JPS6210840A - Ion source - Google Patents

Ion source

Info

Publication number
JPS6210840A
JPS6210840A JP16792086A JP16792086A JPS6210840A JP S6210840 A JPS6210840 A JP S6210840A JP 16792086 A JP16792086 A JP 16792086A JP 16792086 A JP16792086 A JP 16792086A JP S6210840 A JPS6210840 A JP S6210840A
Authority
JP
Japan
Prior art keywords
helium
ion
ion source
reservoir
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16792086A
Other languages
Japanese (ja)
Inventor
Yasuo Wada
恭雄 和田
Hidehito Obayashi
大林 秀仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16792086A priority Critical patent/JPS6210840A/en
Publication of JPS6210840A publication Critical patent/JPS6210840A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0802Field ionization sources
    • H01J2237/0807Gas field ion sources [GFIS]

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To enable high intesity and current of an ion source to be obtained as large as that of a liquid metal source, by supplying helium from a liquid helium tank to the tip of an electric field radiation chip utilizing superfluidity of helium. CONSTITUTION:An ion source is composed of a chip 5 for electric field radiation, a lead electrode 6, a liquid helium reservoir 7, and a cooling cylinder 8. The reservoir 7 is kept below 2.1 deg.K by the cooling cylinder 8. And, the liquid helium moves from the reservoir 7 to the tip of the chip 5 through a capillary 11 due to superfluidity, and is taken out as helium ion owing to electrolysis caused by the voltage applied to the lead electrode 6. Thus, the emission efficiency of ion is improved to obtain high intensity and current as large as that of a liquid metal source.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明は新規な電界放射型イオン源に関するものであり
、より詳細に説明すれば、液体ヘリウ11が2.7°K
以下で示す超流動現象を利用する事により、電界放射用
チップの先端へのヘリウムリザーバからのヘリウムの供
給を良くし、電界放射によるヘリウムイオンの放射を従
来技術によるものよりも2桁以上改善しようとするもの
である。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a novel field emission type ion source.
By utilizing the superfluid phenomenon described below, we will improve the supply of helium from the helium reservoir to the tip of the field emission chip, and improve the emission of helium ions by field emission by more than two orders of magnitude compared to conventional technology. That is.

[従来の技術] まず従来の電界放射型イオン源につき説明する。[Conventional technology] First, a conventional field emission type ion source will be explained.

従来技術による電界放射型イオン源の断面概略図は第1
図に示したごとく、冷却機1により約20°Kに冷却さ
れた電界放射用チップ2に、ガス供給口3から水素等の
ガスを吹き付け、該チップ2にガスを吸着させる。引出
し電極4と、該チップ2間に数1.0 k Vの電圧を
印加し、該吸着ガスをイオン化して引き出し、イオン線
を得る。この方法によれば、イオン線の輝度を10 A
l2−8rと、従来のイオン源に比較して、約6桁、ま
た高輝度イオン源として近年注目を集めている液体金属
イオン源と比較しても、約2桁の改善がなされている。
A schematic cross-sectional diagram of a field emission type ion source according to the conventional technology is shown in Part 1.
As shown in the figure, a gas such as hydrogen is blown from the gas supply port 3 onto the field emission chip 2, which has been cooled to about 20°K by the cooler 1, and the gas is adsorbed onto the chip 2. A voltage of several 1.0 kV is applied between the extraction electrode 4 and the chip 2, and the adsorbed gas is ionized and extracted to obtain an ion beam. According to this method, the brightness of the ion beam can be reduced to 10 A.
l2-8r is an improvement of about 6 orders of magnitude compared to conventional ion sources, and about 2 orders of magnitude compared to liquid metal ion sources, which have been attracting attention in recent years as high-brightness ion sources.

[発明が解決しようとする問題点] しかし、この電界放射イオン源の最大の問題点は、十分
大きな電流を取り出す事ができない点にある。この理由
は、電界放射用チップの先端へのガス吸着速度を十分に
大きくできないためで、得られる総電流量は、たかだか
]μ八以へと、液体金属イオン源に比べ約2桁低い。
[Problems to be Solved by the Invention] However, the biggest problem with this field emission ion source is that a sufficiently large current cannot be extracted. The reason for this is that the rate of gas adsorption to the tip of the field emission tip cannot be sufficiently increased, and the total amount of current obtained is at most μ8, which is about two orders of magnitude lower than that of a liquid metal ion source.

以上従来技術の問題点を総括すると、 (1)電界放射型イオン源では高輝度は得られるが十分
大きな電流は得られない。
To summarize the problems of the prior art as described above, (1) Field emission type ion sources can obtain high brightness, but cannot obtain a sufficiently large current.

(2)液体金属イオン源では、輝度は2桁低いが、電流
は2桁高くできる。しかし得られるイオン源は、ガリウ
ム、金など主に金属イオンで、ヘリウムなどの軽いイオ
ンを得る事はできない。
(2) With a liquid metal ion source, the brightness is two orders of magnitude lower, but the current can be two orders of magnitude higher. However, the ion source obtained mainly contains metal ions such as gallium and gold, and it is not possible to obtain light ions such as helium.

[問題点を解決するための手段] 本発明は以」二のような従来技術の問題点を解決するた
めになされたもので、ヘリウムの超流動により、液体ヘ
リウムタンクから電界放射チップの先端までヘリウムを
供給するものである。
[Means for Solving the Problems] The present invention has been made to solve the following two problems of the prior art, and uses helium superfluid to move from the liquid helium tank to the tip of the field emission chip. It supplies helium.

[作用] 液体ヘリウムを、電流の起る温度以下に冷却することに
より、イオンの放出効率が向上し、電界効果イオン源で
、従来と同程度の高い輝度と、かつ液体金属イオン源並
みの大電流を得る事を可能になる。
[Function] By cooling liquid helium to a temperature below the temperature at which an electric current occurs, the ion emission efficiency is improved, allowing field effect ion sources to achieve the same high brightness as conventional sources and the same large size as liquid metal ion sources. It becomes possible to obtain electric current.

[実施例] 以下本発明を実施例に基づき詳細に説明する。[Example] The present invention will be described in detail below based on examples.

実施例1 本発明による高輝度・大電流イオン源を第2図に示す。Example 1 A high brightness, high current ion source according to the present invention is shown in FIG.

本イオン源は、電界放射用チップ5.引出し電極6.液
体ヘリウムリザーバ7、冷却筒8から成る。冷却筒8に
よりリザーバ7は2.1’ K以下に、またチップ5の
先端も2.1°K以下に保たれている。液体ヘリウムは
、リザーバ7からキャピラリ11を通り超流動によりチ
ップ5の先端まで到達し、引出し電極6に印加された電
圧によって起こる電界により、ヘリウムイオンとして引
き出される。チップ5は太さ100μmφのタングステ
ンより成り、先端の曲率は0.1μm以下とした。冷却
筒8は、ヘリウム冷凍器9と熱的に接触し、かつ電気的
に絶縁するため、厚さ3mmの酸化ヘリウム板10を介
して接続した。
This ion source has a field emission chip5. Extraction electrode 6. It consists of a liquid helium reservoir 7 and a cooling cylinder 8. The cooling cylinder 8 keeps the reservoir 7 at a temperature below 2.1'K, and the tip of the chip 5 at a temperature below 2.1°K. Liquid helium passes from the reservoir 7 through the capillary 11 and reaches the tip of the chip 5 due to superfluidity, and is extracted as helium ions by an electric field caused by a voltage applied to the extraction electrode 6. The tip 5 was made of tungsten with a thickness of 100 μmφ, and the curvature of the tip was 0.1 μm or less. The cooling tube 8 was connected to the helium refrigerator 9 via a helium oxide plate 10 having a thickness of 3 mm in order to be in thermal contact with and electrically insulated.

実施例2 第3図は本発明の他の実施例を示したもので、冷凍器1
2.絶縁板13によって冷却される冷却筒14の周囲お
よびキャピラリ15と電界放射チップ16の間20を除
く端面を熱絶縁材料17で覆い、該熱絶縁材料17の外
壁温度が2.7°K以上となるようにする。キャピラリ
15から流れ出た超流動ヘリウムは、温度差に従って電
界放射チップの方へ流れるが、該熱縁材料17で覆われ
た部分には流出しないため、液体ヘリウムの使用効率を
大幅に向上できる。したがってリザーバ18の大きさを
小さくできその結果、装置全体の大きさを小さくできる
ため、効率を向」二できる。
Embodiment 2 FIG. 3 shows another embodiment of the present invention, in which the refrigerator 1
2. The periphery of the cooling cylinder 14 cooled by the insulating plate 13 and the end surface between the capillary 15 and the field emission chip 16 except for 20 are covered with a thermally insulating material 17, and the outer wall temperature of the thermally insulating material 17 is 2.7°K or higher. I will make it happen. The superfluid helium flowing out of the capillary 15 flows toward the field emission chip according to the temperature difference, but does not flow into the area covered with the heat edge material 17, so that the efficiency of using liquid helium can be greatly improved. Therefore, the size of the reservoir 18 can be reduced, and as a result, the size of the entire device can be reduced, so that efficiency can be improved.

引出し電極19とは熱的に絶縁されているので、熱効率
も高くできる。該熱絶縁材料としては、本実施例ではア
ルミナ(酸化アルミニウムAQ2o3)を用いたが、絶
縁体でかつ超高真空に耐えるものであれば良い。
Since it is thermally insulated from the extraction electrode 19, thermal efficiency can also be increased. Although alumina (aluminum oxide AQ2o3) is used as the heat insulating material in this embodiment, any material may be used as long as it is an insulator and can withstand ultra-high vacuum.

実施例3 以上の実施例では液体ヘリウムをリザーバの中に蓄わえ
て、電界放射によりイオン化していたが、本実施例では
液体ヘリウムの供給系を具備したイオン源について述べ
る。第4図は本実施例を示したものである。冷凍器21
.熱絶縁板22.冷却筒23.リザーバ24.キャピラ
リ25.ニードル26.引出電極27.熱絶縁材料28
からなる一4= イオン源において、液体ヘリウム供給用のキャピラリ2
9を具備する事を特徴とする。本イオン源構造において
は、リザーバ24は必ずしも必要でなく、液体ヘリウム
供給用キャピラリ29を直接キャピラリ25に接続する
事も可能である。この場合冷凍器21の温度は冷却筒2
3の温度よりも低くする事は、他の実施例における場合
と同様である。本実施例において、引出電極27に30
kVを印加し、冷凍器21温度を2.1aK、冷却筒2
3温度を2.6’ Kとする事により、イオン源輝度1
0  A/aJ−sr、ヘリウムイオン電流13μAを
得る事ができた。この条件で直径0.1μmの微細イオ
ンビームを作ったところ、400pAと、従来の約40
倍以上の大電流を得る事ができた。描画速度を向上させ
るために、0.5μm口の矩形整形ビームを用いて描画
を行なった。加速電圧100kV冷凍器温度2.0aK
、ニードル温度2.7’ Kという条件で、イオン源輝
度10  A / a#srとして、イオン電流20μ
Aを得た。整形ビーム電流として10μAを得る事が出
来た。この値はイオン線による直接描画を十分に可能に
する電流である。
Embodiment 3 In the above embodiments, liquid helium was stored in a reservoir and ionized by field radiation, but in this embodiment, an ion source equipped with a liquid helium supply system will be described. FIG. 4 shows this embodiment. Freezer 21
.. Heat insulation board 22. Cooling cylinder 23. Reservoir 24. Capillary 25. Needle 26. Extracting electrode 27. Thermal insulation material 28
4 = In the ion source, capillary 2 for supplying liquid helium
It is characterized by having 9. In this ion source structure, the reservoir 24 is not necessarily required, and the liquid helium supply capillary 29 can be directly connected to the capillary 25. In this case, the temperature of the refrigerator 21 is
Setting the temperature lower than No. 3 is the same as in the other embodiments. In this embodiment, the extraction electrode 27 has a
kV was applied, the temperature of the refrigerator 21 was set to 2.1aK, and the cooling cylinder 2
3 By setting the temperature to 2.6'K, the ion source brightness 1
0 A/aJ-sr and a helium ion current of 13 μA could be obtained. When a fine ion beam with a diameter of 0.1 μm was created under these conditions, the output was 400 pA, which was about 40 pA compared to the conventional one.
I was able to obtain a current that was more than twice as large. In order to improve the writing speed, writing was performed using a rectangular shaped beam with an aperture of 0.5 μm. Accelerating voltage 100kV Refrigerator temperature 2.0aK
, needle temperature 2.7' K, ion source brightness 10 A/a#sr, ion current 20 μ
I got an A. We were able to obtain a shaping beam current of 10 μA. This value is a current sufficient to enable direct writing with an ion beam.

[発明の効果] で大きい。[Effect of the invention] So big.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術によるイオン源の概略図、第2図〜第
4図は本発明の実施例のイオン源の説明図である。 2.5,16.26・・・電界放射エミッタニードル、
4,6,1.9,27・・・引出し電極、3,7A。 15.25・・ガス供給キャピラリ、7,18゜24・
・・リザーバ、1..8,14,23・・・冷却筒、1
.0,13,22・・・絶縁板、17,28・・・熱絶
縁体。
FIG. 1 is a schematic diagram of an ion source according to the prior art, and FIGS. 2 to 4 are explanatory diagrams of ion sources according to embodiments of the present invention. 2.5, 16.26... field emission emitter needle,
4,6,1.9,27...Extraction electrode, 3,7A. 15.25...Gas supply capillary, 7,18°24.
...Reservoir, 1. .. 8, 14, 23...Cooling cylinder, 1
.. 0, 13, 22... Insulating plate, 17, 28... Heat insulator.

Claims (1)

【特許請求の範囲】[Claims] 1、2.1°K以下に冷却された冷凍器と、電音放射に
よりイオンを放出するニードルと、該ニードル部の近傍
に開口部を持つ超流動ヘリウムを流すべきキャピラリを
具備する事を特徴とするイオン源。
1. It is characterized by being equipped with a refrigerator cooled to 2.1°K or less, a needle that emits ions by electrosonic radiation, and a capillary with an opening near the needle through which superfluid helium flows. ion source.
JP16792086A 1986-07-18 1986-07-18 Ion source Pending JPS6210840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16792086A JPS6210840A (en) 1986-07-18 1986-07-18 Ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16792086A JPS6210840A (en) 1986-07-18 1986-07-18 Ion source

Publications (1)

Publication Number Publication Date
JPS6210840A true JPS6210840A (en) 1987-01-19

Family

ID=15858505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16792086A Pending JPS6210840A (en) 1986-07-18 1986-07-18 Ion source

Country Status (1)

Country Link
JP (1) JPS6210840A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009517839A (en) * 2005-12-02 2009-04-30 アリス コーポレーション Ion source, system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009517839A (en) * 2005-12-02 2009-04-30 アリス コーポレーション Ion source, system and method
JP2012248540A (en) * 2005-12-02 2012-12-13 Arisu Corporation:Kk Ion sources, systems and methods

Similar Documents

Publication Publication Date Title
US4638209A (en) Ion beam generating apparatus
EP1256123B1 (en) Low input power schottky emitter
CN109980534B (en) Novel nanometer water ion generating device
JP3075094B2 (en) Electrode water-cooled discharge lamp
JPS6210840A (en) Ion source
US2348814A (en) Rectifier for voltage duplicating circuits
US2640950A (en) Point electron source
US3209193A (en) Method of energy transfer to fluids
Masic et al. A new way of producing ion beams from metals and gases using the plasma jet from a duoplasmatron
US2518472A (en) Electron gun
JPS6297242A (en) Ion gun for focus ion beam apparatus
US1076949A (en) Valve-tube.
JPS6381736A (en) Ion beam device
US3086135A (en) Mercury-vapour electric discharge apparatus
CN102455081B (en) Electron tunneling-based refrigerator and LED lighting device using same
JPS6310449A (en) Ion beam device
Miljević Some characteristics of the hollow‐anode ion source
US3668453A (en) Electrical switch device having a fed liquid-metal cathode and a non-intercepting anode
JPH0353403Y2 (en)
IL43515A (en) Gridded electron tube having improved control grid coolin
JPS60257048A (en) Electric field electrolytic dissociation type ion source
JPS61233945A (en) Ion beam device
JPS6364027B2 (en)
JPS60180048A (en) Electric field type ion source
JPH05258659A (en) Impregnated type cathode structure