JPS62108703A - Preparation of gaseous mixture having optional ratio of hydrogen to carbon monoxide - Google Patents

Preparation of gaseous mixture having optional ratio of hydrogen to carbon monoxide

Info

Publication number
JPS62108703A
JPS62108703A JP24875485A JP24875485A JPS62108703A JP S62108703 A JPS62108703 A JP S62108703A JP 24875485 A JP24875485 A JP 24875485A JP 24875485 A JP24875485 A JP 24875485A JP S62108703 A JPS62108703 A JP S62108703A
Authority
JP
Japan
Prior art keywords
catalyst
ratio
methanol
hydrogen
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24875485A
Other languages
Japanese (ja)
Inventor
Minoru Oosugi
大杉 実
Mikio Yoneoka
米岡 幹男
Kenji Inamasa
稲政 顕次
Kumiko Watabe
渡部 久美子
Takeo Igarashi
五十嵐 武夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON PAIONIKUSU KK
Japan Pionics Ltd
Mitsubishi Gas Chemical Co Inc
Original Assignee
NIPPON PAIONIKUSU KK
Japan Pionics Ltd
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON PAIONIKUSU KK, Japan Pionics Ltd, Mitsubishi Gas Chemical Co Inc filed Critical NIPPON PAIONIKUSU KK
Priority to JP24875485A priority Critical patent/JPS62108703A/en
Publication of JPS62108703A publication Critical patent/JPS62108703A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain gaseous mixture having desired ratio of H2 to CO optionally by using Pd alloy film together with methanol decomposition catalyst and adjusting the H2/CO ratio by changing the amt. of H2 to be withdrawn through the film. CONSTITUTION:A reactor housing a Pd alloy film for permeating H2 together with methanol decomposing catalyst in the inside is used in the process for obtd. gaseous H2 and gaseous CO by cracking methanol vapor catalytically on a catalyst, and the ratio of H2/CO of the gaseous mixture obtd. at one end of the reactor is adjusted optionally by changing the amt. of H2 to be withdrawn through the Pd alloy film. Preferred catalyst to be used is one which produces scarcely dimethyl ether, methane, CO2, etc., as by-products. Suitable reaction temp. is 250-500 deg.C taking influences on the active life of the catalyst and the strength of the catalyst, etc., and the thermal load of the material of the reactor into consideration.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はC1化学あるいは有機合成化学などの各種化学
工業用の原料ガスとして利用される、任意の水素/一酸
化炭素比を有する混合ガスの製造方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is directed to the production of a mixed gas having an arbitrary hydrogen/carbon monoxide ratio, which is used as a raw material gas for various chemical industries such as C1 chemistry or organic synthetic chemistry. Regarding the manufacturing method.

(従来の技術) 各種化学工業用原料として、Hz−COの混合ガスを得
ようとする場合、大規模には天然ガス、ブタンあるいは
ナフサなどの炭化水素の水蒸気改質によっている。しか
しこの反応では反応温度が600〜800℃と高い上K
、触媒活性保護のため時として原料の脱硫が必要である
。更にこのようにして得られるガスはCO2も相当量含
有しており、Hz−COのみの混合ガスが必要な場合に
は、このガスからCO2を除去しなければならず、工程
が複雑になると同時てコスト高につながる。また、希望
するH2/Go比にガス組成を調整することは難しい。
(Prior Art) When attempting to obtain a mixed gas of Hz-CO as a raw material for various chemical industries, steam reforming of hydrocarbons such as natural gas, butane, or naphtha is used on a large scale. However, in this reaction, the reaction temperature is as high as 600-800℃, and K
, it is sometimes necessary to desulfurize the feedstock to protect catalyst activity. Furthermore, the gas obtained in this way also contains a considerable amount of CO2, and if a mixed gas of only Hz-CO is required, CO2 must be removed from this gas, which complicates the process and at the same time leading to higher costs. Furthermore, it is difficult to adjust the gas composition to a desired H2/Go ratio.

一方、中、小規模の場合には、ボンベ詰めされた市販の
Hz、COを用いて希望する割合に調合する方法が一般
である。しかしこの方法はガスの価格が高い上にボンベ
の取り扱いが煩雑であり操作性が悪い。
On the other hand, in the case of medium to small-scale operations, it is common to use commercially available Hz and CO packed in cylinders and mix them in the desired proportions. However, this method requires high gas prices, cumbersome handling of cylinders, and poor operability.

これに対して、最近はメタノールの分解によるN2−C
O混合ガスの製造方法が脚光を浴びてイル。この理由の
最大のものは、メタノールf分解fれば、次式 CH3
0H−2Hz−1−CO K示されるようにN2とCO
のみのガスが得られることである。このほかの理由とし
ては第一にメタノールが国外で大量、安価に製造される
ようになり、安定な供給体制が整いつつあることがあげ
られる。第二にはメタノールがクリーンな物質であり、
脱硫などの操作を必要とせず、そのまま分解用原料とし
て使用できることである。
On the other hand, recently, N2-C due to the decomposition of methanol has been
The production method of O mixed gas has been in the spotlight. The biggest reason for this is that if methanol f decomposes f, then the following formula CH3
0H-2Hz-1-CO KN2 and CO as shown
The only thing that can be obtained is gas. Other reasons include, firstly, that methanol is now being produced overseas in large quantities and at low cost, creating a stable supply system. Second, methanol is a clean substance;
It can be used as a raw material for decomposition without requiring any operations such as desulfurization.

第三にはメタノールの分解が250〜s o o ”c
という比較的低温度で可能であり、エネルギー的に有利
であることがあげられる。
Thirdly, the decomposition of methanol is 250~s o o ”c
This is possible at a relatively low temperature, which is advantageous in terms of energy.

このようにしてメタノールの分解反応により得られるガ
スのN2/CO比は理論通りに反応が進行すれば2とな
る。これに対してc1化学あるいは他の化学反応等で使
用されるガスのN2/CO比は2よりも小さく、1〜2
の範囲にあることが多い。すなわち実際に使用されるガ
スはメタノールの分解組成よりも水素含有率がやや低い
組成が望まれている。
The N2/CO ratio of the gas obtained by the methanol decomposition reaction will be 2 if the reaction proceeds according to theory. On the other hand, the N2/CO ratio of gases used in c1 chemistry or other chemical reactions is smaller than 2, and is between 1 and 2.
is often in the range. That is, it is desired that the gas actually used has a composition that has a slightly lower hydrogen content than the decomposition composition of methanol.

一方メタノールを分解して得られた水素含有ガスを各種
有機高分子分離膜を通してN2/C0比を調節しようと
する試みはすでになされている。たとえば、ベトロチツ
ク、7巻、第1号、1984年、24頁には、酢酸セル
ロース中空糸 環をモジュール法でメタノール分解ガスを用いて、透過
膜前後の圧力を変えたときKHz/C0比がどのように
変化するかが示されている。
On the other hand, attempts have already been made to control the N2/C0 ratio by passing hydrogen-containing gas obtained by decomposing methanol through various organic polymer separation membranes. For example, Betroczyk, Vol. 7, No. 1, 1984, p. 24, describes how the KHz/C0 ratio changes when the pressures before and after the permeable membrane are changed using methanol decomposition gas using the module method for cellulose acetate hollow fiber rings. It shows how it changes.

(発明が解決しようとする問題点) しかしこの方法によれば膜の前後での差圧を高くしない
とN2/CO比を小さくすることはできず、たとえばN
2/CO比2のガスは差圧30Kf/d以上でないとN
2/CO比は1.0にならない。又この方法ではメタノ
ールの分解器、ガスの冷却と気液分離からなるガス製造
系と、この分解ガスからN2を一部抜き出してN2/C
0比を調節する濃縮系はそれぞれ別の系で行なわれ、場
合によってはこのふたつの系の中間に水素の分離効率を
高くするためにガス増圧設備が必要であるなど装置とし
て複雑になり、必ずしもすぐれたプロセスであるとはい
えない。更に分離膜より抜き出された水素はN2以外に
もco1CO2、N2 など原料ガス中に含有されてい
るガスの一部も含んでおり、N2純度としては中途半端
なものとなり、その利用も限定され価値の低いものであ
る。
(Problem to be solved by the invention) However, according to this method, it is not possible to reduce the N2/CO ratio without increasing the differential pressure before and after the membrane.
2/CO ratio of gas is N unless the differential pressure is 30 Kf/d or more.
2/CO ratio is not 1.0. This method also requires a gas production system consisting of a methanol decomposer, gas cooling and gas-liquid separation, and a gas production system that extracts a portion of N2 from this cracked gas and converts it into N2/C.
The concentration systems that adjust the zero ratio are each operated in separate systems, and in some cases, gas pressure boosting equipment is required between these two systems to increase hydrogen separation efficiency, making the equipment complex. It is not necessarily a good process. Furthermore, the hydrogen extracted from the separation membrane contains not only N2 but also some of the gases contained in the raw material gas, such as CO1, CO2, and N2, so its N2 purity is only halfway through, and its use is limited. It is of low value.

(問題点を解決するための手段) 本発明は以上の如き欠点を解消し、希望するHz/CO
比を自由に得る方法を提供するもので、メタノール蒸気
を触媒上で接触分解してN2 およびCOガスを得るに
際し、メタノール分解用触媒とともに内部に水素透過用
のパラジウム合金膜を内蔵する反応器を用い、このパラ
ジウム合金膜を通して水素抜き出し量を変えることによ
り、反応器の一方から得られるN2−CO混合ガスのN
2/CO比を任意の比に調節し、任意の水素/一酸化炭
素比を有する混合ガスを製造する方法である。
(Means for solving the problems) The present invention solves the above-mentioned drawbacks and achieves the desired Hz/CO
This method provides a method for freely obtaining the ratio, and when methanol vapor is catalytically decomposed over a catalyst to obtain N2 and CO gas, a reactor containing a catalyst for methanol decomposition and a palladium alloy membrane for hydrogen permeation inside is used. By changing the amount of hydrogen extracted through this palladium alloy membrane, the N2-CO mixed gas obtained from one side of the reactor is
This method adjusts the 2/CO ratio to an arbitrary ratio to produce a mixed gas having an arbitrary hydrogen/carbon monoxide ratio.

本発明において使用される触媒はメタノーノシco%H
2への分解活性を有するものであればいかなるものでも
良く、通常知られている触媒が広く使用できるが、ジメ
チルエーテル、メタン、CO2等の副生の少ないものが
好ましい。たとえば銅の酸化物、クロムの酸化物および
マンガンの酸化物を含有する触媒(特公昭54−112
74)、銅、亜鉛およびアルミニウムを含有する触媒(
特開昭49−47281)、銅、亜鉛、アルミニウムお
よびトリウムの各酸化物を含有する触媒(米国特許4,
091,086号)、銅、亜鉛、アルミニウムおよびク
ロムの各酸化物を含有する触媒ならびにニッケルおよび
アルミニウムの各酸化物を含有する触媒(特開昭57−
56302)などの銅系触媒、さらKはニッケル、コバ
ルト、鉄、ルテニウム、冑ジウム、白金、またはパラジ
ウムをアルミナや酸化チタンなどに担持させた触媒(燃
料路会誌594O−47(+980)、特開昭60−1
79146、特開昭60−60902、特開昭6O−8
2137)などの周期律表第Vl族系触媒などがある。
The catalyst used in the present invention is methanol co%H
Any catalyst can be used as long as it has decomposition activity to 2, and a wide variety of commonly known catalysts can be used, but catalysts that produce less by-products such as dimethyl ether, methane, and CO2 are preferred. For example, a catalyst containing copper oxide, chromium oxide and manganese oxide (Special Publication No. 54-112
74), a catalyst containing copper, zinc and aluminum (
JP 49-47281), a catalyst containing oxides of copper, zinc, aluminum and thorium (US Pat. No. 4,
No. 091,086), catalysts containing oxides of copper, zinc, aluminum and chromium, and catalysts containing oxides of nickel and aluminum (Japanese Patent Application Laid-Open No. 1983-1989)
56302), and K is a catalyst in which nickel, cobalt, iron, ruthenium, nickel, platinum, or palladium is supported on alumina or titanium oxide (Fuel Road Journal 594O-47 (+980), JP 1986-1
79146, JP-A-60-60902, JP-A-6O-8
Examples include Group Vl catalysts of the periodic table such as 2137).

本発明における反応温度は、水素のパラジウム合金膜へ
の透過率を高くするには温度が高いほど好ましいが、触
媒の活性寿命、強度などに与える影響および反応器材質
の熱負担等を考えると、150〜700℃、好ましくは
250〜500℃が適当である。また、本発明に使用さ
れる反応圧力は水素のパラジウム合金膜への透過率を高
くするには圧力も高いほど好ましいが、パラジウム合金
膜の強度および不必要な高圧は実際的でないことを考慮
し、圧力+ooKf/iG以下、好ましくは50KIi
/iG以下である。
Regarding the reaction temperature in the present invention, a higher temperature is preferable in order to increase the permeability of hydrogen to the palladium alloy membrane, but considering the effect on the active life of the catalyst, the strength, etc., and the heat burden on the reactor material, etc. A temperature of 150 to 700°C, preferably 250 to 500°C is suitable. In addition, the reaction pressure used in the present invention is preferably as high as possible in order to increase the permeability of hydrogen to the palladium alloy membrane, but considering the strength of the palladium alloy membrane and the impracticality of unnecessary high pressure. , pressure+ooKf/iG or less, preferably 50KIi
/iG or less.

また、蒸気の空間速度は50−50,00Ghr  。Also, the space velocity of steam is 50-50,00 Ghr.

好ましくは100〜10,000hr  である。Preferably it is 100 to 10,000 hr.

本発明で使用されるパラジウム合金膜は、その形状、膜
の厚さ、合金の組成などにとくに制限はなく、反応器の
中に内蔵され、その周囲に触媒が存在し、触媒上で分解
生成した水素含有ガスが直ちにパラジウム合金膜と接触
でき、透過した水素がパイプ等により反応器外に導き出
せるような構造になっていれば良い。
The palladium alloy membrane used in the present invention is not particularly limited in its shape, membrane thickness, alloy composition, etc. It is built in a reactor, and a catalyst is present around it, and decomposition occurs on the catalyst. It is sufficient if the structure is such that the hydrogen-containing gas that has passed through the reactor can immediately come into contact with the palladium alloy membrane, and the permeated hydrogen can be led out of the reactor through a pipe or the like.

(発明の効果) 本発明によれば、■触媒上でメタノールの分解により生
成したHz−COガスが直ちにパラジウム合金膜と接触
するので、パラジウム合金膜を通してHzのみを系外に
ぬき出すことができ、したがってパラジウム合金膜を通
して抜き出すHzの量を調節することにより反応器の一
方から希望するHz/CO比のガスを得ることができる
、■反応器から直接任意のH2/CO比を有するHz−
CO混合ガスが得られるので装置全体がコンパクトにな
9、設備も軽減され、実用上有利である、■H2抜き出
し用にパラジウム合金膜を用いているのでHz/C0U
4節用に抜き出したHzは高純度全有し、電子工業用半
導体用に直ちに利用できる、■生成物のひとつであるH
zを反応帯から抜き出すので、平衡的に反応はメタノー
ルが分解する方向に進行しやすくなりメタノール反応率
を向上させる、等の効果がある。
(Effects of the Invention) According to the present invention, (1) Hz-CO gas generated by decomposition of methanol on the catalyst immediately contacts the palladium alloy membrane, so only Hz can be extracted from the system through the palladium alloy membrane. Therefore, by adjusting the amount of Hz extracted through the palladium alloy membrane, it is possible to obtain a gas with a desired Hz/CO ratio from one side of the reactor.
Since a CO mixed gas is obtained, the entire device becomes compact9, and the equipment is also reduced, which is advantageous in practice.■ Hz/C0U is used because a palladium alloy membrane is used for H2 extraction.
The Hz extracted for Section 4 has all high purity and can be immediately used for semiconductors in the electronic industry.
Since z is extracted from the reaction zone, the reaction tends to proceed in the direction of decomposition of methanol in an equilibrium manner, which has the effect of improving the methanol reaction rate.

(実施例) 実施例 1 内径14韮〆、中央に外径411 II+の熱電対保護
管を有するステンレス反応管に1反応器内側と保護管と
の距離の中間の円周上に、10本のパラジウム合金管(
日本バイオニクス■製、外径、+ 1.5tntr x
 + 271m1)を固定内蔵した反応器を用い、これ
に日本エンゲル・・ルド■製の1%pt/カーボン触媒
を14〜20メツシユに砕き、+7m、6.269をパ
ラジウム合金管の周りに充填した。反応器の加熱は反応
器のまわりをアルミニウム製ブロックで包み、これにニ
クロム線を巻いて行なった。
(Example) Example 1 A stainless steel reaction tube with an inner diameter of 14 mm and an outer diameter of 411 II+ thermocouple protection tube in the center. Palladium alloy tube (
Made by Nippon Bionics ■, outer diameter, +1.5tntr x
Using a reactor with fixedly built-in +271 m1), 1% pt/carbon catalyst made by Nippon Engel Rud was crushed into 14 to 20 meshes, and +7 m, 6.269 m was packed around the palladium alloy tube. . The reactor was heated by wrapping an aluminum block around the reactor and wrapping a nichrome wire around this.

この反応器を用い、メタノールを原料として温度および
反応圧力を変えた種々の条件下で反応を行ない、第1表
に示す結果を得た。
Using this reactor, reactions were carried out using methanol as a raw material under various conditions at varying temperatures and reaction pressures, and the results shown in Table 1 were obtained.

実施例 2 実施例1と同一の反応器および触媒を用い、反応圧力9
Kg/cdG、反応器外部温度440℃の条件下で、パ
ラジウム合金管からの高純度水素の抜き出し量を変えて
、パージガス量およびパージガス中のH2/Go比を調
べた。結果を第2表に示した。
Example 2 Using the same reactor and catalyst as in Example 1, the reaction pressure was 9.
The amount of purge gas and the H2/Go ratio in the purge gas were investigated by changing the amount of high-purity hydrogen extracted from the palladium alloy tube under the conditions of Kg/cdG and a reactor external temperature of 440°C. The results are shown in Table 2.

第2表 特許出願人  三菱瓦斯化学株式会社 代表者長野和吉 日本バイオニクス株式会社 代表者高崎文夫 手続補正書 昭和60年12月14日Table 2 Patent applicant: Mitsubishi Gas Chemical Co., Ltd. Representative Kazuyoshi Nagano Japan Bionics Co., Ltd. Representative Fumio Takasaki Procedural amendment December 14, 1985

Claims (1)

【特許請求の範囲】[Claims] メタノール蒸気を触媒上で接触分解してH_2およびC
Oガスを得るに際し、メタノール分解用触媒とともに内
部に水素透過用のパラジウム合金膜を内蔵する反応器を
用い、このパラジウム合金膜を通して水素抜き出し量を
変えることにより、反応器の一方から得られるH_2−
CO混合ガスのH_2/CO比を任意の比に調節するこ
とを特徴とする任意の水素/一酸化炭素比を有する混合
ガスの製造法
Methanol vapor is catalytically cracked over a catalyst to produce H_2 and C
To obtain O gas, we use a reactor containing a catalyst for methanol decomposition and a palladium alloy membrane for hydrogen permeation inside, and by varying the amount of hydrogen extracted through this palladium alloy membrane, we obtain H_2- from one side of the reactor.
A method for producing a mixed gas having an arbitrary hydrogen/carbon monoxide ratio, characterized by adjusting the H_2/CO ratio of the CO mixed gas to an arbitrary ratio.
JP24875485A 1985-11-08 1985-11-08 Preparation of gaseous mixture having optional ratio of hydrogen to carbon monoxide Pending JPS62108703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24875485A JPS62108703A (en) 1985-11-08 1985-11-08 Preparation of gaseous mixture having optional ratio of hydrogen to carbon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24875485A JPS62108703A (en) 1985-11-08 1985-11-08 Preparation of gaseous mixture having optional ratio of hydrogen to carbon monoxide

Publications (1)

Publication Number Publication Date
JPS62108703A true JPS62108703A (en) 1987-05-20

Family

ID=17182875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24875485A Pending JPS62108703A (en) 1985-11-08 1985-11-08 Preparation of gaseous mixture having optional ratio of hydrogen to carbon monoxide

Country Status (1)

Country Link
JP (1) JPS62108703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273764A (en) * 2007-04-26 2008-11-13 Ngk Insulators Ltd Method for producing hydrogen using permselective membrane reactor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130483A (en) * 1978-03-20 1979-10-09 Monsanto Co Manufacture of synthetic gas mixture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130483A (en) * 1978-03-20 1979-10-09 Monsanto Co Manufacture of synthetic gas mixture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273764A (en) * 2007-04-26 2008-11-13 Ngk Insulators Ltd Method for producing hydrogen using permselective membrane reactor

Similar Documents

Publication Publication Date Title
US5525322A (en) Method for simultaneous recovery of hydrogen from water and from hydrocarbons
US6171574B1 (en) Method of linking membrane purification of hydrogen to its generation by steam reforming of a methanol-like fuel
US3251652A (en) Process for producing hydrogen
AU2007325180B2 (en) Systems and processes for producing hydrogen and carbon dioxide
CA2859678C (en) Process for producing ammonia and urea
EP1674426A1 (en) Carbon monoxide production process
EP1024111A1 (en) Process and apparatus for producing high purity hydrogen
JPS6117401A (en) Method and device for converting steam by using coal or hydrocarbon
EP0737164A1 (en) A process for the preparation of carbon monoxide and/or hydrogen
Rahimpour et al. Modeling and simulation of ammonia removal from purge gases of ammonia plants using a catalytic Pd–Ag membrane reactor
JP2003531795A (en) Method for producing hydrogen by partial oxidation of hydrocarbons
EP0366419A1 (en) Production of hydrogen peroxide
US9764277B2 (en) Synthesis gas separation and reforming process
JPWO2009069220A1 (en) Production method and production apparatus for elementary gas for ammonia synthesis
AU2003203688A1 (en) Gas recovery process
JPH10259419A (en) Method for generating low dew point non-oxygen-containing protecting atmosphere for executing heat treatment
JPS62108703A (en) Preparation of gaseous mixture having optional ratio of hydrogen to carbon monoxide
Basile et al. Hydrogen production by ethanol steam reforming: experimental study of a Pd-Ag membrane reactor and traditional reactor behaviour
JPS62105901A (en) Production of hydrogen of high purity
JP2006510565A (en) Method for generation of synthesis gas by catalytic partial oxidation
JPH04331704A (en) Production of synthetic gas containing both carbon monoxide and hydrogen
WO2004046022A2 (en) The production of synthesis gas from a feed stream comprising hydrogen
JPH04182302A (en) Production of hydrogen
JP5842540B2 (en) Method and apparatus for producing methane from CO2 and / or CO
JP2000327302A (en) Method and apparatus for producing high-purity hydrogen