JPS62109419A - Thickness-shear vibrator - Google Patents
Thickness-shear vibratorInfo
- Publication number
- JPS62109419A JPS62109419A JP24808385A JP24808385A JPS62109419A JP S62109419 A JPS62109419 A JP S62109419A JP 24808385 A JP24808385 A JP 24808385A JP 24808385 A JP24808385 A JP 24808385A JP S62109419 A JPS62109419 A JP S62109419A
- Authority
- JP
- Japan
- Prior art keywords
- vibration
- excitation electrode
- mode
- anharmonic
- spurious
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
(発明の利用分野)
本発明は、厚みすべり振動子の非調和スプリアスモード
による副共振の発生を防止し良好な共振特性を得ること
ができる厚みすべり振動子に関し、例えば、通過帯域外
における保証減衰量の低下を防止するフィルタ素子とし
て利用される。Detailed Description of the Invention (Field of Application of the Invention) The present invention relates to a thickness-shear oscillator that can prevent the occurrence of sub-resonance due to anharmonic spurious mode of the thickness-shear oscillator and obtain good resonance characteristics. , is used as a filter element that prevents the guaranteed attenuation from decreasing outside the passband.
(発明の背景)
単結晶からなる圧電振動子、例えば厚みすべり振動モー
ドの水晶振動子は、電気的特性の良否を決定するQ値が
極めて高い乙とから、旧来より通信機器の発振素子やフ
ィルタ素子として重用されてきた。そして、近年では、
通信事情の悪化等により、例えば発振素子としては周波
数安定度が損なわれることなく、また、フィルタ素子と
しては、通過帯域外の保証減衰量を充分に満足する厚み
すべり振動子が望まれている。(Background of the Invention) Piezoelectric resonators made of single crystals, such as thickness-shear vibration mode crystal resonators, have traditionally been used as oscillating elements and filters in communication equipment because of their extremely high Q value, which determines the quality of their electrical characteristics. It has been used as an element. And in recent years,
Due to deterioration of communication conditions, for example, a thickness-shear oscillator is desired as an oscillation element without loss of frequency stability, and as a filter element, which fully satisfies the guaranteed attenuation amount outside the passband.
(背景技術)
第5図は、この種の厚みすべり振動子を構成する水晶片
の図である。(Background Art) FIG. 5 is a diagram of a crystal piece constituting this type of thickness-shear resonator.
即ち、この水晶片1は、結晶軸XXy% zのX−2面
を主面とし、y軸を回転軸としてy軸からZ軸に略35
°15″回転した通常ATカットと呼ばれろ角度で切断
されろ。尚、図中では回転して新たにできた軸をyゝ、
z′としである。そして、この水晶片1には、両生面の
対向する中央部に厚みすべり振動を励起する励振型i2
を形成し、この励振電極2から両端外周部に引き出し電
極3を延出している。なお、実際には、この水晶片の両
端外周部を図示しない保持装置により、電気的機械的に
接続して容器内に封入し、厚みすべり振動子を構成して
いる。That is, this crystal piece 1 has the X-2 plane of the crystal axis XXy%z as the main surface, and the rotation axis is the y-axis, and the distance from the y-axis to the Z-axis is about 35.
It is usually called an AT cut and is rotated by 15 degrees.In the figure, the newly created axis after rotation is yも,
z′ is toshi. This crystal blank 1 has an excitation type i2 that excites thickness-shear vibration in the central part of the opposing amphiboid surfaces.
is formed, and extraction electrodes 3 extend from the excitation electrode 2 to the outer periphery of both ends. In reality, the outer peripheries of both ends of this crystal piece are electrically and mechanically connected by a holding device (not shown) and sealed in a container to form a thickness-shear oscillator.
第6図は、横軸を周波数(f)、縦軸をアドミッタンス
(1/Ω)とした厚みすべり振動子の電気的な共振特性
図である。即ち、この厚みすべり振動子の電気的な共振
特性は、図中の曲線に示したように、通常、主共振周波
数fOに対し、この主共振周波数fOより高い周波数に
て副共振fsを呈する特性となる。この副共振は厚みす
べり振動モードの非調和スプリアスモードあるいは輪郭
系スプリアスモードが主たる要因となって発生する。こ
の中でも、特に電極によりエネルギー閉じ込めがなされ
ている非調和スプリアスモードによる副共振fs1、f
s2はそのインピーダンスレベルが低いため、例又は、
フィルタ素子、発振素子として用いた場合等での保証減
衰量の低下、周波数のジャンプ現象等を招来する原因と
なっていた。FIG. 6 is an electrical resonance characteristic diagram of a thickness-shear resonator, with the horizontal axis representing frequency (f) and the vertical axis representing admittance (1/Ω). In other words, the electrical resonance characteristics of this thickness-shear resonator are such that, as shown in the curve in the figure, the main resonance frequency fO normally exhibits a sub-resonance fs at a frequency higher than the main resonance frequency fO. becomes. This sub-resonance occurs mainly due to the anharmonic spurious mode of the thickness-shear vibration mode or the contour-based spurious mode. Among these, sub-resonances fs1 and f due to anharmonic spurious modes whose energy is confined by electrodes are particularly important.
Since s2 has a low impedance level, e.g.
When used as a filter element, oscillation element, etc., this causes a reduction in the guaranteed attenuation amount, a frequency jump phenomenon, etc.
ところで、厚みすべり振動の振動モードは、一般に、(
1,m、n)のモード記号で示されろことが知られてい
る。即ち、モード記号中、lは、厚み(y’軸)方向の
波長の数即ちオーバトーン次数、m%nは、各々励振電
極部におけるx、z’軸方向の変位分布の半波長の数を
表す。例えば、基本波はl=1で、オーバトーンは1=
3.5.7の奇数次となる。ここで、基本波の主振動モ
ードについて考えろと、そのモード記号は(1,1,1
)で表記され、第7図(a)の振動変位分布曲線(イ)
(ロ)に示したように、X及びZ′軸に対し、励振電極
中央部を最大として、励振電極上では余弦関数的に、励
振電極外では指数関数的に減少する。また、このとき圧
電作用により電極に誘起される電荷分布もほぼ変位分布
と同様な形となる。そして、非調和スプリアスモード例
えば(1,1,2)モードの振動変位分布曲線は、第7
図(b)の曲線(ハ)(ニ)に示すようにX軸方向に対
しては、主振動と同様に励振電極内に余弦関数的(曲線
へ)に閉じ込められているのに対し、Z′軸方向では電
極中央において変化量がOとなり、2個の半波長が電極
上に載る2倍角正弦関数線(曲線二)の変位分布となる
。このとき、電荷分布は電極中央より極性が反対でしか
も対称となるために、励振電極に生じる電荷量は相殺さ
れろ。このため、この2′軸方向の非調和スプリアスモ
ードは電気的に励振されず、電気的な共振特性を生ずる
ことがない。以下、同様な理由で、m、nが偶数のとき
には非調和スプリアスモードは電気的には励振されない
。次に、第7図(c)に示した非調和スプリアスモード
(1,113)の振動変位分布曲線(ホ)(へ)は、X
軸方向に対しては主振動と同様に励振電極上に余弦関数
的(曲線ホ)に閉じ込められているのに対し、z′軸方
向では励振電極中央部を極大値として、励振電極の両端
付近で極小値を有する3倍角余弦関数的の変位分布とな
る。このとき発生する電荷分布は、変位分布と同様な形
となるため、電極中央部と電極辺部では極性を逆とする
。従って、励振電極に集められる電荷は相殺されるので
、発生電荷B
量?なくなるが、この非調和スプリアスモードは電気的
に励振され電気的な副共振として発生する。以下、同様
に、非調和スプリアスモードのうちm及びnが奇数のも
のは、副共振として、主共振周波数foに対し近接して
順次発生する。By the way, the vibration mode of thickness shear vibration is generally (
1, m, n). That is, in the mode symbol, l is the number of wavelengths in the thickness (y' axis) direction, that is, the overtone order, and m%n is the number of half wavelengths of the displacement distribution in the x and z' axis directions in each excitation electrode section. represent. For example, the fundamental wave is l = 1 and the overtone is 1 =
It is an odd order of 3.5.7. Now, if we consider the main vibration mode of the fundamental wave, its mode symbol is (1, 1, 1
), and the vibration displacement distribution curve (a) in Figure 7(a)
As shown in (b), with respect to the X and Z' axes, the maximum value is at the center of the excitation electrode, and it decreases like a cosine function on the excitation electrode, and decreases exponentially outside the excitation electrode. Further, at this time, the charge distribution induced on the electrode by the piezoelectric effect also has a shape almost similar to the displacement distribution. Then, the vibration displacement distribution curve of the anharmonic spurious mode, for example, the (1, 1, 2) mode, is
As shown in curves (C) and (D) in Figure (b), in the X-axis direction, the Z-axis is confined within the excitation electrode like a cosine function (towards the curve) like the main vibration. In the ' axis direction, the amount of change is O at the center of the electrode, resulting in a displacement distribution of a double angle sine function line (curve 2) in which two half wavelengths are placed on the electrode. At this time, since the charge distribution has opposite polarity and is symmetrical from the center of the electrode, the amount of charge generated at the excitation electrode is canceled out. Therefore, the anharmonic spurious mode in the 2'-axis direction is not electrically excited, and no electrical resonance characteristics occur. For the same reason, the anharmonic spurious mode is not electrically excited when m and n are even numbers. Next, the vibration displacement distribution curves (E) and (E) of the anharmonic spurious mode (1,113) shown in FIG. 7(c) are
In the axial direction, like the main vibration, it is confined in a cosine function (curve E) on the excitation electrode, whereas in the z'-axis direction, the maximum value is at the center of the excitation electrode, and the vibration is confined near both ends of the excitation electrode. It becomes a displacement distribution like a triple angle cosine function with a local minimum value. Since the charge distribution generated at this time has a similar shape to the displacement distribution, the polarity is reversed between the center part of the electrode and the side part of the electrode. Therefore, the charges collected on the excitation electrode are canceled out, so the amount of charge B generated? However, this anharmonic spurious mode is electrically excited and generated as electrical sub-resonance. Similarly, among the anharmonic spurious modes, those in which m and n are odd numbers sequentially occur as sub-resonances close to the main resonance frequency fo.
(従来技術)
このため、従来技術にあっては、例えば励振電極の径を
小さくしたり、励振電極のプレートバック量即ち励振電
極による周波数の低下量を少なくして、主振動以外の非
調和スプリアスモードを励振電極下部に閉じ込めないよ
うにし、副共振レベルを低下させていた。また、第8図
に示したように、水晶片主面に接着剤等の付加物4を施
して非調和スプリアスモードのみを機械的に抑圧し、主
振動モードに対してはその影響が少なくなるようにして
いた。しかし、励振電極の径を小さくした場合には、主
振動モードのクリスタルインピーダンスが増大するのみ
ならず、インダンタンスが増加するために、フィルタ素
子として使用するような場合には設計の自由度が損なわ
れる等の欠点があった。そして、励振電極のプレートバ
ック量を少なくした場合には製造技術上の制約により電
極膜を薄くすることには限界があり、付加物を施す場合
にはQの低下のみならずエージング特性が劣化する等の
問題があった。(Prior art) For this reason, in the conventional technology, for example, by reducing the diameter of the excitation electrode, or by reducing the amount of plateback of the excitation electrode, that is, the amount of reduction in frequency due to the excitation electrode, the anharmonic spurious vibration other than the main vibration is reduced. The mode was not confined to the lower part of the excitation electrode, and the sub-resonance level was lowered. In addition, as shown in Figure 8, by applying an additive 4 such as adhesive to the main surface of the crystal piece, only the anharmonic spurious mode is mechanically suppressed, and its influence on the main vibration mode is reduced. That's what I was doing. However, when the diameter of the excitation electrode is made small, not only does the crystal impedance in the main vibration mode increase, but also the inductance increases, which impairs the degree of freedom in design when used as a filter element. There were some drawbacks, such as: Furthermore, when the plateback amount of the excitation electrode is reduced, there is a limit to how thin the electrode film can be made due to manufacturing technology constraints, and when adding additives, not only the Q value decreases but also the aging characteristics deteriorate. There were other problems.
(発明の目的)
本発明は、非調和スプリアスモードによる副共振の発生
を防止した厚みすべり振動子を提供することを目的とす
る。(Object of the Invention) An object of the present invention is to provide a thickness-shear oscillator that prevents the occurrence of sub-resonance due to anharmonic spurious mode.
(発明の着目点並びに特徴)
本発明は、非調和スプリアスモードによる振動変位分布
曲線が付加膜によって変化すること並びに励振電極内に
おける非調和スプリアスモードによろ+側と一側との振
動変位量が等しければ励振電極内に発生する電化量は略
等しく互いに相殺されるので、即ち、振動変位による電
荷分布曲線の励振電極内における積分値が零になるので
、電気的な共振特性を生ずることなく、この非調和スプ
リアスモードによる副共振の発生を防止できるとの点に
着目し、非調和スプリアスモードの励振電極内における
振動変位による電荷分布曲線の積分値が零になるように
励振電極上に付加膜を施したことを特徴とする。(Points of Interest and Features of the Invention) The present invention is characterized in that the vibration displacement distribution curve due to the anharmonic spurious mode is changed by the additional film, and that the amount of vibration displacement between the + side and the one side is If they are equal, the amount of electrification generated within the excitation electrode is approximately equal and cancels each other out, that is, the integral value of the charge distribution curve due to vibration displacement within the excitation electrode becomes zero, so that no electrical resonance characteristics occur. Focusing on the point that it is possible to prevent the occurrence of sub-resonance due to this anharmonic spurious mode, we added a film on the excitation electrode so that the integral value of the charge distribution curve due to the vibrational displacement within the excitation electrode in the anharmonic spurious mode becomes zero. It is characterized by having undergone.
(発明の趣旨及び作用)
以下、本発明の趣旨及び作用を図により説明ずろ。尚、
説明の便宜上、ATカット水晶片の一次元方向の非調和
スプリアスモードによる副共振発生の防止を例にとって
説明する。(Purpose and Effects of the Invention) The gist and effects of the present invention will be explained below with reference to the drawings. still,
For convenience of explanation, prevention of sub-resonance caused by an anharmonic spurious mode in one dimension of an AT-cut crystal piece will be explained as an example.
今、例えば、水晶振動子に発生した副共振を一次元方向
のZ′軸方向とし、モード記号(+、 m、3)で表記
される非調和スプリアスモードによるものとする。即ち
、この非調和スプリアスモードの振動変位分布曲線は、
第1図(a)に示したように、励振電ll12の中央部
を極大値として、両端付近では極小値となる前述同様の
3倍角余弦関数的となるので、振動変位による電荷分布
曲線の励振電極上における積分値は零とならず、+側と
一側との変位量の差に応じた電荷が励振電極上に発生し
励振される。For example, assume that the sub-resonance generated in the crystal resonator is in the one-dimensional Z'-axis direction and is caused by an anharmonic spurious mode expressed by mode symbols (+, m, 3). In other words, the vibration displacement distribution curve of this anharmonic spurious mode is
As shown in FIG. 1(a), the excitation current ll12 has a maximum value at the center and a minimum value near both ends, similar to the triple angle cosine function described above. Therefore, the excitation of the charge distribution curve due to vibrational displacement The integral value on the electrode does not become zero, and charges corresponding to the difference in displacement between the + side and the one side are generated on the excitation electrode and excited.
第1図(b)は、ATカット水晶片の励振電極2の周縁
に付加膜5を施した場合の変位分布を示したものである
。即ち、付加膜5の存在により、振動変位分布曲線の励
振電極端部での一側の極値の位置が電極中央より更に遠
ざかっていることが理解される。従って、この付加膜5
を所定の条件に設定すれば、非調和スプリアスモードの
振動変位による電荷分布曲線の励振電極内における積分
値を零とすることができるので、非調和スプリアスモー
ドによる副共振の発生を防止できる。そして、付加膜5
が、主振動モードでは最小、非調和スプリアスモードで
は最大となる?H場周縁部に施されているために、主振
動モードより非調和スプリアスモードによる振動変位が
強く影響を受け、非調和スプリアスモードによる副共振
の発生防止に寄与する。FIG. 1(b) shows the displacement distribution when the additional film 5 is applied to the periphery of the excitation electrode 2 of the AT-cut crystal piece. That is, it is understood that due to the presence of the additional film 5, the position of one extreme value of the vibration displacement distribution curve at the end of the excitation electrode is further away from the center of the electrode. Therefore, this additional film 5
If is set to a predetermined condition, the integral value of the charge distribution curve within the excitation electrode due to the vibrational displacement of the anharmonic spurious mode can be made zero, so it is possible to prevent the occurrence of sub-resonance due to the anharmonic spurious mode. And additional film 5
But is it minimum in the main vibration mode and maximum in the anharmonic spurious mode? Since it is applied to the periphery of the H field, the vibration displacement due to the anharmonic spurious mode is more strongly affected than the main vibration mode, and this contributes to preventing the occurrence of sub-resonance due to the anharmonic spurious mode.
また、このとき同時に高調波次数が5.7 の非調和ス
プリアスモードもその幾何学的な変位分布の配置から前
述の高調波次数が3のときと同様にその積分値を零に近
ずけることができる。そして、付加膜5を電極に対し対
称に施せば、高調波次数が2.4.6・・・−・の対称
モードは電荷分布の対称性を失うことがなく、付加膜を
施さないときと同様に電気的に励振されない。従って、
厚みすヘリ振動モードの非調和スプリアスモードによる
振動を抑圧して主振動モードによる振動を強勢すること
ができるとのことである。At the same time, due to the arrangement of its geometric displacement distribution, the integral value of the anharmonic spurious mode with a harmonic order of 5.7 approaches zero in the same way as when the harmonic order is 3. I can do it. If the additional film 5 is applied symmetrically to the electrode, the symmetric mode with harmonic order of 2.4.6, etc. will not lose the symmetry of the charge distribution, and will be different from when no additional film is applied. Similarly, it is not electrically excited. Therefore,
It is said that it is possible to suppress vibrations due to the anharmonic spurious mode of the thickness helical vibration mode and enhance vibrations due to the main vibration mode.
(発明の実施例)
以下、本発明の実施例を実験データを参照して説明する
。尚、本実施例にあっては、三次オーバトーン即ちモー
ド記号(1,m、n)の1を3とした厚みすべり振動子
を対象として詳述する。(Examples of the invention) Examples of the invention will be described below with reference to experimental data. In this embodiment, a third-order overtone, that is, a thickness-shear oscillator in which mode symbols (1, m, n) of 1 is set to 3, will be described in detail.
第2図は、本発明の趣旨に沿うATカット型水晶片の図
である。この水晶片6はポリッシュ研摩された直径aが
5mntの略円板形状で、その両生面にはx、z’軸方
向の長さす、cがそれぞれ1.65mm、1.09mm
5厚みが2000Aの例えば銀からなろ励振電極7、並
びに両端外周の2′軸方向に幅dを0.3mmとして延
出した引きだし電極8をか形成されている。そして、本
実施例にあっては、乙の励振電極のX軸方向の両縁部に
幅を0.08mm、厚みを約200OAとした例えば銀
からなる付加膜9を施している。FIG. 2 is a diagram of an AT-cut crystal piece according to the spirit of the present invention. This crystal piece 6 has a polished approximately disk shape with a diameter a of 5 mnt, and its bidirectional surfaces have lengths in the x and z' axes directions of 1.65 mm and 1.09 mm, respectively.
5. An excitation electrode 7 made of, for example, silver and having a thickness of 2000 Å is formed, as well as extraction electrodes 8 extending in the 2' axis direction with a width d of 0.3 mm at both ends of the outer periphery. In this embodiment, an additional film 9 made of, for example, silver and having a width of 0.08 mm and a thickness of about 200 OA is applied to both edges of the excitation electrode B in the X-axis direction.
第3図(a)、(b)は横軸を周波数、縦軸をアドミッ
タンスとした共振特性図で、π型回路に厚みすべり振動
子を挿入しネットワークアナライザで計測したものであ
る。第3図(a)の曲線イは水晶片の励振電極上に付加
膜9を施す前の共振特性で、58.0925MHzに主
振動モード(3,1,1)によるクリスタルインピーダ
ンス値を75ΩをOdBとした主共振fO1この主共振
fOから+135KHzに主共振EOとのレベル差が−
14,5dBの非調和スプリアスモード(3,3,1)
、及び+242.5KHzにレベル差が一13dBの非
調和スプリアスモード(3,1,3)、更に、+ 37
7 K Hz 、 + 393 KHにそのレベル差が
略−16dBの非調和スプリアスモード(3,3,3)
、(3,5,1)による副共振fs(fsl、fs2、
fs3、fs4)が発生している。即ち、これらの副共
振fsは、前述したように、各非調和スプリアスモード
の励振電極内における振動変位による電荷分布曲線の+
側と一側との分布量が異なり、その積分値が大きいため
に発生している。第3図(b)の曲線(ロ)は、励振電
極上に付加膜9を施した水晶片の共振特性図で、主共振
fOのクリスタルインピーダンス値は付加膜9を施さな
いときと同様で略75Ωである。これに対し、非調和ス
プリアス(3,3,1)モードによる副共振fslの主
共振fOとのレベル差は−16,7dBで、付加膜9を
施さないときに比し2dB程その差が増加している。そ
して、同図から明らがなように、スプリアス自体の大き
さ即ち共振a点から反共振す点のレベルモ、非調和スプ
リアスモード(3,3,1)による副共振fslにあっ
ては略3dBがら略0.8dBに減少し、非調和スプリ
アスモード(3,3,1)、(3,5,1)によるその
レベルが1dB程度の副共振fs3、fs4は消失して
いる。即ち、付加膜9により振動変位分布曲線の極値が
それぞれ電極内部に移行して+側と一側との変位量が略
一致し、励振電極内における振動変位による電荷分布曲
線の積分値が零に近ずいたためである。尚、この実施例
では、スプリアスモード(3,1,3)が付加膜を施さ
ないときと略同様のレベルで副共振が発生しているが、
この理由は、方形状電極のX軸方向の両端にのみ付加膜
を施し、Z″軸方向には施さなか−)ため、Z′軸方向
の振動変位分布曲線の極値が極端に移行しないからであ
る。FIGS. 3(a) and 3(b) are resonance characteristic diagrams with frequency on the horizontal axis and admittance on the vertical axis, which were measured with a network analyzer by inserting a thickness-shear oscillator into a π-type circuit. Curve A in Figure 3(a) shows the resonance characteristics before the additional film 9 is applied on the excitation electrode of the crystal piece, and the crystal impedance value due to the main vibration mode (3, 1, 1) at 58.0925 MHz is set to 75Ω by OdB. The level difference between main resonance fO1 and main resonance EO from this main resonance fO to +135KHz is -
14.5dB anharmonic spurious mode (3,3,1)
, and an anharmonic spurious mode (3,1,3) with a level difference of 113 dB at +242.5KHz, and +37
Anharmonic spurious mode (3, 3, 3) with a level difference of approximately -16 dB at 7 KHz, +393 KH
, (3,5,1) sub-resonance fs(fsl, fs2,
fs3, fs4) are occurring. That is, as mentioned above, these sub-resonances fs are caused by + of the charge distribution curve due to vibrational displacement within the excitation electrode of each anharmonic spurious mode.
This occurs because the distribution amounts on one side and the other side are different, and the integral value thereof is large. The curve (b) in FIG. 3(b) is a resonance characteristic diagram of the crystal piece with the additional film 9 applied on the excitation electrode, and the crystal impedance value of the main resonance fO is approximately the same as when the additional film 9 is not applied. It is 75Ω. On the other hand, the level difference between the sub-resonance fsl due to the anharmonic spurious (3,3,1) mode and the main resonance fO is -16.7 dB, which is an increase of about 2 dB compared to when the additional film 9 is not applied. are doing. As is clear from the figure, the magnitude of the spurious itself, that is, the level modulation from the resonance point a to the anti-resonance point, and the sub-resonance fsl due to the anharmonic spurious mode (3, 3, 1), is approximately 3 dB. The sub-resonance fs3 and fs4, whose level is about 1 dB due to the anharmonic spurious modes (3, 3, 1) and (3, 5, 1), have disappeared. That is, due to the additional film 9, the extreme values of the vibrational displacement distribution curve move inside the electrode, so that the displacement amounts on the + side and the one side almost match, and the integral value of the charge distribution curve due to the vibrational displacement within the excitation electrode becomes zero. This is because it was close to. In this example, sub-resonance occurs in the spurious mode (3, 1, 3) at approximately the same level as when no additional film is applied.
The reason for this is that because the additional film is applied only to both ends of the square electrode in the X-axis direction and not in the Z''-axis direction, the extreme value of the vibration displacement distribution curve in the Z'-axis direction does not shift to an extreme. It is.
従って、この実施例にあっては、付加膜9の存在により
主共振fsのクリスタルインピーダンス値75Ωを略一
定にして、非調和スプリアスモード(3,3,1)及び
(3,3,3)、(3,5,1)の主共振に対する共振
レベル差をを低減し、かつ共振レベル自体をも小さくで
きたことを示している。このため、付加膜9は例えば蒸
着等により簡単に励振電極上に形成できるので、前述し
たまうに、vJJJ振m極の径やプレートバック址を小
さくしたり、接着材等の付加物を施したりする必要がな
く、Qの低下、エージング特性の劣化を来すことがなく
、設計の自由度や製造上の制約をも極端に受けることが
ない。そして、例えば、フィルタ素子として使用する場
合には通過帯域外の補償減衰量を十分に満足し、また発
振子としてはジャンプ現象等による周波数安定度が損な
われろことがない。Therefore, in this embodiment, due to the presence of the additional film 9, the crystal impedance value of 75Ω of the main resonance fs is kept approximately constant, and the anharmonic spurious modes (3, 3, 1) and (3, 3, 3) are This shows that it was possible to reduce the resonance level difference with respect to the main resonance of (3, 5, 1), and also to reduce the resonance level itself. For this reason, the additional film 9 can be easily formed on the excitation electrode by, for example, vapor deposition, so as mentioned above, it is possible to reduce the diameter of the vJJJ vibration pole or the plate back area, or apply an additive such as an adhesive. There is no need to do so, there is no reduction in Q, there is no deterioration of aging characteristics, and there are no extreme restrictions on design freedom or manufacturing. For example, when used as a filter element, the amount of compensation attenuation outside the pass band is sufficiently satisfied, and when used as an oscillator, the frequency stability will not be impaired due to jump phenomena or the like.
(本発明の他の実施例) 第4図は本発明の趣旨に基づく他の実施例図である。(Other embodiments of the present invention) FIG. 4 is a diagram showing another embodiment based on the gist of the present invention.
≠)、第4図(a)、(b)は、前記実施例における方
形状電極のx、、z’軸方向の外周部に付加膜を施し、
モード記号(1、m、n)のm1nを奇数としたxSz
’軸方向の二次元方向に発生するスプリアスモードの振
動変位による電荷分布曲線が、励振電極内にてその積分
値が零となるようにし、前述同様以上の効果を得るよう
にしたものである。≠), FIGS. 4(a) and (b) show that an additional film is applied to the outer periphery of the rectangular electrode in the x-, z'-axis direction in the above example,
xSz where m1n of mode symbol (1, m, n) is an odd number
The charge distribution curve due to the vibrational displacement of the spurious mode generated in the two-dimensional axial direction is made so that its integral value becomes zero within the excitation electrode, and the same or better effect as described above is obtained.
2)、第4図(C)、(d)は、水晶片を方形状、励振
電極を円形状とし、励振電極のx、z’軸方向の外周に
沿って分割(同図C)あるいは連続(同図d)した付加
膜を施したもので、前項1と同様の効果を奏し、水晶片
及び励振電極の形状に拘らず本発明を達成できることを
示している。2), Figures 4 (C) and (d) show that the crystal piece is rectangular, the excitation electrode is circular, and the excitation electrode is divided (C) or continuous along the outer circumference of the excitation electrode in the (d) in the same figure provided with the additional film produced the same effect as in the previous section 1, indicating that the present invention can be achieved regardless of the shape of the crystal piece and the excitation electrode.
3)第4図(e)は、円や方形状の水晶片に方形状の励
振電極の外周部に付加膜を二列にして施したもので、前
項同様の効果が得られ、本発明が付加膜の並列配置等に
より損なわれないことを示している。3) Figure 4(e) shows a case in which two rows of additional films are applied to the outer periphery of a rectangular excitation electrode on a circular or rectangular crystal piece, and the same effect as the previous item is obtained, and the present invention is This shows that there is no damage due to the parallel arrangement of additional films.
(他の事項)
尚、本発明の詳細な説明にあっては、厚みすべり振動子
の主共振周波数を、高調波字数が3の三次オーバトーン
として説明したが、その字数を1とした基本波であって
も同様の効果を奏する。(Other Matters) In the detailed explanation of the present invention, the main resonant frequency of the thickness-shear oscillator was explained as a third-order overtone with a harmonic character number of 3, but the fundamental wave with the harmonic character number as 1 was explained. However, the same effect can be achieved.
そして、本実施例にあっては、励振電極上に施しt二付
加膜により振動変位による電荷分布曲線が励振電極内に
おいてその積分値を零とするとして説明したが、本発明
にあってはこれに限定されろことなく、例又は励振電極
の一部を削除したり、又、引き出し電極上に付加膜を施
したり、更に、水晶片の外形形状を例えばベベル、コン
ベックス等の面加工したりし振動変位による電荷分布曲
線を変化させてもよく、要は、励振振動変位による電荷
分布曲線を励振電極内においてその積分値が零になるよ
うにすればよいことは言うまでもない。In this embodiment, the charge distribution curve due to vibrational displacement is made to have an integral value of zero within the excitation electrode due to the t-addition film applied on the excitation electrode, but this is not the case in the present invention. Examples include, but are not limited to, deleting a part of the excitation electrode, applying an additional film on the extraction electrode, and further processing the external shape of the crystal piece, such as bevel or convex. It goes without saying that the charge distribution curve due to vibrational displacement may be changed, and the point is that the integral value of the charge distribution curve due to excitation vibrational displacement becomes zero within the excitation electrode.
又、本発明は、上記実施例の付加膜に限定されることな
く、例えば、付加膜の材質、膜厚、膜幅及び電極内での
位置を制御することで、励振電極内における振動変位に
よる電荷分布曲線の積分値を零にし、副共振の発生を防
止できることばいうまでもなく、その他、例えば「方形
電極エネルギー閉じ込め形共振子の一解析法」電気通信
学会論文集、AXJ 63−A、8、pp530−53
2(昭5s−os)>、zどの2次元解析を応用すれば
、有益な利用及び容易な実施ができ、本発明は、その趣
旨を逸脱しない範囲で適宜変更できるものである。Furthermore, the present invention is not limited to the additional film of the above embodiment, but can be applied, for example, by controlling the material, thickness, width, and position of the additional film within the electrode, thereby reducing vibrational displacement within the excitation electrode. Needless to say, it is possible to reduce the integral value of the charge distribution curve to zero and prevent the occurrence of sub-resonance, as well as other publications such as "An analysis method for square electrode energy confinement type resonators", Transactions of the Institute of Electrical Communication Engineers, AXJ 63-A, 8, pp530-53
2 (Sho 5S-OS)>, z, etc. can be applied to advantageous use and easy implementation, and the present invention can be modified as appropriate without departing from the spirit thereof.
(発明の効果)
以上説明したように、本発明は、非調和スプリアスモー
ドの励振電極内における振動変位による電荷分布曲線の
積分値が零になるように励振電極上に付加膜を施したの
で、非調和スプリアスモードによる副共振の発生を防止
した厚みすべり振動子を提供できろ。(Effects of the Invention) As explained above, the present invention provides an additional film on the excitation electrode so that the integral value of the charge distribution curve due to vibrational displacement within the excitation electrode in the anharmonic spurious mode becomes zero. It is possible to provide a thickness-shear oscillator that prevents the occurrence of sub-resonance due to anharmonic spurious mode.
第1図(a)、(b)は本発明を説明する振動変位分布
曲線図、第2図は本発明の一実施例を示す水晶片の平面
図、第3図(a)、(b)は、本発明の一実施例による
効果をを説明するアドミッタンス特性図、第4図は本発
明の他の実施例を示す水晶片の平面図、第5図は厚みす
べり振動子を説明する水晶片の図、第6図は厚みすべり
振動子のアドミッタンス特性図、第7図は厚みすべり振
動子の振動モードを説明する変移分布図、第8図は従来
の非調和スプリアスモードによる副共振を防止した水晶
片の平面図である。
6 水晶片、7 励振電極、8 引き出し電極、5.9
・付加膜。
第1国(Q)1
第1国(b)1
第2図
第31!1((1)
一一÷f
第3図(b)
−一÷f
第4図
第51!l
第6閤FIGS. 1(a) and (b) are vibration displacement distribution curve diagrams explaining the present invention, FIG. 2 is a plan view of a crystal piece showing an embodiment of the present invention, and FIGS. 3(a) and (b). 4 is an admittance characteristic diagram illustrating the effects of one embodiment of the present invention, FIG. 4 is a plan view of a crystal blank showing another embodiment of the present invention, and FIG. 5 is a crystal blank illustrating a thickness-shear oscillator. , Figure 6 is an admittance characteristic diagram of a thickness-shear oscillator, Figure 7 is a displacement distribution diagram explaining the vibration mode of a thickness-shear oscillator, and Figure 8 is a diagram showing the conventional technique for preventing sub-resonance due to anharmonic spurious mode. FIG. 3 is a plan view of a crystal piece. 6 crystal piece, 7 excitation electrode, 8 extraction electrode, 5.9
・Additional membrane. 1st country (Q) 1 1st country (b) 1 Fig. 2 No. 31!1 ((1) 11 ÷ f Fig. 3 (b) -1 ÷ f Fig. 4 No. 51!l 6th
Claims (2)
振動の主振動モードを励起する励振電極を形成すると共
に、厚みすベり振動の主振動モードに対して発生する非
調和スプリアスモードの励振電極内における振動変位に
よる電荷分布曲線を積分したとき、その積分値が零にな
るようにしたことを特徴とする厚みすベり振動子。(1) An excitation electrode that excites the main vibration mode of thickness shear vibration is formed on the piezoelectric plate where thickness shear vibration is excited, and an anharmonic that occurs with respect to the main vibration mode of thickness shear vibration is formed. 1. A thickness shear resonator characterized in that when a charge distribution curve due to vibrational displacement within an excitation electrode in a spurious mode is integrated, the integral value becomes zero.
り振動の主振動モードに対して発生する非調和スプリア
スモードの励振電極内における振動変位による電荷分布
曲線を積分したとき、その積分値が零になるように前記
励振電極上に付加膜を施したことを特徴とする圧電振動
子。(2) In the claim set forth in item 1, when the charge distribution curve due to the vibration displacement in the excitation electrode of the anharmonic spurious mode generated with respect to the main vibration mode of thickness shear vibration is integrated, the integral A piezoelectric vibrator characterized in that an additional film is provided on the excitation electrode so that the value becomes zero.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24808385A JPS62109419A (en) | 1985-11-07 | 1985-11-07 | Thickness-shear vibrator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24808385A JPS62109419A (en) | 1985-11-07 | 1985-11-07 | Thickness-shear vibrator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62109419A true JPS62109419A (en) | 1987-05-20 |
Family
ID=17172955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24808385A Pending JPS62109419A (en) | 1985-11-07 | 1985-11-07 | Thickness-shear vibrator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62109419A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4894577A (en) * | 1987-05-16 | 1990-01-16 | Nihon Dempa Kogyo Co., Ltd. | Piezoelectric vibrator wherein the relative vibration level of unnecessary vibrations is damped, and method of damping the relative vibration level of unnecessary vibrations of the piezoelectric vibrator |
JPH0515528U (en) * | 1991-07-31 | 1993-02-26 | 日本電波工業株式会社 | AT-cut overtone crystal unit |
WO1998005121A1 (en) * | 1996-07-31 | 1998-02-05 | Daishinku Corporation | Piezoelectric vibration device |
JP2008236743A (en) * | 2007-03-05 | 2008-10-02 | Avago Technologies Wireless Ip (Singapore) Pte Ltd | Piezoelectric resonator structure, and electric filter having frame element |
JPWO2007088696A1 (en) * | 2006-01-31 | 2009-06-25 | 株式会社村田製作所 | Piezoelectric vibration device |
JP2013176142A (en) * | 2013-04-30 | 2013-09-05 | Taiyo Yuden Co Ltd | Piezoelectric thin-film resonator, filter, duplexer, communication module, and communication apparatus |
US9048812B2 (en) | 2011-02-28 | 2015-06-02 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Bulk acoustic wave resonator comprising bridge formed within piezoelectric layer |
US9083302B2 (en) | 2011-02-28 | 2015-07-14 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Stacked bulk acoustic resonator comprising a bridge and an acoustic reflector along a perimeter of the resonator |
US9859205B2 (en) | 2011-01-31 | 2018-01-02 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Semiconductor device having an airbridge and method of fabricating the same |
JP2020088680A (en) * | 2018-11-28 | 2020-06-04 | 太陽誘電株式会社 | Elastic wave device, filter and multiplexer |
US11469735B2 (en) | 2018-11-28 | 2022-10-11 | Taiyo Yuden Co., Ltd. | Acoustic wave device, filter, and multiplexer |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50159989A (en) * | 1974-06-16 | 1975-12-24 | ||
JPS52149082A (en) * | 1976-06-04 | 1977-12-10 | Seiko Instr & Electronics Ltd | Crystal vibrator |
JPS5531326A (en) * | 1978-08-29 | 1980-03-05 | Fujitsu Ltd | Energy enclosure type piezoelectric oscillator |
JPS5593314A (en) * | 1979-01-10 | 1980-07-15 | Yuji Yanagisawa | Piezoelectric oscillator using auxiliary electrode |
-
1985
- 1985-11-07 JP JP24808385A patent/JPS62109419A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50159989A (en) * | 1974-06-16 | 1975-12-24 | ||
JPS52149082A (en) * | 1976-06-04 | 1977-12-10 | Seiko Instr & Electronics Ltd | Crystal vibrator |
JPS5531326A (en) * | 1978-08-29 | 1980-03-05 | Fujitsu Ltd | Energy enclosure type piezoelectric oscillator |
JPS5593314A (en) * | 1979-01-10 | 1980-07-15 | Yuji Yanagisawa | Piezoelectric oscillator using auxiliary electrode |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4894577A (en) * | 1987-05-16 | 1990-01-16 | Nihon Dempa Kogyo Co., Ltd. | Piezoelectric vibrator wherein the relative vibration level of unnecessary vibrations is damped, and method of damping the relative vibration level of unnecessary vibrations of the piezoelectric vibrator |
JPH0515528U (en) * | 1991-07-31 | 1993-02-26 | 日本電波工業株式会社 | AT-cut overtone crystal unit |
WO1998005121A1 (en) * | 1996-07-31 | 1998-02-05 | Daishinku Corporation | Piezoelectric vibration device |
CN1110131C (en) * | 1996-07-31 | 2003-05-28 | 株式会社大真空 | Piezoelectric vibration device |
JP4930381B2 (en) * | 2006-01-31 | 2012-05-16 | 株式会社村田製作所 | Piezoelectric vibration device |
JPWO2007088696A1 (en) * | 2006-01-31 | 2009-06-25 | 株式会社村田製作所 | Piezoelectric vibration device |
JP2008236743A (en) * | 2007-03-05 | 2008-10-02 | Avago Technologies Wireless Ip (Singapore) Pte Ltd | Piezoelectric resonator structure, and electric filter having frame element |
US9859205B2 (en) | 2011-01-31 | 2018-01-02 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Semiconductor device having an airbridge and method of fabricating the same |
US9048812B2 (en) | 2011-02-28 | 2015-06-02 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Bulk acoustic wave resonator comprising bridge formed within piezoelectric layer |
US9083302B2 (en) | 2011-02-28 | 2015-07-14 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Stacked bulk acoustic resonator comprising a bridge and an acoustic reflector along a perimeter of the resonator |
JP2013176142A (en) * | 2013-04-30 | 2013-09-05 | Taiyo Yuden Co Ltd | Piezoelectric thin-film resonator, filter, duplexer, communication module, and communication apparatus |
JP2020088680A (en) * | 2018-11-28 | 2020-06-04 | 太陽誘電株式会社 | Elastic wave device, filter and multiplexer |
US11469735B2 (en) | 2018-11-28 | 2022-10-11 | Taiyo Yuden Co., Ltd. | Acoustic wave device, filter, and multiplexer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11309861B2 (en) | Guided surface acoustic wave device providing spurious mode rejection | |
US8796904B2 (en) | Bulk acoustic resonator comprising piezoelectric layer and inverse piezoelectric layer | |
US11177791B2 (en) | High quality factor transducers for surface acoustic wave devices | |
JPS62109419A (en) | Thickness-shear vibrator | |
US6518688B1 (en) | Piezoelectric vibration device | |
JPS60126907A (en) | Single response composite piezoelectric oscillating element | |
US4894577A (en) | Piezoelectric vibrator wherein the relative vibration level of unnecessary vibrations is damped, and method of damping the relative vibration level of unnecessary vibrations of the piezoelectric vibrator | |
Zheng et al. | Near 5-GHz Longitudinal Leaky Surface Acoustic Wave Devices on LiNbO $ _ {3} $/SiC Substrates | |
Lam et al. | A review of Lamé and Lamb mode crystal resonators for timing applications and prospects of Lamé and Lamb mode PiezoMEMS resonators for filtering applications | |
US20220255527A1 (en) | Acoustic wave device | |
US3544926A (en) | Monolithic crystal filter having mass loading electrode pairs having at least one electrically nonconductive electrode | |
Milsom et al. | Effect of mesa-shaping on spurious modes in ZnO/Si bulk-wave composite resonators | |
US6621194B1 (en) | Piezoelectric element having thickness shear vibration and mobile communication device using the same | |
US6992424B2 (en) | Piezoelectric vibrator ladder-type filter using piezoeletric vibrator and double-mode piezolectric filter | |
JP2002368571A (en) | Piezoelectric vibrator and filter using the same | |
JP2640936B2 (en) | Piezoelectric resonator for overtone oscillation using higher-order mode vibration | |
JP2855208B2 (en) | LiTaO 3 Lower piezoelectric resonator | |
JP3733020B2 (en) | Piezoelectric element and mobile communication device using the same | |
JPS6098711A (en) | Thickness-shear vibrator | |
SU1780144A1 (en) | Piezoelectric element | |
JPH08307200A (en) | Monolithic crystal filter | |
JPS59127413A (en) | Lithium tantalate oscillator | |
JPH11220354A (en) | Surface acoustic wave notch filter | |
JPH0344451B2 (en) | ||
JPH0993076A (en) | Thickness mode piezoelectric oscillator |