JPS621078B2 - - Google Patents
Info
- Publication number
- JPS621078B2 JPS621078B2 JP56029008A JP2900881A JPS621078B2 JP S621078 B2 JPS621078 B2 JP S621078B2 JP 56029008 A JP56029008 A JP 56029008A JP 2900881 A JP2900881 A JP 2900881A JP S621078 B2 JPS621078 B2 JP S621078B2
- Authority
- JP
- Japan
- Prior art keywords
- backfilling
- filling
- coagulant
- tail void
- mixed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000463 material Substances 0.000 claims description 58
- 238000011049 filling Methods 0.000 claims description 26
- 239000000701 coagulant Substances 0.000 claims description 21
- 238000010276 construction Methods 0.000 claims description 17
- 238000002347 injection Methods 0.000 claims description 17
- 239000007924 injection Substances 0.000 claims description 17
- 239000004570 mortar (masonry) Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 12
- 239000011800 void material Substances 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 239000004033 plastic Substances 0.000 claims description 10
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 10
- 239000004115 Sodium Silicate Substances 0.000 claims description 9
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 9
- 239000004927 clay Substances 0.000 claims description 8
- 238000005187 foaming Methods 0.000 claims description 8
- 239000004576 sand Substances 0.000 claims description 8
- 230000001413 cellular effect Effects 0.000 claims description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims description 5
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- 239000000945 filler Substances 0.000 claims description 5
- 239000011396 hydraulic cement Substances 0.000 claims description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 239000002734 clay mineral Substances 0.000 claims description 4
- 238000007596 consolidation process Methods 0.000 claims description 4
- 239000003623 enhancer Substances 0.000 claims description 4
- 229940043430 calcium compound Drugs 0.000 claims description 3
- 150000001674 calcium compounds Chemical class 0.000 claims description 3
- 239000004568 cement Substances 0.000 claims description 3
- 239000006260 foam Substances 0.000 claims description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 12
- 239000000203 mixture Substances 0.000 description 9
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 7
- 239000001110 calcium chloride Substances 0.000 description 7
- 229910001628 calcium chloride Inorganic materials 0.000 description 7
- 238000002156 mixing Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000009412 basement excavation Methods 0.000 description 4
- 239000011398 Portland cement Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- -1 polyoxyethylene Polymers 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000004604 Blowing Agent Substances 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 150000005215 alkyl ethers Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- YDEXUEFDPVHGHE-GGMCWBHBSA-L disodium;(2r)-3-(2-hydroxy-3-methoxyphenyl)-2-[2-methoxy-4-(3-sulfonatopropyl)phenoxy]propane-1-sulfonate Chemical compound [Na+].[Na+].COC1=CC=CC(C[C@H](CS([O-])(=O)=O)OC=2C(=CC(CCCS([O-])(=O)=O)=CC=2)OC)=C1O YDEXUEFDPVHGHE-GGMCWBHBSA-L 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 241000255789 Bombyx mori Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000011440 grout Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- HWGNBUXHKFFFIH-UHFFFAOYSA-I pentasodium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O HWGNBUXHKFFFIH-UHFFFAOYSA-I 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00724—Uses not provided for elsewhere in C04B2111/00 in mining operations, e.g. for backfilling; in making tunnels or galleries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Lining And Supports For Tunnels (AREA)
Description
本発明はシールド工法において、セグメントに
より形成されるライニングチユーブの外周に沿つ
て施される裏込充填を、掘削地盤の多様性に即応
して効率よく行ない、同時にすぐれた強度発現を
得る手段に係るものである。
各種の隧道、暗渠等の築造に際し広く用いられ
ているシールド工法は、そのシールド自体は多く
の研究、実績を経て安定した作業が行なわれるよ
うになつているが、シールド工法の成否を決する
裏込充填については、構築現場を含む地域の地質
並びに施工現場の状況に即応して、施工時の便益
をもたらしさらに施工後の強度保全を確実とすべ
く、解決すべき条件、要素が数多く残つていたの
である。
いうまでもなく、シールド工法ではシールド掘
進機外殻に沿つてトンネル状素掘が掘削されてい
くが、これに追随するライニングチユーブたる覆
工セグメント管(樋状のセグメントを組合わせて
円筒形の管としたもので、以下セグメントと称す
る)はシールド掘進機のテール部分で組立てられ
るので、掘削された地層とセグメント外面との間
には不可避的にテールボイドが生ずるのであつ
て、裏込充填は、シールド掘進機による掘進直後
に生じた上記テールボイドを直ちに充填して、短
時間に地山の押出圧に拮抗するだけの強度を発現
し、発生せんとする地山の弛みを抑止して地盤の
沈下や既設構造物への影響を防止すると共に作業
坑内への止水並びにセグメントに付加される土圧
の均一化等を達成するもので、その目的に副つた
充填材料若しくは充填のための注入方法が種々提
案されている。
すなわち、充填材料としては豆砂利コンクリー
ト若しくは砂モルタルのごとき骨材系のもの、ク
レーサンド・エアモルタルのごとき体質材系のも
の又は薬液注入のごとき無骨材系のもの等があ
り、また充填方法もテールボイドへの注入と充填
個所での早急な固結との関連を解決せんとするも
のが多い。しかし、これらの上記手段によれば、
材料輸送上の問題としては圧送パイプでの輸送が
困難である上ワーカビリテイに劣りセグメント向
背全域に注入が行きわたらないこと、充填材の練
和特性上の問題としては材料分離が起り易く水に
よる流出を受け易かつたりテールパツキン部分を
逸出して正常な注入を失して地盤沈下をまねくこ
と等があり、その他にも早期強度に難があつた
り、逆に流動性が良すぎる場合には地山に過度の
浸透食い込みが多くなつたりして、適正な注入充
填の設定は困難をきわめていたのである。
本発明者達は先に、上記のごとき裏込注入の問
題点を解決ししかも薬液注入のように工費の嵩ま
ない工法(特開昭54−147627号及び特開昭55−
39564号)を開示し、充填材料と凝結剤とを別送
して充填個所で混合することにより長距離圧送を
可能とし、流動性の向上と共に充填率をよくして
凝結時間の立上りを速やかにして早期強度を発現
し止水効果もよく充分な裏込の機能を果す方法を
提案したが、それらの方法においても、充填材料
のセメント量を一定にして凝結剤の添加量により
注入充填材料のゲルタイム(凝結)を調節する限
りは、ゲルタイムと発現強度若しくは作業環境温
度とゲルタイムとの相関関係は一元的に制御する
ことが困難で、さらに充填材料としてエアモルタ
ルを用いるときには圧送による気泡の収縮により
容積変化を生じ作業機械の排熱により坑内温度が
上昇し勝ちなことも影響して充填材料が凝結剤の
添加をみないまま硬化して圧送パイプを閉塞する
懸念があつたのである。
本発明は斯かる現況に鑑がみなされたもので、
裏込充填材を固有の性状のものとなすことによ
り、充分な可使時間を保持させると共に、含有水
分の放散を防止することによりテールパツキン始
め各部分からの逃出と地山への過度の食い込みを
なくして充填局部まで効果的に到達せしめ、テー
ルボイドに効果的な裏込充填を施工する手段を提
案せんとするもので、そのために、テールボイド
への注入時の裏込充填材の態様を、在来例にみる
ごとき溶液(リキツド)又は泥漿(スラリー)と
はなさずに、特定の配合組成となした裏込充填材
料を凝結剤と結合させることにより注入時の裏込
充填材を変容性に富む粘稠結合の塑性体(ゼリー
状)となし、このような性状の裏込充填材を、シ
ールドジヤツキにてのシールド掘進機の進行によ
るテールボイドの発生、拡大に同調追随して注入
し、テールボイド内の形状に倣つた充填により地
圧に対する負けを生じさせないようにしつつ急速
な凝結により固結し得る可使時間を有するような
機作を示し、裏込充填に際して要求される多くの
条件を充分に満足させることができる裏込充填工
法の提供を目的としている。さらにシールド掘削
が長大なトンネルに適用された場合でも、坑内諸
作業を支障することなくしかも温度上昇の要素の
少い坑外にて注入用の裏込充填材料を調製し相当
の距離にわたつても流動性を持続できる添加剤を
配合して圧送時間を延伸しても、なお且つ上記の
ごとく凝結剤との混合、結合により瞬時に変容性
に富む粘稠結合の塑性体となし得て同じく裏込充
填に際して要求される多様な条件を充足するよう
な裏込充填工法も併せて使用すると共に、これら
の両工法に使用する裏込充填材料と凝結剤並びに
これらの混合、結合によりもたらされる変容性に
富む粘稠結合の塑性体とした裏込充填材の提供を
終局的な目的としている。
次に本発明の実施の一例を具体的に説明する
と、裏込充填材料を、適当な組成材を選択組合わ
せて、きわめて多量の独立気泡を抱括した気泡モ
ルタルに練和し、しかも管路を介しての圧送に耐
える流動性を保たせたものとなし、斯かる性状を
有する裏込充填材料を坑外その他の練和個所より
グラウトポンプ等を用いて管路を経由してシール
ドテールまで導く。そして、シールド掘進機に追
随する覆工セグメントの注入口の至近個所に設け
たミキシング器に送込み、この部分において別途
管路を介して送り込まれた凝結剤と混合して結合
させ、凝固作用が発現可能な塑性体に練成して上
記覆工セグメントに設けた注入口より、シールド
掘進機の前進によるテールボイドの発生、拡大に
同調しつつ注入するにおいて、裏込充填材は充分
な可使時間を経て凝結作用の立上り状態に達し、
以後は急速に固結するに至るのである。
このような性状で得られる本発明方法にて使用
される裏込充填材料又は裏込充填材料に凝結剤を
混合した裏込充填材の注入直後の可使時間内の状
態にあつては、管路内圧送のための付加圧による
気泡の圧縮がもたらす減量傾向は、組成中の粘土
鉱物性体質材料中に含まれるベントナイト様の資
質の膨潤により補償されて容積を相対的に一定に
維持され、最大の特長である変容性を保持して易
動性、ワーカビリテイを示すと共に、斯かる特長
のある性状の故に接合部又は地山肌等の間隔又は
細孔などの種種な逃出誘発部分に滲潤することは
なく閉塞的な接触態様をもつて止水性、容積安定
性を示すのである。
本発明における裏込充填材は、在来手段にみる
ごとき溶液若しくは泥漿とは異なり、変容性に富
む粘稠結合状態となされておりこの状態にてセグ
メント注入口より注入しセグメント向背部分に分
布密充填に至る間には、充分な可使時間を示すと
共に充填材としてすぐれた特性を発現するのであ
つて、このような性状を保たせるには、通常の水
硬性セメント、粘土鉱物性体質材料、界面性作用
を有し発泡を独立気泡として安定に持続させ得る
物質並びに凝結剤と会したときにこれに作用して
瞬間的な結合を行なわせる塑性発現剤を配合組成
して裏込充填材料となし、この裏込充填材料に上
記凝結剤として珪酸ナトリウム(水硝子)系の媒
体を混合し、著しく変容性に富む粘稠結合の塑性
体である裏込充填材を得て、この性状をもつてテ
ールボイド中への注入を行なうなれば、
(イ) いわゆるゲルタイムは作業雰囲気温度に殆ん
ど関係なく瞬間的な塑性化を示し、変容性に富
むゼリー状でテールボイド内に効果的に分布充
填させ得る、
(ロ) テールパツキン部からの漏洩がないから各部
均一で確実な充填ができる、
(ハ) 止水効果が大である、
(ニ) この裏込充填法は工法系として簡単なため、
シールドの掘削作業と競業、支障し合うことが
ない、
(ホ) あらゆる土質又は状況に適用ができ、特に湧
水の多い地山では効果大、
(ヘ) 永久構造物たる組成成分の裏込充填材料を使
用することにより、テールボイドの充填に最適
である、
(ト) 裏込充填材料自体の硬化若しくは固結時間は
長くなり、各回の注入の度ごとに圧送管路を水
洗する必要がなくなり、セグメントの追随伸達
ごとの注入充填又は同時注入が容易に行なうこ
とができる、
等の利点がもたらされる。
本発明における裏込充填材料は上記した組成成
分に加えて、水硬性セメントに対する凝結遅緩剤
としてヒドロキシカルボン酸又はヒドロキシカル
ボン酸塩等を適量添加すれば、管路を介しての圧
送が長距離にわたつても流動性を失なうことはな
く、さらに、凝結剤と会した場合にゲル化を促進
すると共に裏込充填材の凝結並びに固結強度を損
わずに、管路による圧送がきわめて容易な延長距
離は格段に増大して、裏込充填材料の練和個所を
移動前進させることなく工事の延長に対応させる
ことが可能となり、さらに斯かる特性の裏込充填
材料を用いることにより裏込充填材を圧送充填の
各ピリオド毎に混成する必要がなく或る程度量の
ストツクを可能として充填作業の工数を減じ、さ
らには混成済みの充填材の隔時使用ができるよう
な手仕舞となし得るのは本発明の有利な点であ
る。
本発明に含まれる裏込充填材は、変容性に富む
粘稠結合の塑性体であつて以下の説明により明ら
かにされる。
すなわち、裏込充填材料としては長距離輸送に
耐え得る流動性、ワーカビリテイ、止水性並びに
容積安定性をもたらす性状のものであり、凝結剤
の混合により、それとの急速な結合と可使時間と
を示す裏込充填材である。
このため、本発明においては気泡モルタル系の
成分として凝結剤と会したときに両者間に瞬結的
な結合状態を生起させ、変容性に富む塑性体とす
る作用を促進する物質として少量の添加で有効な
塩化物、カルシウム化合物を加えたものであり、
一例として塩化カルシウムを添加せる場合につき
説明する。塩化カルシウムは安価な水溶性カルシ
ウムであつて、これと珪酸ナトリウムとの反応で
生成する各種の水加珪酸カルシウムは水に不溶で
あつてゲルタイムの縮減に貢献する。
具体的には基本組成物たる水硬性セメントとし
てポルトランドセメント240Kg、粘土鉱物性体質
材料として岡山県産クレーサンド(石英、絹ウン
モ、モンモリロン石などからなるローム;組成
[重量%]SiO273.85、Al2O318.23、Fe2O30.98、
CaO0.38、K2O2.50、Na2O0.21、その他0.79、
Igloss3.01;ふるい分け試験[残留率重量%]
0.088mmまで55、0.15mmまで48、0.30mmまで30、
0.60mmまで8、1.20mmまで0)240Kg、発泡持続
剤(ポリオキシエチレンアルキルエーテル、リグ
ニンスルフオン酸ナトリウム、樹脂酸ナトリウ
ム、……を含む)2.0Kg、水326を混合したもの
(容積約1m3)を用い、これに種種のカルシウム
化合物その他を加え、空気を巻込ませた気泡モル
タルに、珪酸ナトリウム系水溶液(比重1.39いわ
ゆる水硝子)100を加えて混合して作つた裏込
充填材で、このものの15℃におけるゲルタイムと
強度を調べた結果は第1表のとおりである。第1
表に示す実験結果から明らかなように、塩化カル
シウムの添加によりゲルタイムは零となるが、充
填材の強度は低下しない。
またクエン酸で代表されるヒドロキシカルボン
酸は周知のとおり気泡モルタルの硬化遅延剤とし
て用いられるものであるが、珪酸ナトリウム水溶
液に会した場合、ゲル化促進剤としての作用をを
併せ持つことが観察される。
次に、塑性発現剤として添加する塩化カルシウ
ムを中心に種種の温度でゲルタイムを調べた結果
の一例を第2表に示す。第2表に示す本実験から
塩化カルシウムの添加量を増せば、ゲルタイムが
減ることは明らかで、約3Kg添加すれば1℃の雰
囲気においてさえゲルタイムを零となし得ること
がわかる。
なお、クエン酸の硬化遅延効果を示すために、
前記基本組成の気泡モルタルの25℃におけるフロ
ー値(30cm角のプラスチツク製板の中央に、高さ
8cm内径8cmの金属円筒を置いて試料を満たし、
静かに引揚げ1分後と3分後の縦・横の広がりの
平均値[cm])を測定した結果の一例を示すと第
3表のとおりである。第3表に示す本実験結果か
ら、クエン酸0.3Kgの添加により気泡モルタル自
体の硬化開始はほぼ2時間程度延伸していること
がわかる。
さらに前記気泡モルタルに縮合リン酸塩(たと
えば三リン酸ナトリウム)を加えると、硬化遅延
効果が増し腐蝕性が減る。
本発明でクレーサンドというのは、粘土と砂と
の混合物(粘土分20〜80重量%、砂分80〜20重量
%)であつて、シルト、ローム、砂質ロームを含
み、ベントナイト系のものは水により膨潤し易い
ので望ましいがこれにこだわらない。また、ヒド
ロキシカルボン酸には、クエン酸、酒石酸、乳酸
のようなヒドロキシル基とカルボキシル基を持つ
硬化遅延物質を含む。また、ここでいう発泡剤と
はいわゆるAE剤(Air entraining reagent)の
ことで、リグニンスルフオン酸ナトリウム、樹脂
酸ナトリウム、アルキルアリルスルフオン酸アミ
ン塩、ポリオキシエチレンアルキルエーテルなど
を含み、モルタル中に空気の小泡を形成し、流動
性、ワーカビリテイを増す性質を有する物質を意
味する。また、本発明に用いるセメントとしては
ポルトランドセメント等が適している。
本発明の裏込充填材の代表的組成を述べるとポ
ルトランドセメント240Kg、前記実験に使用した
岡山県産出のクレーサンド240Kg、発泡剤2.4Kg、
塩化カルシウム3Kg、水326で気泡モルタルを
作り、これと比重約1.39の珪酸ナトリウム系水溶
液100とを混合したものが主成分であるが、そ
のほか、目的によりたとえば遅延効果をあげ、腐
蝕性を減らすために縮合リン酸を加えるなど少量
の物質を加えることができる。
気泡モルタルと珪酸ナトリウム系水溶液は、通
常トンネル外でそれぞれ調製され、ポンプにより
別個に使用場所に管路を介して圧送され、注入直
前に混合される。
本発明の裏込充填材は上記したように、充填材
料と凝結剤との混成結合で得られる変容性に富む
塑性体としているから充分な可使時間を有して凝
結し、固結完了後は充分な強度を発現し、それに
至るまでの間にはワーカビリテイ、止水性、容積
安定性も良好で、テールボイドを最小限に保つて
作業ができるので地盤沈下等の障害を確実に防止
でき、また、附帯的には圧送導管の閉塞と作業中
止時の導管路の洗浄の必要度合が減ずるなど優れ
た効果を奏するのである。
The present invention relates to a means for efficiently performing backfilling along the outer periphery of a lining tube formed by segments in a shield construction method in response to the diversity of the excavated ground, and at the same time obtaining excellent strength. It is something. The shield construction method, which is widely used when constructing various tunnels and culverts, has become stable after much research and experience, but the backfill method determines the success or failure of the shield construction method. Regarding filling, there are many conditions and factors that need to be resolved in order to immediately respond to the geology of the region including the construction site and the conditions of the construction site, and to bring benefits during construction and ensure strength preservation after construction. It was. Needless to say, in the shield construction method, a tunnel-like plain excavation is excavated along the outer shell of the shield excavator, but a lining segment tube (a cylindrical structure made by combining gutter-like segments) is then excavated. Since the pipe (hereinafter referred to as segment) is assembled at the tail part of the shield excavator, a tail void will inevitably occur between the excavated stratum and the outer surface of the segment. Immediately fills the tail voids that occur immediately after excavation by the shield excavator, develops enough strength to counteract the extrusion pressure of the ground in a short period of time, prevents the loosening of the ground that is about to occur, and subsides the ground. In addition to preventing the impact on existing structures, it also achieves water stoppage in the working tunnel and equalization of earth pressure applied to the segments. Various proposals have been made. In other words, the filling materials include aggregate-based materials such as pea gravel concrete or sand mortar, clay-based materials such as clay sand air mortar, and non-aggregate materials such as chemical injection. Many attempt to resolve the relationship between injection into the tail void and rapid consolidation at the filling point. However, according to these above measures,
Problems in transporting materials include the difficulty of transporting them using pressure pipes, poor workability, and injecting cannot reach the entire length of the segment, and problems with the kneading properties of the filler, which tend to cause material separation and water outflow. If the soil is easily damaged or the tail packing part escapes, normal injection may be lost, leading to ground subsidence. It was extremely difficult to set up proper injection and filling as there was a lot of excessive penetration into the ridges. The inventors of the present invention have previously developed a method that solves the problems of backfilling as described above and does not require high construction costs like chemical injection (Japanese Patent Application Laid-open No. 147627/1983 and
39564), the filling material and coagulant are sent separately and mixed at the filling point, which enables long-distance pressure feeding, improves fluidity, improves the filling rate, and speeds up the rise of the setting time. We have proposed a method that develops early strength, has a good water-stopping effect, and has a sufficient backfilling function.However, in these methods, the amount of cement in the filling material is kept constant, and the amount of coagulant added changes the gel time of the injection filling material. However, it is difficult to centrally control the correlation between gel time and developed strength or the working environment temperature and gel time, and when air mortar is used as a filling material, the volume increases due to the contraction of air bubbles due to pressure feeding. There was a concern that the temperature inside the mine would rise due to the exhaust heat from the working machines, and that the filling material would harden without the addition of coagulant and clog the pumping pipe. The present invention was created in consideration of the current situation,
By making the backfilling material have unique properties, it maintains a sufficient pot life and prevents the moisture contained in it from escaping from various parts including the tail packing and from excessively penetrating into the ground. The purpose of this paper is to propose a method for effective backfilling of tail voids by eliminating digging and effectively reaching the filling local area.To this end, the mode of the backfilling material when injected into tail voids is as follows: By combining the backfilling material with a specific composition with a coagulant instead of forming it into a solution (liquid) or slurry as seen in conventional methods, the backfilling material becomes transformable during injection. A backfilling material with a rich viscous bond (jelly-like) is injected in synchronization with the generation and expansion of tail voids caused by the advancement of the shield excavator in the shield jack. It shows a mechanism that allows filling that follows the shape of the tail void to avoid succumbing to earth pressure and has a pot life that allows solidification through rapid solidification, and satisfies many of the conditions required for backfilling. The purpose is to provide a backfilling method that can fully satisfy the requirements. Furthermore, even when shield excavation is applied to a long tunnel, it is possible to prepare the backfilling material for injection outside the mine and extend it over a considerable distance without interfering with underground operations and where there is less risk of temperature rise. Even if the pumping time is extended by adding additives that can maintain fluidity, it is still possible to instantly create a viscous bonded plastic body that is highly deformable by mixing and bonding with a coagulant as described above. We also use a backfilling method that satisfies the various conditions required for backfilling, as well as the backfilling materials and coagulants used in both methods, as well as the changes brought about by mixing and combining them. The ultimate objective is to provide a backfilling material that is a viscous bonded plastic body with rich properties. Next, to specifically explain an example of the implementation of the present invention, the backfilling material is kneaded into a cellular mortar containing an extremely large amount of closed cells by selecting and combining appropriate composition materials, and The backfilling material with such properties is transported from the outside of the mine or other kneading locations to the shield tail via a conduit using a grout pump, etc. lead Then, it is fed into a mixer installed close to the injection port of the lining segment that follows the shield excavator, where it is mixed with and combined with the coagulant sent separately through a pipe, and the coagulation effect is achieved. The backfilling material has a sufficient pot life when it is kneaded into a plastic material that can be expressed and injected from the injection port provided in the lining segment in synchronization with the generation and expansion of tail voids due to the advance of the shield excavator. The rising state of condensation is reached through
After that, it solidifies rapidly. When the backfilling material used in the method of the present invention or the backfilling material obtained by mixing a coagulant with the backfilling material obtained with such properties is in a state within the pot life immediately after injection, the pipe The tendency for weight loss resulting from the compression of the bubbles due to the added pressure for in-line pumping is compensated for by the swelling of the bentonite-like qualities contained in the clay-mineral body material in the composition, keeping the volume relatively constant; It retains its greatest feature, deformability, and exhibits mobility and workability, and because of this characteristic, it can seep into various escape-inducing areas such as joints, gaps in the ground surface, or pores. It exhibits water-stopping properties and volume stability with an occluded contact mode. Unlike the solution or slurry used in conventional methods, the backfilling material used in the present invention is in a highly deformable and viscous bonded state, and in this state, it is injected from the segment injection port and is densely distributed in the dorsal portion of the segment. During filling, it exhibits a sufficient pot life and exhibits excellent properties as a filler. A backfilling material is made by blending a substance that has an interfacial action and can stably sustain foaming as closed cells, and a plasticity enhancer that acts on the coagulant to form an instant bond when it meets the coagulant. None, this backfilling material is mixed with a sodium silicate (water vitreous) medium as the coagulant to obtain a backfilling material that is a viscous bonded plastic body with extremely high deformability, and has this property. (a) So-called gel time exhibits instantaneous plasticization almost regardless of the working atmosphere temperature, and is a highly deformable jelly-like material that can be effectively distributed and filled into the tail void. (b) Since there is no leakage from the tail packing, each part can be filled uniformly and reliably. (c) It has a great water-stopping effect. (d) This backfilling method is simple as a construction method, so
It does not compete with or interfere with shield excavation work, (e) It can be applied to any soil type or situation, and is especially effective in ground with a lot of spring water, (f) It can backfill the composition of a permanent structure. By using the filling material, it is ideal for filling tail voids. , injection filling for each follow-up extension of the segment or simultaneous injection can be easily performed. In addition to the above-mentioned compositional components, the backfilling material of the present invention can be pumped over long distances through pipes by adding an appropriate amount of hydroxycarboxylic acid or hydroxycarboxylate as a setting retarder for hydraulic cement. It does not lose its fluidity even over long periods of time, and furthermore, it promotes gelation when mixed with a coagulant, and can be pumped through pipes without causing coagulation or loss of consolidation strength of the backing filler. The extremely easy extension distance has been greatly increased, making it possible to accommodate the extension of the construction work without moving forward the kneaded part of the backfilling material, and furthermore, by using the backfilling material with such characteristics. It is not necessary to mix the backfilling material in each period of pressure-feeding and filling, and it is possible to stock a certain amount, reducing the number of man-hours of filling work, and furthermore, it is possible to use the mixed filling material every other time. It is an advantage of the present invention that this can be achieved. The backfilling material included in the present invention is a highly deformable viscous bonded plastic body, which will be made clear by the following description. In other words, the backfilling material has properties that provide fluidity, workability, water-stopping properties, and volumetric stability that can withstand long-distance transportation, and by mixing it with a coagulant, rapid bonding and pot life can be achieved. This is the backfilling material shown. Therefore, in the present invention, a small amount of a substance is added as a component of the cellular mortar system to create an instantaneous bonding state between the coagulant and the coagulant, thereby promoting the action of forming a plastic body with high deformability. It contains chloride and calcium compounds that are effective in
As an example, a case where calcium chloride is added will be explained. Calcium chloride is an inexpensive water-soluble calcium, and various types of hydrated calcium silicate produced by the reaction of calcium chloride with sodium silicate are insoluble in water and contribute to reducing gel time. Specifically, 240 kg of Portland cement was used as the hydraulic cement that is the basic composition, and clay sand from Okayama Prefecture (loam consisting of quartz, silkworm, montmorillonite, etc.) was used as the clay mineral constitutional material; composition [wt%] SiO 2 73.85, Al. 2 O 3 18.23, Fe 2 O 3 0.98,
CaO0.38, K 2 O2.50, Na 2 O0.21, others 0.79,
Igloss3.01; Sieving test [Residual rate weight %]
55 to 0.088mm, 48 to 0.15mm, 30 to 0.30mm,
8 up to 0.60mm, 0 up to 1.20mm) 240Kg, foaming sustaining agent (including polyoxyethylene alkyl ether, sodium lignin sulfonate, sodium resinate, etc.) 2.0Kg, water 326 mixed (volume approx. 1m) 3 ), various calcium compounds and others are added to it, and a backfilling material made by adding and mixing 100% of a sodium silicate-based aqueous solution (specific gravity 1.39, so-called water glass) to a bubble mortar in which air is mixed. Table 1 shows the results of examining the gel time and strength of this product at 15°C. 1st
As is clear from the experimental results shown in the table, the gel time becomes zero by adding calcium chloride, but the strength of the filler does not decrease. In addition, hydroxycarboxylic acids represented by citric acid are used as hardening retardants in cellular mortar as is well known, but when they come into contact with aqueous sodium silicate solutions, they have been observed to also act as gelation accelerators. Ru. Next, Table 2 shows an example of the results of examining the gel time at various temperatures mainly with calcium chloride added as a plasticity enhancer. From this experiment shown in Table 2, it is clear that increasing the amount of calcium chloride added reduces the gel time, and it can be seen that by adding about 3 kg, the gel time can be reduced to zero even in an atmosphere of 1°C. In addition, to demonstrate the curing retarding effect of citric acid,
Flow value at 25°C of cellular mortar with the above basic composition (a metal cylinder with a height of 8 cm and an inner diameter of 8 cm was placed in the center of a 30 cm square plastic plate and filled with a sample,
Table 3 shows an example of the results of measuring the average value [cm] of vertical and horizontal spread one minute and three minutes after being gently lifted up. From the results of this experiment shown in Table 3, it can be seen that by adding 0.3 kg of citric acid, the curing of the foamed mortar itself started after approximately 2 hours of stretching. Furthermore, the addition of condensed phosphates (eg sodium triphosphate) to the cellular mortar increases the setting retardation effect and reduces corrosivity. In the present invention, clay sand is a mixture of clay and sand (clay content: 20 to 80% by weight, sand content: 80 to 20% by weight), and includes silt, loam, and sandy loam, and is a bentonite-based mixture. is preferable because it easily swells with water, but it is not limited to this. Furthermore, hydroxycarboxylic acids include hardening retardants having hydroxyl groups and carboxyl groups, such as citric acid, tartaric acid, and lactic acid. The blowing agent referred to here refers to the so-called AE agent (Air entraining reagent), which includes sodium lignin sulfonate, sodium resinate, alkylaryl sulfonate amine salt, polyoxyethylene alkyl ether, etc. refers to a substance that has the property of forming small air bubbles to increase fluidity and workability. Moreover, Portland cement and the like are suitable as the cement used in the present invention. The typical composition of the backfilling material of the present invention is as follows: 240 kg of Portland cement, 240 kg of clay sand produced in Okayama Prefecture used in the above experiment, 2.4 kg of blowing agent,
The main ingredient is a foam mortar made with 3 kg of calcium chloride and 326 kg of water, and mixed with 100 kg of a sodium silicate aqueous solution with a specific gravity of approximately 1.39. Small amounts of substances can be added, such as condensed phosphoric acid. The foam mortar and the sodium silicate-based aqueous solution are usually prepared separately outside the tunnel, pumped separately to the point of use via a pipe, and mixed immediately before injection. As mentioned above, the backfilling material of the present invention is a highly deformable plastic material obtained by a hybrid combination of the filling material and the coagulant, so it has a sufficient pot life and solidifies, and after the completion of solidification, It develops sufficient strength, and until this point it has good workability, water-stopping properties, and volumetric stability, and it is possible to work with tail voids kept to a minimum, thereby reliably preventing problems such as ground subsidence. Additionally, it has excellent effects such as reducing the need for clogging of the pressure-feeding conduit and cleaning the conduit when work is stopped.
【表】【table】
【表】【table】
【表】【table】
【表】
用限界とされている。
[Table] Considered to be the limit of use.
Claims (1)
生ずるテールボイドを充填するに際して、水硬性
セメントと粘土鉱物性体質材料と発泡持続剤とを
水と練和し発泡用気体をこれに包括させて気泡モ
ルタルとなし、これには珪酸ナトリウム系の凝結
剤と会したときに急速な結合を行なわせる塑性発
現剤を含有させて裏込充填材料を組成し、この裏
込充填材料と上記凝結剤とをそれぞれ管路を介し
てテールボイド部位まで輸送し、テールボイドへ
の注入直前に裏込充填材料と凝結剤とを混合して
両者を結合させ変容性に富む粘稠結合の塑性体と
なして注入し、テールボイド内の形状に倣つて充
填し急速に凝結させて高い支保圧と固結強度とを
発現させるようにしたことを特徴とするシールド
工法における覆工セグメントの裏込充填法。 2 シールド工事において、シールド掘進機後部
に生ずるテールボイドを充填するに際して、水硬
性セメントと粘土鉱物性体質材料と発泡持続剤と
水硬性セメントの凝結遅緩剤とを水と練和し発泡
用気体をこれに包括させて気泡モルタルとなし、
これには珪酸ナトリウム系の凝結剤と会したとき
に急速な結合を行なわせる塑性発現剤を含有させ
て裏込充填材料を組成し、この裏込充填材料と上
記凝結剤とをそれぞれ管路を経由して各調製個所
より遠隔のテールボイド部位まで輸送し、テール
ボイドへの注入直前に裏込充填材料と凝結剤とを
混合して両者を結合させ、変容性に富む粘稠結合
の塑性体として注入し、テールボイド内の形状に
倣つて充填し急速に凝結させて、高い支保圧と固
結強度とを発現させるようにしたことを特徴とす
るシールド工法における覆工セグメントの裏込充
填法。 3 シールド工事においてシールド掘進機後部に
生ずるテールボイドを充填するために用いる、(a)
クレーサンド、セメント、発泡持続剤、塩化物、
カルシウム化合物、水、発泡用気体を含み、縮合
リン酸、ヒドロキシカルボン酸若しくはその塩を
含み、または含まぬ気泡モルタルと、(b)珪酸ナト
リウム系水溶液とを充填直前に混合したことを特
徴とするシールド工法における裏込充填材。[Scope of Claims] 1. When filling the tail void that occurs at the rear of a shield excavator during shield construction, hydraulic cement, a clay mineral body material, and a foaming sustaining agent are mixed with water and a foaming gas is incorporated therein. A cellular mortar is prepared, and a backfilling material is prepared by containing a plasticity enhancer that causes rapid bonding when combined with a sodium silicate-based coagulant, and this backfilling material and the above coagulant are combined. and are respectively transported to the tail void site via pipes, and just before injection into the tail void, the backfilling material and coagulant are mixed to bond the two, forming a highly deformable viscous bonded plastic body and injecting it. A backfilling method for lining segments in the shield construction method, characterized in that the filler follows the shape of the tail void and rapidly solidifies to develop high support pressure and consolidation strength. 2. When filling the tail void that occurs at the rear of the shield excavator during shield construction, hydraulic cement, clay mineral body material, foaming sustaining agent, and setting retarder for hydraulic cement are mixed with water and a foaming gas is added. This is combined to form a bubble mortar,
A back-filling material is prepared by containing a plasticity enhancer that causes rapid bonding when combined with a sodium silicate-based coagulant. Immediately before injection into the tail void, the backfilling material and coagulant are mixed to bond the two, and the material is injected as a highly deformable viscous bonded plastic material. A backfilling method for lining segments in the shield construction method, characterized in that the material is filled following the shape of the tail void and rapidly solidified to develop high shoring pressure and consolidation strength. 3 Used to fill the tail void that occurs at the rear of the shield excavator during shield construction, (a)
clay sand, cement, foaming sustaining agent, chloride,
A foam mortar containing a calcium compound, water, and a foaming gas, and containing or not containing condensed phosphoric acid, hydroxycarboxylic acid, or a salt thereof, and (b) a sodium silicate-based aqueous solution are mixed immediately before filling. Back filling material in shield construction method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56029008A JPS57143098A (en) | 1981-02-27 | 1981-02-27 | Back filling method and material of covering segment in shield constructing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56029008A JPS57143098A (en) | 1981-02-27 | 1981-02-27 | Back filling method and material of covering segment in shield constructing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57143098A JPS57143098A (en) | 1982-09-04 |
JPS621078B2 true JPS621078B2 (en) | 1987-01-10 |
Family
ID=12264372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56029008A Granted JPS57143098A (en) | 1981-02-27 | 1981-02-27 | Back filling method and material of covering segment in shield constructing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57143098A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6044798U (en) * | 1983-09-05 | 1985-03-29 | 株式会社 星和電機 | steam iron |
JP2019044417A (en) * | 2017-08-31 | 2019-03-22 | 清水建設株式会社 | Back-filling material |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4835294A (en) * | 1971-09-08 | 1973-05-24 | ||
JPS54162810A (en) * | 1978-06-13 | 1979-12-24 | Sanyo Chemical Ind Ltd | Soil nature stabilizing method by liquid chemicals |
JPS5539564A (en) * | 1978-09-12 | 1980-03-19 | Tetsuya Takigawa | Method of reverseeside injection for cover in shielded excavation |
JPS55108598A (en) * | 1979-02-15 | 1980-08-20 | Tetsuya Takigawa | Method of injecting backkfilling segments in shielding construction |
-
1981
- 1981-02-27 JP JP56029008A patent/JPS57143098A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4835294A (en) * | 1971-09-08 | 1973-05-24 | ||
JPS54162810A (en) * | 1978-06-13 | 1979-12-24 | Sanyo Chemical Ind Ltd | Soil nature stabilizing method by liquid chemicals |
JPS5539564A (en) * | 1978-09-12 | 1980-03-19 | Tetsuya Takigawa | Method of reverseeside injection for cover in shielded excavation |
JPS55108598A (en) * | 1979-02-15 | 1980-08-20 | Tetsuya Takigawa | Method of injecting backkfilling segments in shielding construction |
Also Published As
Publication number | Publication date |
---|---|
JPS57143098A (en) | 1982-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1179984A (en) | Capsules containing cementitious compositions | |
KR20070005645A (en) | Concrete composition, process for producing the same, method of regulating viscosity, and method of constructing cast-in-place concrete pile from the concrete composition | |
KR101347086B1 (en) | Grout composition for ground reinforcement and grouting method using the composition | |
KR101907141B1 (en) | Sealing composition for umbrella arch method and process for preparing the same | |
KR100699430B1 (en) | The foundation improvement method of construction using high-pressure grout material injection equipment and this | |
CN113374485B (en) | Shield grouting method based on shield residue soil improvement under water-rich sand layer condition | |
JP6632018B1 (en) | Tunnel waterproofing method, tunnel waterproofing system, and waterproofing material | |
JP3600502B2 (en) | Plastic grouting method | |
JPH11193382A (en) | Grout injection method | |
CN107459324A (en) | A kind of shield anti-stratum settlement housing packing material and preparation method thereof | |
JP7225352B1 (en) | Back-filling material injection method and apparatus, back-filling material | |
JP3514614B2 (en) | Grout material and grouting method | |
JPS621078B2 (en) | ||
JP4044887B2 (en) | Bolt fixing method | |
RU2728244C1 (en) | Cementing composition in an underground formation | |
JP2020023852A (en) | Method for injecting hardening grout into ground beneath groundwater | |
WO2021046585A1 (en) | Backfilling process and composition | |
JP3121446B2 (en) | Backfill injection material and two-pack backfill injection method | |
JP3686441B2 (en) | One-pack type backfill additive and construction method using the additive | |
JP3706998B2 (en) | Ethanol bentonite grout method | |
JP7289968B1 (en) | Back-filling material injection method and apparatus, back-filling material | |
JP2003278144A (en) | Impregnation method | |
JP2001214687A (en) | Auxiliary method for mountain tunneling method | |
JPH10238289A (en) | Filling method of cavity | |
JP4242670B2 (en) | Soil-stabilized soil and method for producing the same |