JPS62107877A - Constant current control method in spot welding machine - Google Patents

Constant current control method in spot welding machine

Info

Publication number
JPS62107877A
JPS62107877A JP24949685A JP24949685A JPS62107877A JP S62107877 A JPS62107877 A JP S62107877A JP 24949685 A JP24949685 A JP 24949685A JP 24949685 A JP24949685 A JP 24949685A JP S62107877 A JPS62107877 A JP S62107877A
Authority
JP
Japan
Prior art keywords
welding
current
angle
firing angle
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24949685A
Other languages
Japanese (ja)
Other versions
JPH0242302B2 (en
Inventor
Kimio Miyagawa
宮川 公夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyachi Electronic Co
Original Assignee
Miyachi Electronic Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyachi Electronic Co filed Critical Miyachi Electronic Co
Priority to JP24949685A priority Critical patent/JPS62107877A/en
Publication of JPS62107877A publication Critical patent/JPS62107877A/en
Publication of JPH0242302B2 publication Critical patent/JPH0242302B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Voltage And Current In General (AREA)
  • Arc Welding Control (AREA)

Abstract

PURPOSE:To pertinently set the current in starting without performing a trial electrification, etc. by fixing the approximate value of the maximum current and power factor angle of a welding machine and by performing the initial electrification at the firing angle which is decided from a thyristor firing angle - relative welding current characteristics. CONSTITUTION:Since the power factor angle of a spot welding machine is generally 50-70 deg. it is given at 60 deg. as the approximate value and the approxi mate value of the maximum current is decided by the shape of the welding machine. For instance, in case of selecting 8KA for the approximate value the relative current to the set current value makes 0.5, so the corresponding firing angle makes about 105 deg. from the thyristor ignition angle - relative welding current characteristics relation chart. And the initial welding cycle electrification is performed at this ignition angle and after the 2nd cycle and on the ignition angle is controlled so as to eliminate the error in the welding current measuring value and set current. Consequently, the current at the starting time can be made optimum without performing a pilot electrification, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、スポット溶接機における定電流制御方法に関
し、特に本通電に遅れを来すパイロット通電や煩雑なテ
スト通電を行わすに溶接開始時に適切な溶接電流を流す
ようにしたものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a constant current control method in a spot welding machine, and in particular to a method for controlling a constant current in a spot welding machine, particularly at the start of welding to perform pilot energization that delays main energization or complicated test energization. It is designed to flow an appropriate welding current.

(従来の技術) 一般のスポット溶接機では、第3図に示すように一対の
サイリスタ10.12からなるコンタクタを介しモ主電
源電圧Voを溶接トランス14の一次側コイルに供給し
、その二次側コイルから溶接電流Iを流して被溶接材1
6.18をジュール発熱によって溶融せしめ、それら被
溶接材16゜18を冶金的に接合する。
(Prior art) In a general spot welding machine, as shown in FIG. Welding current I is applied from the side coil to weld material 1.
6.18 is melted by Joule heat generation, and the materials to be welded 16°18 are metallurgically joined.

第3図において20は、サイリスタ10.12にゲート
ドライブ信号Ga、Gbを与えてそれらサイリスタの点
弧角または点弧位相を制御する溶接制御装置または溶接
タイマである。また22は溶接7Ti流Iの測定に使わ
れるトロイダルコイルである。
In FIG. 3, 20 is a welding control device or a welding timer that applies gate drive signals Ga, Gb to the thyristors 10.12 to control the firing angle or firing phase of these thyristors. Further, 22 is a toroidal coil used for measuring the welding 7Ti flow I.

第4図および第5図は、サイrJスタ10,12の点弧
角φを変えることによって溶接電流を制御する方式の原
理を示す。第4図は点弧角φを力率角θに一致させた場
合で、このときの溶接工aIは略連続的な正位波、いわ
ゆるフルヒート電流波形になる。第5図は点弧角φを力
率角θよりさらにζだけ大きくした(遅らせた)場合で
、このとき溶接トランス14の一次側には電圧のかから
ない期間が発生し、溶接電流Iは不連続になると同時に
そのピーク値も小さくなり、いわゆるヒート−コントロ
ール電流波形になる。点弧角φの遅れζを更に大きくす
ると、電圧の休止期間が増え、溶接電流Iの大きさが更
に小さくなる。このように、点弧角φを変えることによ
って溶接電流■の大きさを制御することができる。
4 and 5 show the principle of a system for controlling the welding current by changing the firing angle φ of the cylindrical rJ stars 10 and 12. FIG. 4 shows a case where the firing angle φ is made to match the power factor angle θ, and the welder aI at this time becomes a substantially continuous positive wave, a so-called full heat current waveform. Fig. 5 shows the case where the firing angle φ is made larger (delayed) by ζ than the power factor angle θ, and at this time, a period in which no voltage is applied to the primary side of the welding transformer 14 occurs, and the welding current I is discontinuous. At the same time, its peak value also decreases, resulting in a so-called heat control current waveform. If the delay ζ of the firing angle φ is further increased, the voltage rest period is increased, and the magnitude of the welding current I is further reduced. In this way, the magnitude of the welding current (■) can be controlled by changing the firing angle φ.

ところで、第4図および第5図では1サイクルしか示さ
れてないが、実際には腹数、例えば10サイクル流され
、各々のサイクルにおいて溶接電流Iが設定電流値IO
に一致するように点弧角φが制御され、いわゆる定電流
制御が行われる。
By the way, although only one cycle is shown in FIGS. 4 and 5, in reality, the welding current I is flown for a number of cycles, for example, 10 cycles, and in each cycle, the welding current I reaches the set current value IO.
The firing angle φ is controlled so as to match the ignition angle φ, and so-called constant current control is performed.

しかし、最初(第1)のサイクルで流れる溶接電流■が
設定電流値Ioから大きくずれると、後のサイクルで次
第に安定するようになっても、溶接品質には悪い影響が
生ずる。すなわち、最初の溶接電流Iが大きすぎると火
花が飛び、小さすぎると溶接電流がゆっくり(遅く)増
大するア、ブスロープになる。
However, if the welding current (2) flowing in the first (first) cycle deviates significantly from the set current value Io, it will have a negative effect on the welding quality even if it gradually becomes stable in the later cycles. That is, if the initial welding current I is too large, sparks will fly, and if it is too small, the welding current will increase slowly (slowly) resulting in a slow slope.

したがって、定電流制御では、最初のサイクルで設定電
流値IOに近い適切な溶接電流Iを流すことが肝要であ
る。
Therefore, in constant current control, it is important to flow an appropriate welding current I close to the set current value IO in the first cycle.

そのために従来は、正規の通電(本通電)前に予め定め
た適当な点弧角φで1サイクルの/ぐイロ、ト通電を行
ってそのとき流れる溶接電流の測定値(実効値)と遅れ
角(γ)とから力率角θと最適点弧角φmとを算出し、
その直後の本通電ではその最適点弧角φlで最初のサイ
クルの通電を行うようにしている。
For this purpose, conventionally, before the regular energization (main energization), one cycle of energization was performed at a predetermined appropriate firing angle φ, and the measured value (effective value) of the welding current flowing at that time and the lag. Calculate the power factor angle θ and the optimal firing angle φm from the angle (γ),
In the main energization immediately after that, the first cycle of energization is performed at the optimum firing angle φl.

また、別の方式として、溶接電流制御装置20の設置時
に数サイクルに亘るテスト通電を行い、それによってや
はり力率角Oと最適点弧角φmとを算出してそれをメモ
リに記憶し、各溶接時にはその最適点弧角φmを読み出
して最初のサイクルの通電を行っている。
Alternatively, when the welding current control device 20 is installed, test energization is performed for several cycles, and the power factor angle O and the optimum firing angle φm are calculated and stored in the memory. During welding, the optimum firing angle φm is read out and the first cycle of current is applied.

(発明が解決しようとする問題点) しかし、前者の方式によれば、各溶接の本通電前に必ず
パイロット通電性の1サイクルの遅れがでるので、連続
的に高速な溶接作業を行うには不便であった。
(Problem to be solved by the invention) However, according to the former method, there is always a delay of one cycle in pilot energization before main energization for each welding, so it is difficult to perform continuous high-speed welding work. It was inconvenient.

また、後者の方式では、タイマ設置時の調整作業が煩雑
になるという不便があった。
Furthermore, the latter method has the inconvenience of complicating adjustment work when installing the timer.

本発明は、従来技術の上記問題点に鑑みてなされたもの
で、本通電に遅れを来すパイロット通電や煩雑なテスト
通電を行わずに溶接開始時に適切な溶接電流を流すよう
にした定電流制御方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art, and is a constant current that allows an appropriate welding current to flow at the start of welding without carrying out pilot energization or complicated test energization that causes a delay in main energization. The purpose is to provide a control method.

(問題点を解決するための手段) 上記目的を達成する本発明の方法は、力率角をパラメー
タとして一定のサイリスタ点弧角−相対溶接電流特性を
有するスポット溶接機において設定電流値に等しい溶接
電流が流れるように各溶接サイクルのサイリスタ点弧角
を制御する定電流制御方法であって、スポット溶接機の
最大電流および力率角の概略値を定め、それら概略値に
対応するサイリスタ点弧角を前記サイリスタ点弧角−相
対溶接電流特性に基づいて決定し、最初の溶接サイクル
では上記決定されたサイリスタ点弧角で通電させ、第2
のサイクル以降では前回の溶接サイクルで流れた溶接電
流の測定値と設定電流値との比較誤差をな(すようなサ
イリスタ点弧角で通電させるこ七を特徴とする。
(Means for Solving the Problems) The method of the present invention for achieving the above object is to perform welding with a current value equal to a set value in a spot welding machine having a constant thyristor firing angle-relative welding current characteristic using the power factor angle as a parameter. A constant current control method for controlling the thyristor firing angle of each welding cycle so that current flows, the method determines approximate values of the maximum current and power factor angle of a spot welding machine, and determines the thyristor firing angle corresponding to these approximate values. is determined based on the thyristor firing angle-relative welding current characteristics, and in the first welding cycle, the thyristor is energized at the determined firing angle, and in the second
After the cycle, the welding current is energized at such a thyristor firing angle as to cause a comparison error between the measured value of the welding current flowing in the previous welding cycle and the set current value.

(作用) 第1図に、スポット溶接機のサイリスタ点弧角−相対溶
接電流特性を示す。図示のように力率角θが変化すると
特性曲線も変わるが、一般のスポット溶1妾機の力率角
θは50°〜70°で大差かないので、概略値として例
えば60°に定めることができる。また、最大電流はス
ボ・ノド溶接機の構造ないし接続形態によって規定され
るが、大抵は既知であり、その概略値を定めることは容
易である。
(Function) FIG. 1 shows the thyristor firing angle-relative welding current characteristics of a spot welding machine. As shown in the figure, when the power factor angle θ changes, the characteristic curve also changes, but since the power factor angle θ of a general spot welding machine does not differ much between 50° and 70°, it can be set to, for example, 60° as an approximate value. can. Further, the maximum current is determined by the structure or connection form of the slot welding machine, but is generally known and it is easy to determine its approximate value.

したがって、例えば最大電流の概略値か16KA(キロ
アンペア)(こ定められたスポットを容(妾機において
設定電流値が8KAに選ばれた場合、図示の特性で設定
電流値に相当する相対電流は0゜5となるので、特性曲
線(θ=60’ )で対応するサイリスタ点弧角φは約
105゛ となる。
Therefore, for example, if the approximate value of the maximum current is 16 KA (kiloampere), and the set current value is selected to be 8 KA, then the relative current corresponding to the set current value with the characteristics shown is 0°5, the corresponding thyristor firing angle φ in the characteristic curve (θ=60') is approximately 105°.

本発明では、このようにして決定された点弧角(約10
5°)で最初の溶接サイクルの通電を行うので、パイロ
ット通電やテスト通電等を行う必要がない。そして、第
2の溶接サイクル以降では前回の溶接サイクルで流れた
溶接電流の測定値と設定電流値とを比較してその比較誤
差をなくすようなサイリスタ点弧角φで通電を行うので
、最初の溶接サイクルでの溶接電流が設定値より多少ず
れても、あるいは電源電圧の変動、電圧波形の歪み、被
溶接物の抵抗変化(負荷変動)等による誤差が生じても
、直ちに補正がなされて安定した高精度な定電流制御が
行われる。
In the present invention, the firing angle determined in this way (approximately 10
Since the first welding cycle is energized at 5°), there is no need to conduct pilot energization or test energization. In the second and subsequent welding cycles, the measured value of the welding current that flowed in the previous welding cycle is compared with the set current value, and the thyristor is energized at a firing angle φ that eliminates the comparison error. Even if the welding current in the welding cycle slightly deviates from the set value, or even if an error occurs due to fluctuations in the power supply voltage, distortion of the voltage waveform, changes in resistance of the welded object (load fluctuations), etc., it is immediately corrected and stabilized. Highly accurate constant current control is performed.

(実施例) 第2図は本発明の実施に好適な溶接電流制御装置(溶接
タイマ)の回路構成を示す。
(Embodiment) FIG. 2 shows a circuit configuration of a welding current control device (welding timer) suitable for implementing the present invention.

第2図において、トロイダルコイル22は第3図と同じ
もので、溶接電流Iが流れると、その微分値に対応した
波形の電圧信号Elを発生する。
In FIG. 2, the toroidal coil 22 is the same as that in FIG. 3, and when the welding current I flows, it generates a voltage signal El having a waveform corresponding to its differential value.

トロイダルコイル22の端子は、測定レンジ切替用の第
1スイツチ36により選択される抵抗30.32.34
のいずれか1つを介して演算増幅器38の反転入力端子
に接続される。演算増幅器38の非反転入力端子は接地
されるとともに、その出力端子と反転入力端子間にはコ
ンデンサ40が接続され、これにより演算増幅器38は
積分回路上して動作し、その出力端子には電圧信号E1
を積分した電圧信号、すなわち溶接電流Iに対応した波
形の電圧信号E2が得られる。本実施例において、抵抗
30,32.34の抵抗値R30,R32、R34は1
:2:4の比に選ばれている。この積分回路の積分定数
は1/CR(Cはコンデンサ40のキャパシタンス、R
は抵抗30.32または34の抵抗値)であるから、抵
抗30,32゜34がそれぞれ選ばれたときの電圧信号
E2のレベルを< E 2a> 、  < E 2b>
 、  < E 2c>とすると、それらレベル< E
 2a> 、  < E 2b> 、  < E 2c
>は1: 0.5  : 0.25の比になる。したが
って、抵抗30が選択されてl0KAの溶接電流Iが流
れたときの電圧信号E2のレベルを基準レベル< E 
2S>とすれば、抵抗32が選択されて20KAの溶接
電流■が流れた場合、および抵抗34が選択されて40
KAの溶接電流Iが流れた場合にも基準レベル< E 
2S>の電圧信号E2が得られる。而して本実施例では
、抵抗30が5〜l0KAレンジ用、抵抗32が10〜
20KAレンジ用、抵抗34が20〜40KAレンツ用
に選択される。
The terminals of the toroidal coil 22 are connected to resistors 30, 32, and 34 selected by the first switch 36 for changing the measurement range.
The inverting input terminal of the operational amplifier 38 is connected to the inverting input terminal of the operational amplifier 38 via one of the following. The non-inverting input terminal of the operational amplifier 38 is grounded, and a capacitor 40 is connected between the output terminal and the inverting input terminal, so that the operational amplifier 38 operates as an integrating circuit, and a voltage is applied to the output terminal. Signal E1
A voltage signal E2 having a waveform corresponding to the welding current I is obtained. In this embodiment, the resistance values R30, R32, and R34 of the resistors 30, 32.34 are 1
:2:4 ratio is selected. The integration constant of this integration circuit is 1/CR (C is the capacitance of the capacitor 40, R
is the resistance value of the resistor 30.32 or 34), so the level of the voltage signal E2 when the resistors 30 and 32°34 are respectively selected is <E 2a> and <E 2b>
, < E 2c>, then their levels < E
2a>, <E 2b>, <E 2c
> becomes a ratio of 1: 0.5: 0.25. Therefore, the level of the voltage signal E2 when the resistor 30 is selected and the welding current I of 10 KA flows is the reference level < E
2S>, if resistor 32 is selected and a welding current of 20 KA flows, and if resistor 34 is selected and a welding current of 40 KA flows, then
Even when the welding current I of KA flows, the reference level < E
2S> voltage signal E2 is obtained. In this embodiment, the resistor 30 is for the 5 to 10 KA range, and the resistor 32 is for the 10 to 10 KA range.
For the 20KA range, resistor 34 is selected for the 20-40KA range.

演算増幅器38の出力端子は測定レンジ切替用の第2ス
イツチ52によって選択される抵抗42〜50のいずれ
か1つを介して演算増幅器54の反転入力端子に接続さ
れる。演算増幅器54の非反転入力端子は接地されると
ともに、その出力端子と反転入力端子間には抵抗56が
接続され、これにより演算増幅器54は増幅回路として
動作し、その出力端子には電圧信号E2の所定倍(R5
8/R42〜R50)のレベルの電圧信号E3が得られ
る。
The output terminal of the operational amplifier 38 is connected to the inverting input terminal of the operational amplifier 54 via one of the resistors 42 to 50 selected by the second switch 52 for changing the measurement range. The non-inverting input terminal of the operational amplifier 54 is grounded, and a resistor 56 is connected between the output terminal and the inverting input terminal, so that the operational amplifier 54 operates as an amplifier circuit, and the voltage signal E2 is supplied to the output terminal of the operational amplifier 54. Predetermined times (R5
8/R42 to R50) is obtained.

本実施例において、抵抗42〜50,5f3の抵抗値R
42,R44,R4Ei、  R48,R50,R2H
は1.0:1.2 : 1.4 : 1.G : 1.
8 : 2.0の比に選ばれて0る。したがって、抵抗
42が選ばれると増幅率は2.0 /1.0になり、抵
抗44が選ばれると増幅率は2.0 /1.2になり、
抵抗46が選ばれると増幅率は2.0 /1.4になり
、抵抗48が選ばれると増幅率は2.0 /1.Gにな
り、抵抗50が選ばれると増幅率は2.0 /1.8に
なる。このように多段階的な増幅率によって、上記抵抗
30〜34およびスイッチ36による大まかな測定レン
ジが多段階的に精細化されたし/′)となり、実質上任
意の最大電流値INに対応して電圧信号E3のレベルを
基準レベル< E 3S>にすることができる。
In this embodiment, the resistance value R of the resistors 42 to 50, 5f3
42, R44, R4Ei, R48, R50, R2H
is 1.0:1.2:1.4:1. G: 1.
The ratio of 8:2.0 is chosen and it is 0. Therefore, when resistor 42 is selected, the amplification factor is 2.0/1.0, and when resistor 44 is selected, the amplification factor is 2.0/1.2.
When resistor 46 is selected, the amplification factor is 2.0/1.4, and when resistor 48 is selected, the amplification factor is 2.0/1. G and the resistor 50 is selected, the amplification factor becomes 2.0/1.8. In this way, the multi-stage amplification factor allows the rough measurement range by the resistors 30 to 34 and the switch 36 to be refined in multiple stages, and can correspond to virtually any maximum current value IN. The level of the voltage signal E3 can be set to the reference level <E3S>.

すなわち、例えば最大電流値IMが16KAの場合には
、第1スイ・ソチ36で10〜20KAレンン用の抵抗
32が選ばれることにより、演算増幅器38の出力端子
に得られる電圧信号E2のレベルは基準レベル< E 
2S>の16/20倍が最大値となる。しかし、第2ス
イ、チ52で増幅$2゜0/1.[i用の抵抗48が選
ばれることにより演算増幅器54の出力端子に得られる
電圧信号E3のレベルは、基準レベル< E 2S>に
対応する基準レベル< E 3s>となる。同様に、例
えば最大電流値INが12KAの場合には、やはり第1
スイツチ36で10〜20KAレンツ用の抵抗32が選
ばれることにより電圧信号E2のレベルは基準レベル<
 E 2s>の12/20倍が最大値となるが、第2ス
イツチ52で増幅率2.0 /1.2用の抵抗44が選
ばれることにより電圧信号E3のレベルは基準レベル<
 E 2s>に対応する基準レベル< E 3s>とな
る。
That is, for example, when the maximum current value IM is 16 KA, the level of the voltage signal E2 obtained at the output terminal of the operational amplifier 38 is Reference level < E
The maximum value is 16/20 times 2S>. However, the second switch, Chi52, amplifies $2゜0/1. [By selecting the resistor 48 for i, the level of the voltage signal E3 obtained at the output terminal of the operational amplifier 54 becomes a reference level <E 3s> corresponding to the reference level <E 2S>. Similarly, for example, if the maximum current value IN is 12KA, the first
By selecting the resistor 32 for 10 to 20 KA with the switch 36, the level of the voltage signal E2 is lower than the reference level.
The maximum value is 12/20 times E2s>, but by selecting the resistor 44 for the amplification factor of 2.0/1.2 with the second switch 52, the level of the voltage signal E3 becomes the reference level<
The reference level <E 3s> corresponds to E 2s>.

このように、本実施例では、実質上任意の最大電流値I
Nに対して電圧信号E3のレベルを基準値または最大値
にすることができるので、後段のアナログ−ディジタル
(A/D)変換器58および中央演算処理装置60にお
ける信号処理および精度の改善が図れる。すなわち、常
に最大電流値INに対してA/D変換器58の入力電圧
を最大値(フルレンジ)にすることができるので、その
出力端子に得られるディジタル信号e3の分解能が低下
することがない。この点に関し、従来ては単に10KA
、20KA  、40KAの3レンジしかないので、最
大電流値が例えば16KAの場合には20KAのレンジ
が選ばれることによってA/D変換器S8の入力電圧(
E3)が基準レベルの16/20倍に減縮され、A/D
変換後のディジタル信号の分解能が小さり、測定精度が
低くなるという問題があった。また、本実施例では最大
電流値IN  (例えば18KA)を相対的に1とすれ
ば設定電流値(例えば8KA)が0.5となり、第1図
のサイリスタ点弧角−相対溶接電流特性に対応させるこ
とができるので、CPU60における演算処理に便利で
ある。
In this way, in this embodiment, substantially any maximum current value I
Since the level of the voltage signal E3 can be set to the reference value or the maximum value for N, signal processing and accuracy in the analog-to-digital (A/D) converter 58 and the central processing unit 60 at the subsequent stage can be improved. . That is, since the input voltage of the A/D converter 58 can always be set to the maximum value (full range) with respect to the maximum current value IN, the resolution of the digital signal e3 obtained at its output terminal does not deteriorate. Regarding this point, conventionally only 10KA
, 20KA, and 40KA, so if the maximum current value is, for example, 16KA, the input voltage of A/D converter S8 (
E3) is reduced to 16/20 times the reference level, and the A/D
There was a problem in that the resolution of the converted digital signal was small and the measurement accuracy was low. In addition, in this example, if the maximum current value IN (for example, 18 KA) is relatively 1, the set current value (for example, 8 KA) becomes 0.5, which corresponds to the thyristor firing angle-relative welding current characteristic shown in Fig. 1. This is convenient for arithmetic processing in the CPU 60.

なお、CPU60は、第2サイクル以降はディジタル信
号e3に基づいて前回の溶接電流Iの実効値(測定値)
を算出し、さらにその測定値を設定電流値IOと比較し
てその誤差を出し、その比較誤差をな(すようなタイミ
ングのゲートトリガ信号Ga、Gbを発生する。メモリ
62には、設定電流値Io+最大電流値INおよび力率
角θの概略値のデータが格納されるとともに、スポット
溶接機のサイリスタ点弧角−相対溶接電流特性が数値デ
ータまたは計算式として格納されている。そしてCPU
60は、最大電流値INおよび力率角θの概略値が入力
装置(図示せず)より入力されると、該サイリスタ点弧
角−相対溶接電流特性に基づいて最初のサイクルで使用
する点弧角φを決定する。またCPU60は、スイッチ
36.52の切替を行う。
Note that from the second cycle onward, the CPU 60 calculates the effective value (measured value) of the previous welding current I based on the digital signal e3.
is calculated, and the measured value is compared with the set current value IO to calculate the error, and gate trigger signals Ga and Gb are generated at timings such that the comparison error is made. Data of approximate values of value Io + maximum current value IN and power factor angle θ are stored, and thyristor firing angle-relative welding current characteristics of the spot welding machine are stored as numerical data or calculation formula.
60, when the approximate values of the maximum current value IN and the power factor angle θ are input from an input device (not shown), the ignition to be used in the first cycle is determined based on the thyristor firing angle-relative welding current characteristic. Determine the angle φ. The CPU 60 also switches the switches 36 and 52.

(発明の効果) 以上のように、本発明では、スポット溶接機の最大電流
および力率角の概略値を定めてサイリスタ点弧角−相対
溶接電流特性より決定した点弧角で最初のサイクルの通
電を適切に行うようにしたので、本通電に迎れを来すパ
イロット通電や煩雑なテスト通電を不必要としつつ、良
好な溶接品質を得ることができる。
(Effects of the Invention) As described above, in the present invention, the approximate values of the maximum current and power factor angle of the spot welding machine are determined, and the firing angle determined from the thyristor firing angle-relative welding current characteristic is used for the first cycle. Since energization is carried out appropriately, good welding quality can be obtained while eliminating the need for pilot energization and complicated test energization that accompany main energization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明するためのサイリスタ点弧
角−相対溶接電流特性を示す図、第2図は本発明の実施
に好適な溶接電流制御装置(溶接タイマ)の回路構成を
示すブロック図、第3図は一般のスポット/8接機の回
路構成を示す回路図、 第4図および第5図はサイリスタ点弧角φを変えること
によって溶接電流を制御する方式の原理を示す図である
。 10.12・・・・サイリスタ、14・・・・溶接トラ
ンス20・・・・溶接制御装置、22・・・・トロイダ
ルコイル、30〜34・・・・抵抗、36・・・・第1
スイツチ、38・・・演算増幅器、40・・・・コンデ
ンサ、42〜50,56・・・・抵抗、52・・・・第
2スイツチ、54・・・・演算増幅器、58・・・・ア
ナログーディノタル(A/D)変換器、60・・・・中
央演算処理装置、62・・・・メモリ。 特許出願人  宮  地  電  子  株  式  
会  社代理人 弁理上 佐々木 を 孝 第1図 →「イリス7声、夕氏角 第3図 七 ”’−−/′’ 第5国 手続補正書(自発) 昭和60年119日 \・2 特許庁長官 宇 賀 道 部 殿 1、事件の表示 昭和60年特許願第249496号 2、発明の名称 スポット溶接機における定電流制御方法3、補正をする
者 事件との関係 特許出願人 住所     千葉県野田市ニッ塚95番3号氏名(名
称)宮地電子株式会社 代表者西澤敬次 4、代理人 住所〒101東京都千代田区神田駿河台2−11−16
駿河台さいかち坂ビル302号 電話 東京(233)3191 図面 6、補正の内容 第5図を添付のように補正する。     、+、/:
“ヘト第5図
FIG. 1 is a diagram showing thyristor firing angle-relative welding current characteristics for detailed explanation of the present invention, and FIG. 2 is a diagram showing a circuit configuration of a welding current control device (welding timer) suitable for implementing the present invention. Block diagram, Figure 3 is a circuit diagram showing the circuit configuration of a general spot/8 welding machine, Figures 4 and 5 are diagrams showing the principle of the method of controlling welding current by changing the thyristor firing angle φ. It is. 10.12... Thyristor, 14... Welding transformer 20... Welding control device, 22... Toroidal coil, 30-34... Resistor, 36... First
switch, 38... operational amplifier, 40... capacitor, 42-50, 56... resistor, 52... second switch, 54... operational amplifier, 58... analog Goodinotal (A/D) converter, 60...Central processing unit, 62...Memory. Patent applicant Miyaji Electronics Co., Ltd.
Company agent Patent attorney Takashi Sasaki Figure 1 → "Iris 7 voices, Yuji angle Figure 3 7"'--/'' 5th country procedural amendment (voluntary) 1985/119\・2 Patent Agency Director Michibe Uga 1, Indication of the case Patent Application No. 249496 of 1985 2, Name of the invention Constant current control method in a spot welder 3, Relationship with the person making the amendment case Patent applicant address Noda, Chiba Prefecture No. 95-3 Ichi Nitsuka Name: Miyaji Electronics Co., Ltd. Representative Keiji Nishizawa 4 Agent address: 2-11-16 Kanda Surugadai, Chiyoda-ku, Tokyo 101
Surugadai Saikachizaka Building No. 302 Telephone: Tokyo (233) 3191 Drawing 6, details of amendments Drawing 5 will be amended as attached. , +, /:
“Heto Figure 5

Claims (1)

【特許請求の範囲】 力率角をパラメータとして一定のサイリスタ点弧角−相
対溶接電流特性を有するスポット溶接機において設定電
流値に等しい溶接電流が流れるように各溶接サイクルの
サイリスタ点弧角を制御する定電流制御方法であって、 前記スポット溶接機の最大電流および力率角の概略値を
定め、それら概略値に対応するサイリスタ点弧角を前記
サイリスタ点弧角−相対溶接電流特性に基づいて決定し
、最初の溶接サイクルでは前記決定されたサイリスタ点
弧角で通電させ、第2の溶接サイクル以降では前回の溶
接サイクルで流れた溶接電流の測定値と前記設定電流値
との比較誤差を実質上零にするようなサイリスタ点弧角
で通電させることを特徴とする定電流制御方法。
[Claims] Controlling the thyristor firing angle of each welding cycle so that a welding current equal to a set current value flows in a spot welding machine having a constant thyristor firing angle-relative welding current characteristic using the power factor angle as a parameter. A constant current control method comprising: determining approximate values of the maximum current and power factor angle of the spot welding machine; and determining a thyristor firing angle corresponding to these approximate values based on the thyristor firing angle-relative welding current characteristic. In the first welding cycle, the thyristor is energized at the determined firing angle, and in the second and subsequent welding cycles, the comparison error between the measured value of the welding current flowing in the previous welding cycle and the set current value is substantially reduced. A constant current control method characterized by energizing a thyristor at a firing angle that makes the thyristor zero.
JP24949685A 1985-11-06 1985-11-06 Constant current control method in spot welding machine Granted JPS62107877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24949685A JPS62107877A (en) 1985-11-06 1985-11-06 Constant current control method in spot welding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24949685A JPS62107877A (en) 1985-11-06 1985-11-06 Constant current control method in spot welding machine

Publications (2)

Publication Number Publication Date
JPS62107877A true JPS62107877A (en) 1987-05-19
JPH0242302B2 JPH0242302B2 (en) 1990-09-21

Family

ID=17193830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24949685A Granted JPS62107877A (en) 1985-11-06 1985-11-06 Constant current control method in spot welding machine

Country Status (1)

Country Link
JP (1) JPS62107877A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306080A (en) * 1988-05-30 1989-12-11 Osaka Denki Co Ltd Method and device for controlling electrification for resistance welding machine
JPH02207980A (en) * 1989-02-07 1990-08-17 Ohara Kk Method for controlling constant current of resistance welding machine
JPH07112281A (en) * 1993-10-14 1995-05-02 Miyachi Technos Kk Method and device for controlling resistance welding
JP2008257625A (en) * 2007-04-09 2008-10-23 Omron Corp Phase control method and phase control device
JP2008305226A (en) * 2007-06-08 2008-12-18 Omron Corp Power control method and power control device
JP2010035792A (en) * 2008-08-05 2010-02-18 Sophia Co Ltd Game machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597884A (en) * 1979-01-17 1980-07-25 Nagoya Dengenshiya:Kk Control system of thyristor power source for resistance welding machine
JPS61123481A (en) * 1984-11-19 1986-06-11 Dengensha Mfg Co Ltd Constant-current control method of resistance welder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597884A (en) * 1979-01-17 1980-07-25 Nagoya Dengenshiya:Kk Control system of thyristor power source for resistance welding machine
JPS61123481A (en) * 1984-11-19 1986-06-11 Dengensha Mfg Co Ltd Constant-current control method of resistance welder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306080A (en) * 1988-05-30 1989-12-11 Osaka Denki Co Ltd Method and device for controlling electrification for resistance welding machine
JPH02207980A (en) * 1989-02-07 1990-08-17 Ohara Kk Method for controlling constant current of resistance welding machine
JPH07112281A (en) * 1993-10-14 1995-05-02 Miyachi Technos Kk Method and device for controlling resistance welding
JP2008257625A (en) * 2007-04-09 2008-10-23 Omron Corp Phase control method and phase control device
JP2008305226A (en) * 2007-06-08 2008-12-18 Omron Corp Power control method and power control device
JP2010035792A (en) * 2008-08-05 2010-02-18 Sophia Co Ltd Game machine

Also Published As

Publication number Publication date
JPH0242302B2 (en) 1990-09-21

Similar Documents

Publication Publication Date Title
US3896287A (en) Direct current arc power supply
JPS6211373B2 (en)
CA1187562A (en) Welding method and apparatus
JPH0239350B2 (en)
JPS62107877A (en) Constant current control method in spot welding machine
JPH0714097B2 (en) Laser output controller
JPH0868809A (en) Voltage-resistance synthesis device
US3538299A (en) Constant arc length welding system insensitive to current changes
US4849601A (en) Current-loop feedback of spot welding machines
JPS6313307A (en) Method for controlling stroke of solenoid
US4465918A (en) Method for controlling welding current
US4419559A (en) Resistive welder having a controlled output voltage unaffected by secondary circuit disconnection
US4345139A (en) Constant current SCR power supply method and system for a welding load
JPS6232029B2 (en)
JPH0610765B2 (en) Process control equipment
RU2147979C1 (en) Arc welding power supply built around high- frequency inverter
SU1201081A1 (en) Method and apparatus for extremum control of welding arc power
JPS6317551B2 (en)
JPS5814055Y2 (en) Oscillating device for arc welding
JPH0156869B2 (en)
JPH0550841B2 (en)
SU1445882A1 (en) Power supply apparatus for electric arc welding
JPS6313525Y2 (en)
SU1098705A1 (en) Device for controlling pulsing arc voltage
JPH0115352B2 (en)