉末として使用するのに適した複合金属粉末の
製造法に関するものである、〔従来技術〕 一般に1例えば粉末冶金法による分散強(ヒ型複合焼結
金属材料の製造には1分散強1ヒのための強化粉末を含
む複数種の原料粉末を用意し、これら原料粉末を所定の
配合組成に配合し、乾式あるいは湿式混合した後、通常
、この混合粉末を金属製容器内に真空封入し、所定の加
熱温度にて熱間押出加工あるいは熱間静水圧プレヌする
工程がとられている。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is applicable to the production of dispersion-strengthened composite sintered metal materials having predetermined properties such as strength, heat resistance, and wear resistance. [Prior art] In general, 1 dispersion strength (for example, 1 dispersion strength, 1H type composite sintered metal material is manufactured by a powder metallurgy method) is used. Multiple types of raw material powders including reinforcing powders are prepared, these raw material powders are blended into a predetermined composition, and after dry or wet mixing, this mixed powder is usually vacuum sealed in a metal container and heated to a predetermined temperature. A process of hot extrusion or hot isostatic pressing at high temperatures is used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記の粉末冶金法では、配合粉末の混合に1例
えば20〜50時間程度の著しく長い時間を必要とし、
この長時間の混合時間が工程合理fヒのネックとなって
いる。したがって、混合工程を必要としない原料粉末1
丁なわち、丁でに所定の最終成分組成をもった複合金属
粉末が用意できれば、複合焼結金属材料の製造工程の合
理rヒがはかれることになる。
However, in the above powder metallurgy method, mixing of the blended powder requires a significantly long time, for example, about 20 to 50 hours.
This long mixing time is a bottleneck to process efficiency. Therefore, raw material powder 1 that does not require a mixing process
In other words, if a composite metal powder having a predetermined final component composition can be prepared, the manufacturing process of composite sintered metal materials can be streamlined.

〔間融点を解決するための手段〕[Means for solving the melting point]

そこで、本発明者等は、上述のような観点力)ら、粉末
冶金法によって榛合焼結金腐材料を製造するに際して、
混合工程を実質的に必要とすることなく、原料粉末とし
て用いることのできる複合金属粉末を、簡単な工程で、
かつコスト安く製造すべく研究を行なった結果、水平配
置された噴霧ノズルの中心孔に向けて溶融金属流を流下
させ、一方前記噴霧ノズル内には高圧空気や高田水など
の高圧流体を供給して、前記噴霧ノズルの丁面部に内部
が負圧の逆円錐形噴霧媒を形成し、この噴霧媒の先端部
で前記溶融金属流を粉1ヒして金属粉末を製造するに際
して、前記噴霧ノズルの中心孔上方から、前記溶融金属
流を構成する金属に比して高い融点をもつ1例えばセラ
ミックス粉末、金属間(ヒ合物粉末、およびウィスカー
などの粒状あるいは短繊維状の強rヒ粉末を供給すると
、前記強rヒ粉宋として供給した強化粒子が均一に分布
した複合金属粉末が得られるようになり、かつ、この結
果の複合金属粉末は、酊■記溶融金属流の組成、前記強
fヒ粉末の組成および供給割合などを媚整することによ
って所定の最終成分組成、丁なわち最終的に製造される
複合焼結金属材料と同じ成分組成をもったものとするこ
とができるという知見を得たのである。
Therefore, based on the above-mentioned viewpoints, the present inventors, when manufacturing a sintered metal rotary material by a powder metallurgy method,
A composite metal powder that can be used as a raw material powder without the need for a mixing process is produced in a simple process.
As a result of conducting research in order to manufacture the product at a low cost, the molten metal flow is made to flow down toward the center hole of a horizontally arranged spray nozzle, while high pressure fluid such as high pressure air or Takada water is supplied into the spray nozzle. An inverted conical spray medium with a negative pressure inside is formed on the face of the spray nozzle, and when the molten metal stream is pulverized at the tip of the spray medium to produce metal powder, the spray nozzle From above the center hole of the molten metal flow, particles of granular or short fibrous strong powder such as ceramic powder, intermetallic powder, and whiskers having a higher melting point than the metals constituting the molten metal flow are poured into the molten metal flow. When supplied, a composite metal powder is obtained in which the reinforcing particles supplied as the above-mentioned strong powder are uniformly distributed, and the resulting composite metal powder has a composition of the molten metal flow and the above-mentioned strong Knowledge that by adjusting the composition and supply ratio of the powder, it is possible to make it have a predetermined final component composition, that is, the same component composition as the composite sintered metal material to be finally produced. I got it.

この発明は、上記知見にもとづいてなされたものである
が、上記のように噴霧ノズルd下面部に形成された噴霧
媒の内部は必然的に負王となるので、噴霧ノズルの上方
部の雰囲気が強制的に噴霧ノズル内に吸引され、この吸
引現壕によって強(ヒ粉宋は溶融金属流と共に、噴霧ノ
ズル内にスムーズに送給されるようになるものであり、
かつ逆円錐形を有する噴霧媒の先端部、丁なわち噴霧媒
の焦点付近で強fヒ粉末の99係以上が溶融金属流に混
入し、直ちに微細に粉化されるのである。なお、この場
合、高圧流体として気体を用いた場合には4製造される
粉末は球状を呈するようイニなり、一方液体を用いた場
合には不規則形状をもつようになるものである。
This invention was made based on the above-mentioned knowledge, but since the interior of the spray medium formed on the lower surface of the spray nozzle d as described above inevitably becomes negative, the atmosphere in the upper part of the spray nozzle is forcibly sucked into the spray nozzle, and this suction hole allows the strong (hyponic) material to be smoothly fed into the spray nozzle along with the molten metal flow.
At the tip of the atomizing medium having an inverted conical shape, that is, near the focal point of the atomizing medium, more than 99% of the strong F powder mixes into the molten metal flow and is immediately pulverized into fine particles. In this case, when gas is used as the high-pressure fluid, the powder produced will have a spherical shape, whereas when a liquid is used, it will have an irregular shape.

〔実施例〕〔Example〕

つぎに、この発明の方法を実施例により具体的;二説明
する。
Next, the method of the present invention will be specifically explained using examples.

実施例 1 弔1図に概略説明図で示される装はを用い、まず、[t
%で、Cr:20%、M:1.54、Ti : 2.3
易を含耳し、残りがNiと不可避不純物からなる組成を
し、かつ1500℃に加熱された溶融全屈5としてのN
i基合金溶湯を、予熱されたダンディシュ4内番=注入
し、この底部7)>ら直径二5Mφの溶融金属流3とし
て水平に配jαされた噴祷ノズル1の中心孔1aに回け
て流下させ、一方的記噴霧ノズル1には、ガスE:25
Kg/i−ガス流量=14 N m3/wL の条件で
高圧流体10としてのArガスを供給して、前記噴霧ノ
ズル1の−下面部に、内部が負圧となる逆円錐形噴霧媒
2を形1戊し、この状態で、削記噴31/ズル1の中心
孔上方から、搬送ガスとしてArを用い、送給装置6に
より供給パイプ7を通して送られてきた強fヒ粉末8と
しての平均粒径:1μmを有するイツトリア(Y2O3
)粉末を、製造せんとする複合金属粉末に占める割合で
1.25重は憾となるように供給し、@記噴囁謀2の先
端部で前記強(ヒ粉末混入の溶融金端流3を粉(ヒする
ことによって複合金属粉末9としての複合Ni基合金粉
末を製造した。この結果得られた複合Ni基合金粉末は
、平均粒径:80μmをHし、Ni基合金素地中に強(
ヒ粒子であるY2O3粒子が微細均一に分散した組織を
もつものであった。
Example 1 First, using the equipment shown in the schematic explanatory diagram in Figure 1,
%, Cr: 20%, M: 1.54, Ti: 2.3
N as a molten total refractory 5 heated to 1500°C, with a composition containing Ni and unavoidable impurities.
The i-base alloy molten metal is injected into the preheated dandysh 4 and passed from the bottom 7) to the center hole 1a of the horizontally arranged injection nozzle 1 as a molten metal stream 3 with a diameter of 25 Mφ. Gas E: 25 was supplied to the spray nozzle 1.
Ar gas is supplied as the high-pressure fluid 10 under the condition of Kg/i-gas flow rate = 14 N m3/wL, and an inverted conical spray medium 2 whose internal pressure is negative is supplied to the lower surface of the spray nozzle 1. A shape 1 is drilled, and in this state, an average of high-fever powder 8 is sent from above the center hole of the cutting jet 31/drill 1 through the supply pipe 7 by the feeding device 6 using Ar as the carrier gas. Ittria (Y2O3) with particle size: 1 μm
) powder in a ratio of 1.25 parts to the composite metal powder to be manufactured, and at the tip of the jet spout 2, the molten metal end flow 3 mixed with the A composite Ni-based alloy powder as composite metal powder 9 was produced by heating the composite metal powder 9.The composite Ni-based alloy powder obtained as a result was heated to an average particle size of 80 μm, and was hardened into a Ni-based alloy base. (
It had a structure in which Y2O3 particles, which are particles of carbon dioxide, were finely and uniformly dispersed.

ついで、このように本発明法により製造された複合Ni
基合金粉末を、ステンレスj製缶に詰め、真空排気して
封入し、引続いて温度: 115 () ’C1圧カニ
 2000気圧、保持時間:1時間の条件で熱間静水圧
プレスを施した後、(]Jj:1080℃に8時間保持
後空冷、並びに温度ニア00°Cに16時間保持後空冷
の時効処理を推し、最終的(二前記ステンレス鋼製缶を
機械加工により除去して複合Ni基合金・焼結材料(以
下本発明複合N1基材料という)を製造した。
Next, the composite Ni produced by the method of the present invention as described above is
The base alloy powder was packed in a stainless steel J can, evacuated and sealed, and then subjected to hot isostatic pressing at a temperature of 115 (2000 atm) and a holding time of 1 hour. After that, (]Jj: After holding at 1080°C for 8 hours, air cooling, and after holding at a temperature of near 00°C for 16 hours, air cooling is applied. Finally, the stainless steel can is removed by machining and composite A Ni-based alloy/sintered material (hereinafter referred to as the composite N1-based material of the present invention) was produced.

一方、比叔の目的で、原料粉末として、平均粒径:5μ
mを有するNi粉末、同100 p m(7’)Cr粉
末、同200μmのNi −A4−Ti合金(重量%で
、M: 30 %、Ti : 30 %aW )粉末、
同200μmのN1−M合金(重晋壬でA# : 20
壬含有)粉末、および1自1μmのY2O3粉末を用い
、これら原料粉末を上記本発明焼結材料と同一の成分組
成をもつように配合し、これをアトライターに入れ、不
活性ガス雰囲気中で20時間混合して混合粉末としたも
のを使用する以外は上記本発明複合Ni基材料の製造条
件と同一の条件で比軟複合Ni基材料を製造した。
On the other hand, for the purpose of comparison, as raw material powder, average particle size: 5μ
Ni powder with m, 100 pm (7') Cr powder, 200 μm Ni-A4-Ti alloy (in weight %, M: 30%, Ti: 30% aW) powder,
Same 200μm N1-M alloy (Chongjinjin A#: 20
These raw material powders were blended to have the same composition as the sintered material of the present invention, placed in an attritor, and heated in an inert gas atmosphere. A comparatively soft composite Ni-based material was manufactured under the same conditions as those for the above-described composite Ni-based material of the present invention, except that a mixed powder obtained by mixing for 20 hours was used.

この結果得られた本発明複合Ni基材料および比軟複合
Ni基材料は、第1表に示される耐力(0,2幅)およ
び破断強さく温度:1000℃に1000時間保持)を
示した。
The composite Ni-based material of the present invention and the relatively soft composite Ni-based material obtained as a result showed the yield strength (0, 2 width) and breaking strength (temperature: held at 1000° C. for 1000 hours) shown in Table 1.

第  1  表 実施例 2 溶融金属5として1200℃に加熱された純銅溶湯を用
い、かつ強1ヒ粉宋8として平均粒径:15μmを有す
る酸fヒアルミニラム(A/203’)粉末を用い、こ
れをCuに対して1.1重@憾の割合となるように供給
し、さらにこの強1ヒ粉末の搬送ガスとしてN2ガスを
用いると共に、高圧流体10として田カニ200Kg/
i、流@:Q、1ta3/亀の高王水を用いる以外は実
施例1におけると同一の条件で、平均粒径:50μmを
有し、かつ銅素地中に平均粒径:1μm以丁のA/!2
03粒子が均一に分散した組織を有する複合Cu合金粉
末を製造した。
Table 1 Example 2 A pure copper molten metal heated to 1200°C was used as the molten metal 5, and acid f hyaluminum minilum (A/203') powder having an average particle size of 15 μm was used as the molten metal 5. was supplied at a ratio of 1.1 weight to Cu, and N2 gas was used as a carrier gas for this strong powder, and 200 kg of Takani was used as the high pressure fluid 10.
i, Flow @: Q, 1ta3/Under the same conditions as in Example 1 except for using turtle high aqua regia, the average particle size was 50 μm, and the average particle size was less than 1 μm in the copper matrix. A/! 2
A composite Cu alloy powder having a structure in which 03 particles were uniformly dispersed was manufactured.

ついで、このように本発明法により製造された複合Cu
合金粉末に対して、水素雰囲気中、温度:800℃に1
時間保持の条件で加熱還元処理?:施した後、これを純
銅製容器内にArガヌ雰囲気中で封入し、押出温度:9
00’C1押出比:20:1の条件で熱間押出加工2行
なうことによって複合一方、比較の目的で、原料粉末と
して平均粒径:50μmのCu粉末と、同0,05μm
のA/203粉天を用い、上記本発明Cu基材料と同一
の成分組成、丁なわちA7!203: 1.1車G+%
、Cu:残り刀1らなる配合組成に配合し、これをアト
ライターに入れ。
Next, the composite Cu produced by the method of the present invention as described above
For alloy powder, in hydrogen atmosphere, temperature: 800 ° C.
Heat reduction treatment under time retention conditions? : After applying, this was sealed in a pure copper container in an Ar gas atmosphere, and extrusion temperature: 9
00'C1 Extrusion ratio: Composite by performing two hot extrusion processes under the conditions of 20:1 On the other hand, for comparison purposes, Cu powder with an average particle size of 50 μm and Cu powder with an average particle size of 0.05 μm were used as raw material powders.
A/203 powder was used, and the composition was the same as that of the Cu-based material of the present invention, that is, A7!203: 1.1 G+%
, Cu: 1 remaining sword, and put this into the attritor.

Ar雰囲気中で20E+?f間の混合を行ない、この混
合粉末を用い、上記本発明複合Cu基材料を製造するの
に採用したのと同じ条件で熱間押出加工を行なうこと(
:よって比較複合Cu基材料を製造した。
20E+ in Ar atmosphere? f and hot extrusion using this mixed powder under the same conditions as those employed to produce the composite Cu-based material of the present invention (
A comparative composite Cu-based material was thus produced.

この結果得られた本発明複合Cu基材料および比軟複合
Cu基材料は、cJz表に示される引張強さと伸びを示
した。
The resulting composite Cu-based material of the present invention and specific soft composite Cu-based material exhibited tensile strength and elongation shown in the cJz table.

〔発明の効果〕〔Effect of the invention〕

上記実施例1 、2に示される11−δ果から明らかな
ように、この発明の方法によれば1強化粒子が微細均−
C分布した複合金属粉末を、簡単な工程で。
As is clear from the 11-δ results shown in Examples 1 and 2 above, according to the method of the present invention, one reinforcing particle is fine and uniform.
C-distributed composite metal powder in a simple process.

コスト安く、かつ丁ばやく製造することができ、しかも
これを原料粉末として用いた場合には、従来の長時間を
必要とする混合工程を経て製造された複合焼結金属材料
と同等、あるいはこれより丁ぐれた特性をもった複合焼
結金属材料を実質的に混合工程を必要としない状態で製
造することができ、製造工程の合理Cヒにを与下るとこ
ろが大である。
It can be produced quickly and at low cost, and when used as a raw material powder, it is equivalent to or even better than composite sintered metal materials produced through conventional mixing processes that require a long time. A composite sintered metal material with more refined properties can be produced without substantially requiring a mixing step, which greatly improves the rationality of the production process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の実IN装置を示す概略説明図であ
る、 1・・・噴霧ノズル、    2・・・噴霧媒。 3・・・溶融金属流、    4・・・タンディシュ。 5・・・溶融金属、     6・・・送給装祷。 7・・・供給パイプ、    8・・・強(ヒ粉末。 9・・・複合金属粉末、  10・・・高圧流体。
FIG. 1 is a schematic explanatory diagram showing an actual IN device of the present invention. 1. Spray nozzle, 2. Spray medium. 3... Molten metal flow, 4... Tundish. 5... Molten metal, 6... Delivery equipment prayer. 7... Supply pipe, 8... Strong powder. 9... Composite metal powder, 10... High pressure fluid.

Claims (1)

【特許請求の範囲】[Claims] 水平配置された噴霧ノズルの中心孔に向けて溶融金属流
を流下させ、一方前記噴霧ノズル内には高圧流体を供給
して、前記噴霧ノズルの下面部に内部が負圧の逆円錐形
噴霧媒を形成し、この噴霧媒の先端部で前記溶融金属流
を粉化して金属粉末を製造するに際して、前記噴霧ノズ
ルの中心孔上方から、前記溶融金属流を構成する金属に
比して高い融点をもつ粒状あるいは短繊維状の強化粉末
を供給することを特徴とする複合金属粉末の製造法。
A stream of molten metal is caused to flow down toward the central hole of a horizontally arranged spray nozzle, while a high-pressure fluid is supplied into the spray nozzle to form an inverted cone-shaped spray medium with negative pressure inside at the lower surface of the spray nozzle. When producing metal powder by pulverizing the molten metal flow at the tip of the spray medium, a metal having a higher melting point than the metal constituting the molten metal flow is introduced from above the center hole of the spray nozzle. A method for producing composite metal powder characterized by supplying reinforcing powder in the form of granules or short fibers.
JP24963885A 1985-11-07 1985-11-07 Production of composite metallic powder Pending JPS62109905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24963885A JPS62109905A (en) 1985-11-07 1985-11-07 Production of composite metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24963885A JPS62109905A (en) 1985-11-07 1985-11-07 Production of composite metallic powder

Publications (1)

Publication Number Publication Date
JPS62109905A true JPS62109905A (en) 1987-05-21

Family

ID=17195996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24963885A Pending JPS62109905A (en) 1985-11-07 1985-11-07 Production of composite metallic powder

Country Status (1)

Country Link
JP (1) JPS62109905A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140001A (en) * 1986-09-24 1988-06-11 アルカン・インターナショナル・リミテッド Granular metal composite and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140001A (en) * 1986-09-24 1988-06-11 アルカン・インターナショナル・リミテッド Granular metal composite and its production

Similar Documents

Publication Publication Date Title
CN108941588B (en) Preparation method of nickel-based superalloy powder for laser forming
CA1301462C (en) Hydrometallurgical process for producing finely divided spherical refractory metal based powders
WO2018121688A1 (en) 3d printing spherical powder preparation method utilizing plasma
CN109570521A (en) The method that plasma spheroidization prepares metal powder
CN109759598A (en) A kind of preparation method of 3D printing GH4169 Ni-base Superalloy Powder
CN106112000A (en) A kind of 3D prints the preparation method of metal dust
JPH0142742B2 (en)
JPS63238230A (en) Conducting composite material and its production
JPS62109905A (en) Production of composite metallic powder
CN115889791A (en) Rare earth reinforced titanium-based composite material and preparation method thereof
EP0131797B1 (en) Method of making composite material of matrix metal and fine metallic particles dispersed therein
JPH04266475A (en) Production of composite material
JPS63255306A (en) Wet metallurgical method for producing finely divided globular low melting point metal base powder
JPH05105918A (en) Method and device for producing finely dispersed composite powder
JPH024906A (en) Manufacture of flaky rapidly cooling solidified metal powder
CN110899710B (en) Method and device for preparing metal or alloy spherical powder
JPS60141807A (en) Production of metallic powder
JPS6024302A (en) Production of amorphous alloy powder
CN109504346B (en) Diamond micropowder-copper-based alloy composite material particle and preparation method thereof
JP2510524B2 (en) Method for manufacturing solder powder
JP2003514986A (en) Powder manufacturing method
JPH0674443B2 (en) Method and apparatus for producing composite powder of ceramics and metal
JPS619538A (en) Manufacture of dispersion strengthened alloy wire
JP2911971B2 (en) High pressure water injection pipe for metal powder production and method for producing metal powder with low apparent density
JPS5852408A (en) Production of metallic particles