JPS62107249A - Acceration increment control device for automobile engine of fuel injection type - Google Patents

Acceration increment control device for automobile engine of fuel injection type

Info

Publication number
JPS62107249A
JPS62107249A JP24695385A JP24695385A JPS62107249A JP S62107249 A JPS62107249 A JP S62107249A JP 24695385 A JP24695385 A JP 24695385A JP 24695385 A JP24695385 A JP 24695385A JP S62107249 A JPS62107249 A JP S62107249A
Authority
JP
Japan
Prior art keywords
acceleration
amount
fuel
fuel injection
increased
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24695385A
Other languages
Japanese (ja)
Inventor
Shinpei Nakaniwa
伸平 中庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP24695385A priority Critical patent/JPS62107249A/en
Publication of JPS62107249A publication Critical patent/JPS62107249A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To provide proper accelerating performance by making a correction to a fuel feeding increment which is retrieved based on a detected manipulated variable for acceleration, based on an actually detected accelerating condition such that an initial acceleration will be a target acceleration. CONSTITUTION:In the titled engine A, a drive pulse signal corresponding to a fuel injection which is set by a setting means B based on engine operating conditions, is outputted to fuel injection valves C by a drive pulse signal output means D. And a manipulated variable for acceleration is detected by an acceleration detecting means F, and a fuel feeding increment for acceleration corresponding to the manipulated variable is retrieved by a retrieval means based on a command from a memory means, and the increment in a form of an interrupting pulse signal, is interrupted into the drive pulse signal in the initial stage of acceleration so as to be outputted to the fuel injection valve C. In this case, an actual accelerating condition of a vehicle is detected by a detecting means I, and a correction is made to the fuel feeding increment for acceleration by a correction means J based on the detected accelerating condition such that an initial acceleration will be a target acceleration.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は車両用燃料噴射式内燃機関の加速増量制御装置
に関し、特に加速初期に加速増量を図る加速増量制御装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an acceleration increase control device for a fuel-injected internal combustion engine for a vehicle, and more particularly to an acceleration increase control device that increases acceleration amount at an early stage of acceleration.

〈従来の技術〉 電子制御燃料噴射式内燃機関の従来例として以下のよう
なものがある(実願昭60−066558号参照)。
<Prior Art> The following is a conventional example of an electronically controlled fuel injection type internal combustion engine (see Utility Model Application No. 60-066558).

即ち、吸気通路に介装された熱線抵抗の出力電圧により
吸入空気流量を検出する吸入空気流量計の検出吸入空気
流量Qと機関回転速度Nとから基本噴射tTp−KXQ
/N (Kは定数)を演算すると共に、主として水温に
応じた各種補正係数C0EF、空燃比フィードバンク補
正係数α、バッテリ電圧による補正係数Tsとを演算し
た後、定常運転時における燃料噴射11Ti−TpXC
OEF×α+Tsを演算する。
That is, the basic injection tTp-KXQ is determined based on the detected intake air flow rate Q of the intake air flow meter that detects the intake air flow rate based on the output voltage of a hot wire resistor installed in the intake passage and the engine rotational speed N.
/N (K is a constant), as well as various correction coefficients C0EF mainly depending on water temperature, air-fuel ratio feedbank correction coefficient α, and correction coefficient Ts depending on battery voltage, fuel injection 11Ti- during steady operation is calculated. TpXC
Calculate OEF×α+Ts.

そして、点火信号等に同期して燃料噴射弁に対し前記燃
料噴射量Tiに対応するパルス巾の駆動パルス信号を出
力し機関に燃料を供給する。
Then, in synchronization with the ignition signal and the like, a drive pulse signal having a pulse width corresponding to the fuel injection amount Ti is outputted to the fuel injection valve to supply fuel to the engine.

また、加速運転時には吸気絞弁開度の変化率等から得ら
れた加速増量係数を前記燃料噴射ITiに乗算して加速
時増量燃料量を設定し、該増量燃料量に対応するパルス
巾の割込みパルス信号を前記駆動パルス信号の間に割込
ませて加速初期に加速時増量燃料を噴射するいわゆる割
込み噴射により加速増量を図る。
In addition, during acceleration operation, the fuel injection ITi is multiplied by the acceleration increase coefficient obtained from the rate of change of the intake throttle valve opening, etc. to set the increase fuel amount during acceleration, and an interrupt with a pulse width corresponding to the increase fuel amount is set. Acceleration is increased by so-called interrupt injection, in which a pulse signal is inserted between the drive pulse signals and an increased amount of fuel is injected at the beginning of acceleration.

(発明が解決しようとする問題点) しかしながら、このような従来の加速増量制御装置にお
いては、最適な加速特性が得られるように燃料噴射特性
或いは吸入空気流量検出特性が平均値的な燃料噴射弁或
いは吸入空気流量計に対応させ、吸気絞弁開度の変化率
等に基づいて加速時増量燃料量を設定するようにしてい
るので、燃料噴射弁或いは吸入空気流量針の製品バラツ
キによって加速時増量燃料量に基づく空燃比が例えば希
薄化する。
(Problem to be Solved by the Invention) However, in such a conventional acceleration increase control device, in order to obtain optimal acceleration characteristics, a fuel injection valve whose fuel injection characteristics or intake air flow rate detection characteristics are average values is used. Alternatively, it is compatible with the intake air flow meter, and the increased fuel amount during acceleration is set based on the rate of change of the intake throttle valve opening, etc., so the increased fuel amount during acceleration is determined by product variations in the fuel injection valve or intake air flow rate needle. For example, the air-fuel ratio based on the amount of fuel becomes leaner.

具体的には燃料噴射特性が悪化すると加速時増量燃料量
が通常より低下すると、また吸入空気流量計の吸入空気
流量特性が悪化し、実際の吸入空気流量(第11図実線
示)より検出吸入空気流量(第11図破線示)が低下す
る。
Specifically, if the fuel injection characteristics worsen and the increased fuel amount during acceleration becomes lower than normal, the intake air flow rate characteristics of the intake air flow meter will deteriorate, and the intake air flow rate detected by the actual intake air flow rate (shown by the solid line in Figure 11) will deteriorate. The air flow rate (shown by the broken line in FIG. 11) decreases.

これらの結果、機関の燃焼性能が低下し或いは失火が発
生し、第11図に示すように加速初期に燃焼室の図示平
均有効圧が異常に低下(第11図中A)したり車両の加
速度が低下(減速状態第11図中B)し、最悪の場合に
はエンジンストールが発生するという問題点がある。
As a result, the combustion performance of the engine decreases or a misfire occurs, and as shown in Figure 11, the indicated mean effective pressure in the combustion chamber abnormally decreases (A in Figure 11) at the beginning of acceleration, and the acceleration of the vehicle decreases. The problem is that the engine speed decreases (deceleration state B in FIG. 11), and in the worst case, an engine stall occurs.

本発明は、このような実状に鑑みてなされたもので、加
速初期に割込み噴射を行っても燃焼性能の低下或いは失
火を防止できる加速増量制御装置を提供することを目的
とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an acceleration increase control device that can prevent a decrease in combustion performance or a misfire even if interrupt injection is performed at an early stage of acceleration.

く問題点を解決するための手段〉 このため、本発明は燃料噴射弁等の製造バラツキが生じ
ても適正な加速時増量燃料量を設定し加速時の燃焼性能
の低下或いは失火を防止することを特徴とする。
Means for Solving the Problems> For this reason, the present invention sets an appropriate amount of increased fuel during acceleration even if there are manufacturing variations in fuel injection valves, etc., and prevents a decrease in combustion performance or misfire during acceleration. It is characterized by

そして、第1発明としては第1図に示すように機関Aの
運転状態に基づいて定常運転時の燃料噴射量を設定する
燃料噴射量設定手段Bと、設定された燃料噴射量に対応
する駆動パルス信号を機関回転に同期して燃料噴射弁C
に出力する駆動パルス出力手段りと、加速操作量に対応
させて設定された加速時増量燃料量を記憶する記憶手段
Eと、加速操作量を検出する加速検出手段Fと、検出さ
れた加速操作量に応じて前記記憶手段から加速時増量燃
料量を検索する検索手段Gと、検索された加速時増量燃
料量に対応する割込みパルス信号を加速初期に前記駆動
パルス信号の間に割込ませて前記燃料噴射弁に出力する
割込みパルス出力手段Hと、を備えるものにおいて、車
両の実際の加速状態を検出する車両加速状態検出手段I
と、検出された加速状態に基づいて加速初期の加速度が
目標加速度になるように前記加速時増量燃料量を補正す
る補正手段Jと、補正された加速時増量燃料量に前記記
憶手段Eのデータを書換える更新手段にと、を備えるよ
うにした。
As shown in FIG. 1, the first invention includes a fuel injection amount setting means B that sets the fuel injection amount during steady operation based on the operating state of the engine A, and a drive corresponding to the set fuel injection amount. The fuel injection valve C is synchronized with the engine rotation using the pulse signal.
a drive pulse output means for outputting a drive pulse to a drive pulse, a storage means E for storing an increased fuel amount during acceleration set in correspondence with an acceleration operation amount, an acceleration detection means F for detecting an acceleration operation amount, and a detected acceleration operation. a retrieval means G for retrieving an increased amount of fuel during acceleration from the storage means according to the amount of fuel; and an interrupt pulse signal corresponding to the retrieved increased amount of fuel during acceleration inserted between the drive pulse signals at an early stage of acceleration. and an interrupt pulse output means H for outputting to the fuel injection valve, a vehicle acceleration state detection means I for detecting the actual acceleration state of the vehicle.
a correction means J that corrects the increased fuel amount during acceleration so that the acceleration at the initial stage of acceleration becomes the target acceleration based on the detected acceleration state; An update method for rewriting the .

また、第2発明としては第1図破線で示すように、機関
Aの燃焼圧力を検出する圧力検出手段りと、検出された
燃焼圧力に基づいて加速初期の一ストローク当たりの図
示平均有効圧を演算する演算手段Mと、演算された図示
平均有効圧が目標図示平均有効圧になるように前記加速
時増量燃料量を補正する補正手段Nと、補正された加速
時増量燃料量に前記記憶手段のデータを書換える更新手
段にと、を備えるようにした。
As shown by the broken line in FIG. 1, the second invention includes a pressure detection means for detecting the combustion pressure of engine A, and calculates the indicated average effective pressure per stroke at the initial stage of acceleration based on the detected combustion pressure. a calculation means M for calculating, a correction means N for correcting the increased fuel amount during acceleration so that the calculated indicated average effective pressure becomes the target indicated average effective pressure, and the storage means for storing the corrected increased fuel amount during acceleration. An update means for rewriting data is provided.

く作用〉 このようにして、記憶手段に記憶された加速時増量燃料
量を更新することにより、最適な加速増量を図り加速時
の燃焼性能の低下或いは失火を防止するようにした。
In this manner, by updating the increased fuel amount during acceleration stored in the storage means, an optimum increase in fuel amount during acceleration is achieved and a decrease in combustion performance during acceleration or misfire is prevented.

〈実施例〉 以下に、本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第2図は第1発明の一実施例を示す。FIG. 2 shows an embodiment of the first invention.

図において、車両1には該車両1の加速度を検出する車
両加速状態検出手段としての圧電素子等からなる加速度
センサ2が設けられ、加速度センサ2の出力電圧は増巾
器3及びA/D変換器4を介して例えばマイクロコンピ
ュータからなる制御装置5に入力されている。
In the figure, a vehicle 1 is provided with an acceleration sensor 2 consisting of a piezoelectric element or the like as vehicle acceleration state detection means for detecting the acceleration of the vehicle 1, and the output voltage of the acceleration sensor 2 is transferred to an amplifier 3 and an A/D converter. The signal is inputted via a device 4 to a control device 5 consisting of, for example, a microcomputer.

また、制御装置5には、回転速度センサ6から出力され
る回転速度信号と、エアフローメータ7から出力される
吸入空気流量信号と、水温センサ8から出力される冷却
水温度信号と、加速検出手段としての吸気絞弁開度セン
サ9から出力される吸気絞弁開度信号と、が入力されて
いる。制御装置5は第3図〜第5図に示すフローチャー
トに従って作動し燃料噴射弁10に駆動回路11を介し
てパルス信号を出力する。
The control device 5 also receives a rotation speed signal output from the rotation speed sensor 6, an intake air flow rate signal output from the air flow meter 7, a cooling water temperature signal output from the water temperature sensor 8, and an acceleration detection means. The intake throttle valve opening signal outputted from the intake throttle valve opening sensor 9 is input. The control device 5 operates according to the flowcharts shown in FIGS. 3 to 5 and outputs a pulse signal to the fuel injection valve 10 via the drive circuit 11.

ここでは、制御装置5が燃料噴射量設定手段。Here, the control device 5 is fuel injection amount setting means.

記憶手段(制御装置5のRAM)、検索手段、補正手段
、更新手段とを兼ね、また制御装置5と駆動回路11と
により駆動パルス出力手段と割込みパルス出力手段が構
成される。
It also functions as a storage means (RAM of the control device 5), a search means, a correction means, and an update means, and the control device 5 and the drive circuit 11 constitute a drive pulse output means and an interrupt pulse output means.

次に第3図〜第5図のフローチャートに従って作用を説
明する。
Next, the operation will be explained according to the flowcharts shown in FIGS. 3 to 5.

まず、燃料噴射量制御ルーチンを第3図のフローチャー
トに基づいて説明すると、Slでは回転速度信号N、吸
入空気流量信号Q、冷却水温度信号、吸気絞弁開度信号
等の各種信号を読込む。S2では機関回転速度と吸入空
気流量とから基本噴射!jtTp  (=K・Q/N)
を演算した後、S3では冷却水温等を含む各種運転状態
から補正された定常運転時の燃料噴射量Ttを従来例と
同様に演算する。
First, the fuel injection amount control routine will be explained based on the flowchart in Fig. 3. In Sl, various signals such as the rotational speed signal N, intake air flow rate signal Q, cooling water temperature signal, intake throttle valve opening signal, etc. are read. . In S2, basic injection is performed based on engine speed and intake air flow rate! jtTp (=K・Q/N)
After calculating, in S3, the fuel injection amount Tt during steady operation corrected from various operating conditions including the cooling water temperature etc. is calculated in the same manner as in the conventional example.

そして、S4では前記燃料噴射量T1に対応する駆動パ
ルス信号を機関回転に同期して所定タイミングで駆動回
路11を介して燃料噴射弁10に出力し燃料噴射作動を
行わせる。
Then, in S4, a drive pulse signal corresponding to the fuel injection amount T1 is output to the fuel injection valve 10 via the drive circuit 11 at a predetermined timing in synchronization with the engine rotation to perform a fuel injection operation.

次に加速運転時の加速増量を第4図に示すフローチャー
トに従って説明すると、S11では冷却水温度信号と吸
気絞弁開度信号等の各種信号を読込む。
Next, the acceleration increase during acceleration operation will be explained according to the flowchart shown in FIG. 4. In S11, various signals such as a cooling water temperature signal and an intake throttle valve opening signal are read.

Sl2では吸気絞弁開度信号から吸気絞弁開度の変化率
Δαを演算し、313では演算された吸気絞弁開度の変
化率Δαから加速操作か否かを判定しYESの場合には
S14に進みNOの場合にはSllに進む。
At Sl2, the rate of change Δα of the intake throttle valve opening is calculated from the intake throttle valve opening signal, and at 313, it is determined whether or not it is an acceleration operation from the calculated rate of change Δα of the intake throttle valve opening. Proceed to S14, and if NO, proceed to Sll.

S14では前記変化率Δα(操作量)と同一条件でRA
M (又はROM)から加速時増量燃料量Tαを検索す
る。加速時増量燃料量Tαは第6図中実線示の如く前記
変化率Δαの増大に対応して増大するように設定されて
いる。ここで、加速時増量燃料量Tαは所定の加速性能
が得られる最小値に設定されている。
In S14, RA is set under the same conditions as the rate of change Δα (operated amount).
Search for the increased fuel amount Tα during acceleration from M (or ROM). The increased fuel amount Tα during acceleration is set to increase in accordance with the increase in the rate of change Δα, as shown by the solid line in FIG. Here, the increased fuel amount Tα during acceleration is set to a minimum value that allows a predetermined acceleration performance to be obtained.

S15では前記変化率Δαと検出された冷却水温度と同
一条件でRAMから増量補正係数Kを検索する。この増
量補正係数には第7図に示すように変化率Δαと冷却水
温度とで仕切られた領域毎に書換可能にRAMに記憶さ
れている。各領域の増量補正係数には初期値が1に設定
されている。
In S15, the increase correction coefficient K is retrieved from the RAM under the same conditions as the rate of change Δα and the detected cooling water temperature. As shown in FIG. 7, this increase correction coefficient is stored in the RAM in a rewritable manner for each region partitioned by the rate of change Δα and the cooling water temperature. The initial value of the increase correction coefficient for each area is set to 1.

S16では検索された加速時増量燃料量Tαと増量補正
係数にとを乗算して割込みパルス信号のノ<ルス巾(換
言すると実際の加速時増量燃料量)を演算する。
In S16, the threshold width of the interrupt pulse signal (in other words, the actual increased fuel amount during acceleration) is calculated by multiplying the retrieved increased fuel amount Tα during acceleration by the increase correction coefficient.

S17では前記駆動パルス信号の間に割込ませて割込み
パルス信号を前記燃料噴射弁10に出力し割込み噴射を
行わせ加速増量を図る。
In S17, an interrupt pulse signal is outputted to the fuel injection valve 10 between the drive pulse signals to perform interrupt injection and increase the amount of fuel for acceleration.

次に増量補正係数の学習ルーチンを第5図のフローチャ
ートに従って説明する。
Next, the learning routine for the increase correction coefficient will be explained according to the flowchart shown in FIG.

加速操作と判定されると321で検出された加速度G。Acceleration G detected in 321 when it is determined that it is an acceleration operation.

、冷却水温度等の各種信号を読込むと共に522でタイ
マのカウントを開始する。
, various signals such as cooling water temperature are read in, and at 522, the timer starts counting.

S23では検出された加速度G7の変化ΔGを演算する
。具体的には第8図に示すように所定時間毎に検出され
た加速度G、、G、・・・・・・G、、をサンプリング
する。そして、前回と今回の加速度の変化ΔG (=G
z  G+)を演算する。
In S23, a change ΔG in the detected acceleration G7 is calculated. Specifically, as shown in FIG. 8, the detected accelerations G, , G, . . . , G, are sampled at predetermined intervals. Then, the change in acceleration between the previous time and this time ΔG (=G
z G+).

S24ではタイマによりカウントされた時間tが設定時
間T内か否かを判定し、YESの場合はS25に進みN
oの場合はS21に戻る。ここで、前記設定時間Tは加
速動作判定から割込み噴射による加速時増量燃料が燃焼
した直後までに設定されている。
In S24, it is determined whether the time t counted by the timer is within the set time T, and if YES, the process advances to S25 and N
If o, the process returns to S21. Here, the set time T is set from the time when the acceleration operation is determined until immediately after the increased amount of fuel during acceleration due to the interrupt injection is combusted.

S25では演算された加速度の変化ΔGが零を超えてい
るか否かを判定しYESの場合には割込み噴射により車
両が加速されていると判定し521に戻る。また、割込
み噴射がなされたにも関わらず加速度の変化ΔGが零以
下のとき例えば第8図に示すように加速度が低下し車両
が減速されるときにはS26で第4図のフローチャート
で検索された増量補正係数Kに0.05を加算し新たな
増量補正係数に゛を演算する。
In S25, it is determined whether or not the calculated acceleration change ΔG exceeds zero. If YES, it is determined that the vehicle is being accelerated by the interrupt injection, and the process returns to 521. In addition, when the change in acceleration ΔG is less than zero even though interrupt injection has been performed, for example, as shown in FIG. 8, when the acceleration decreases and the vehicle is decelerated, the increase searched in the flowchart of FIG. 4 in S26 0.05 is added to the correction coefficient K, and ゛ is calculated as a new increase correction coefficient.

そして、S27では吸気絞弁開度の変化率Δαと冷却水
温度が同一条件にてRAMに記憶された増量補正係数K
を新たな増量補正係数に″に更新する。
Then, in S27, the increase correction coefficient K is stored in the RAM under the same conditions as the rate of change Δα of the intake throttle valve opening and the cooling water temperature.
is updated to the new increase correction coefficient.

したがって、次回の加速運転時には前回の増量補正係数
により大きい新たな増量補正係数に°と加速時増量燃料
量Tαとにより実際の加速時増量燃料!(Tα×に°)
が決定されるので、実際の加速時増量燃料量が前回より
増加する。このため、例えば燃料噴射弁の製造バラツキ
により燃料噴射特性が悪化しても空燃比の低下を防止で
きる。この結果、加速時の燃焼性の低下或いは失火を防
止でき、割込み噴射時に第8図破線示の如く加速度が上
昇しもって適正な加速性能を得ることができる。
Therefore, during the next acceleration operation, a new increase correction coefficient larger than the previous increase correction coefficient is used, and the increase amount of fuel during acceleration Tα is used to calculate the actual increase in fuel during acceleration! (Tα×°)
is determined, so the actual increased fuel amount during acceleration increases from the previous time. Therefore, even if fuel injection characteristics deteriorate due to, for example, manufacturing variations in fuel injection valves, a decrease in the air-fuel ratio can be prevented. As a result, deterioration of combustibility or misfire during acceleration can be prevented, and proper acceleration performance can be obtained by increasing acceleration as shown by the broken line in FIG. 8 during interrupt injection.

ここで、加速時増量燃料量Tαが第6図中鎖線で囲む領
域内に入るように増量補正係数Kを所定範囲内で補正す
ることにより実際の加速度が低下しないような目標加速
度に設定する。
Here, the increase correction coefficient K is corrected within a predetermined range so that the increased fuel amount Tα during acceleration falls within the region surrounded by the chain line in FIG. 6, thereby setting the target acceleration so that the actual acceleration does not decrease.

第9図は第2発明の一実施例を示す。尚、第2図と同一
要素には同一符号を付し説明を省略する。
FIG. 9 shows an embodiment of the second invention. Incidentally, the same elements as in FIG. 2 are given the same reference numerals and their explanations will be omitted.

図において、機関21には各気筒の燃焼圧力を検出する
圧力検出手段としての第1〜第4圧カセンサ22a〜2
2dが設けられ、これら圧力センサ22a〜22dの検
出信号は増巾器3を介して制御装置23゛  に入力さ
れている。また、制御装置23にはクランク角センサ2
4からクランク角信号(回転速度信号)が人力されてい
る。また、制御装置23にはA/D変換器4を介して前
記実施例と同様に吸入空気流量信号と吸気絞弁開度信号
と冷却水温度信号とが入力されている。
In the figure, the engine 21 includes first to fourth pressure sensors 22a to 2 as pressure detection means for detecting the combustion pressure of each cylinder.
2d are provided, and detection signals from these pressure sensors 22a to 22d are inputted to a control device 23' via an amplifier 3. The control device 23 also includes a crank angle sensor 2.
4, the crank angle signal (rotational speed signal) is manually input. Furthermore, an intake air flow rate signal, an intake throttle valve opening signal, and a cooling water temperature signal are inputted to the control device 23 via the A/D converter 4, as in the previous embodiment.

ここでは、制御装置23が演算手段と補正手段とを兼ね
る。
Here, the control device 23 serves both as calculation means and correction means.

次に作用を第1O図に示すフローチャートに従って説明
する。尚、燃料噴射量制御ルーチンは前記実施例の第3
図及び第4図のフローチャートと同様であるので、説明
を省略し学習ルーチンのみを説明する。
Next, the operation will be explained according to the flowchart shown in FIG. 1O. Incidentally, the fuel injection amount control routine is the same as the third one in the above embodiment.
Since it is similar to the flowchart in FIG. 4 and FIG. 4, the explanation will be omitted and only the learning routine will be explained.

加速操作が判定されると、331で検出された燃焼圧力
P、冷却水温度等の各種信号を読込むと共に332でタ
イマのカウントを開始する。ここで、前記燃焼圧力Pを
クランク角センサ24のクランク角信号により例えば2
″毎に読込む。
When an acceleration operation is determined, various signals such as the detected combustion pressure P and cooling water temperature are read in 331, and a timer starts counting in 332. Here, the combustion pressure P is determined by the crank angle signal of the crank angle sensor 24, for example.
Read every ″.

S33では検出された燃焼圧力Pから図示平均有効圧p
、を各気筒毎に求める。具体的にはP、=り当たりの総
容積、dVは行程容積変化である。
In S33, the indicated mean effective pressure p is determined from the detected combustion pressure P.
, is determined for each cylinder. Specifically, P is the total volume per hit, and dV is the stroke volume change.

S34ではタイマによりカウントされた時間tが設定時
間T内か否かを判定しYESの場合はS25に進みNO
の場合はS21に戻る。ここで、前記設定時間Tは前記
実施例と同様に加速動作判定から割込み噴射による加速
時増量燃料が燃焼した直後までに設定されている。
In S34, it is determined whether the time t counted by the timer is within the set time T, and if YES, the process advances to S25 and NO.
In this case, the process returns to S21. Here, the set time T is set from the time when the acceleration operation is determined to the time immediately after the fuel increased during acceleration due to the interrupt injection is combusted, as in the embodiment described above.

S35では同一気筒における前回の図示平均有効圧P、
とそのストロークに連続するストローク時の図示平均有
効圧Pム、Iとの圧力差が零を超えているか否かを判定
しYESの場合には割込み噴射により車両が加速されて
いると判定しS31に戻る。
In S35, the previous indicated mean effective pressure P in the same cylinder,
It is determined whether or not the pressure difference between the indicated mean effective pressure Pm and I during the stroke following that stroke exceeds zero, and if YES, it is determined that the vehicle is being accelerated by the interrupt injection. S31 Return to

また、割込み噴射がなされたにも関わらず前記圧力差が
零以下のとき、即ち図示平均を動圧Pム、。
In addition, when the pressure difference is less than zero despite the interrupt injection, that is, the indicated average is the dynamic pressure Pm.

が図示平均有効Piより低下し燃焼性能の悪化或いは失
火の発生により車両が減速されるときには336で第4
図のフローチャートで検索された増量補正係数Kに0.
05を加算し新たな増量補正係数に′を演算する。
is lower than the indicated average effective Pi and the vehicle is decelerated due to deterioration of combustion performance or occurrence of misfire, the fourth
The increase correction coefficient K found in the flowchart in the figure is 0.
05 is added and ' is calculated as a new increase correction coefficient.

そして、S37では吸気絞弁開度の変化率Δαと冷却水
温度が同一条件にてRAMに記憶された増量補正係数K
を新たな増量補正係数に°に更新する。
Then, in S37, the increase correction coefficient K is stored in the RAM under the same conditions as the rate of change Δα of the intake throttle valve opening and the cooling water temperature.
is updated to the new increase correction coefficient.

したがって、前記実施例と同様に次回の加速運転時には
前回の増量補正係数により大きい新たな増量補正係数に
゛ と加速時増量燃料i1Tαとにより実際の加速時増
量燃料量(Tα×に°)が決定されるので、実際の加速
時増量燃料量が前回より増加するため、前記実施例と同
様な効果を奏する。
Therefore, in the same way as in the embodiment described above, during the next acceleration operation, the actual amount of increased fuel during acceleration (Tα×°) is determined by a new increase correction coefficient that is larger than the previous increase correction coefficient. As a result, the actual increased fuel amount during acceleration increases from the previous time, so the same effect as in the embodiment described above is achieved.

ここで、前記実施例と同様に増量補正係数Kを所定範囲
内で補正することにより図示平均有効圧P、が目標図示
平均有効圧になるようにする。
Here, as in the embodiment described above, the increase correction coefficient K is corrected within a predetermined range so that the indicated mean effective pressure P becomes the target indicated mean effective pressure.

尚、各実施例においては吸気絞弁開度の変化率から加速
動作を判定したが、吸気負圧の変化率。
In each of the examples, the acceleration operation was determined from the rate of change in the opening of the intake throttle valve, but the rate of change in the intake negative pressure.

吸入空気流量の変化率或いは基本噴射量の変化率等から
加速動作を判定してもよい。また、増量補正係数を書換
えるようにしたが、加速時増量燃料量を書換えるように
してもよい。
The acceleration operation may be determined from the rate of change in the intake air flow rate, the rate of change in the basic injection amount, or the like. Further, although the increase correction coefficient is rewritten, the increase fuel amount during acceleration may be rewritten.

〈発明の効果〉 本発明は、以上説明したように、車両の加速状態或いは
燃焼圧力の図示平均有効圧に応じて記憶手段の加速時増
量燃料量を補正して書換えるようにしたので、次回の加
速時には燃焼性能の悪化或いは失火を防止でき、適正な
加速性能を得ることができる。
<Effects of the Invention> As explained above, the present invention corrects and rewrites the increased fuel amount during acceleration in the storage means according to the acceleration state of the vehicle or the indicated average effective pressure of the combustion pressure. During acceleration, deterioration of combustion performance or misfire can be prevented, and appropriate acceleration performance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1及び第2発明のクレーム対応図、第2図は
第1発明の一実施例を示す構成図、第3図〜第5図は同
上のフローチャート、第6図〜第8図は同上の作用を説
明するための図、第9図は第2発明の一実施例を示す構
成図、第10図は同上のフローチャート、第11図は従
来の欠点を説明するだめの図である。 1・・・車両  2・・・加速度センサ  5,23・
・・制御装置  9・・・吸気絞弁開度センサ  10
・・・燃料噴射弁  11・・・駆動回路  22a〜
22d・・・圧力センサ 特許出願人 日本電子機器株式会社 代理人 弁理士 笹 島  冨二雄 第1図 ヒー−J 第3図    第4図 第5図 第6図 第7図 第10図 第11図
Fig. 1 is a diagram corresponding to the claims of the first and second inventions, Fig. 2 is a configuration diagram showing an embodiment of the first invention, Figs. 3 to 5 are flowcharts of the same as above, and Figs. 6 to 8. 9 is a block diagram showing an embodiment of the second invention, FIG. 10 is a flowchart of the same, and FIG. 11 is a diagram for explaining the drawbacks of the conventional method. . 1... Vehicle 2... Acceleration sensor 5, 23.
...Control device 9...Intake throttle valve opening sensor 10
...Fuel injection valve 11...Drive circuit 22a~
22d...Pressure sensor patent applicant Japan Electronics Co., Ltd. Agent Patent attorney Fujio SasashimaFigure 1He-JFigure 3Figure 4Figure 5Figure 6Figure 7Figure 10Figure 11

Claims (2)

【特許請求の範囲】[Claims] (1)機関の運転状態に基づいて定常運転時の燃料噴射
量を設定する燃料噴射量設定手段と、設定された燃料噴
射量に対応する駆動パルス信号を機関回転に同期して燃
料噴射弁に出力する駆動パルス出力手段と、加速操作量
に対応させて設定された加速時増量燃料量を記憶する記
憶手段と、加速操作量を検出する加速検出手段と、検出
された加速操作量に応じて前記記憶手段から加速時増量
燃料量を検索する検索手段と、検索された加速時増量燃
料量に対応する割込みパルス信号を加速初期に前記駆動
パルス信号の間に割込ませて前記燃料噴射弁に出力する
割込みパルス出力手段と、車両の実際の加速状態を検出
する車両加速状態検出手段と、検出された加速状態に基
づいて加速初期の加速度が目標加速度になるように前記
加速時増量燃料量を補正する補正手段と、補正された加
速時増量燃料量に前記記憶手段のデータを書換える更新
手段と、を備えたことを特徴とする車両用燃料噴射式内
燃機関の加速増量制御装置。
(1) A fuel injection amount setting means that sets the fuel injection amount during steady operation based on the operating state of the engine, and a drive pulse signal corresponding to the set fuel injection amount to the fuel injection valve in synchronization with the engine rotation. A drive pulse output means for outputting, a storage means for storing an increased fuel amount during acceleration set corresponding to the acceleration operation amount, an acceleration detection means for detecting the acceleration operation amount, and an acceleration operation amount for detecting the acceleration operation amount according to the detected acceleration operation amount. a retrieval means for retrieving an increased amount of fuel during acceleration from the storage means; and an interrupt pulse signal corresponding to the retrieved increased amount of fuel during acceleration inserted between the drive pulse signals at an early stage of acceleration to the fuel injection valve. an interrupt pulse output means for outputting an interrupt pulse; a vehicle acceleration state detection means for detecting an actual acceleration state of the vehicle; and a vehicle acceleration state detection means for detecting an actual acceleration state of the vehicle; 1. An acceleration increase control device for a fuel injection internal combustion engine for a vehicle, comprising a correction means for correcting the amount of fuel to be increased during acceleration, and an update means for rewriting data in the storage means to the corrected increase fuel amount during acceleration.
(2)機関の運転状態に基づいて定常運転時の燃料噴射
量を設定する燃料噴射量設定手段と、設定された燃料噴
射量に対応する駆動パルス信号を機関回転に同期して燃
料噴射弁に出力する駆動パルス出力手段と、加速操作量
に対応させて設定された加速時増量燃料量を記憶する記
憶手段と、加速操作量を検出する加速検出手段と、検出
された加速操作量に応じて前記記憶手段から加速時増量
燃料量を検索する検索手段と、検索された加速時増量燃
料量に対応する割込みパルス信号を加速初期に前記駆動
パルス信号の間に割込ませて前記燃料噴射弁に出力する
割込みパルス出力手段と、機関の燃焼室圧力を検出する
圧力検出手段と、検出された燃焼圧力に基づいて加速初
期の1ストローク当たりの図示平均有効圧を演算する演
算手段と、演算された図示平均有効圧が目標図示平均有
効圧になるように前記加速時増量燃料量を補正する補正
手段と、補正された加速時増量燃料量に前記記憶手段の
データを書換える更新手段と、を備えたことを特徴とす
る車両用燃料噴射式内燃機関の加速増量制御装置。
(2) A fuel injection amount setting means that sets the fuel injection amount during steady operation based on the operating state of the engine, and a drive pulse signal corresponding to the set fuel injection amount to the fuel injection valve in synchronization with the engine rotation. A drive pulse output means for outputting, a storage means for storing an increased fuel amount during acceleration set corresponding to the acceleration operation amount, an acceleration detection means for detecting the acceleration operation amount, and an acceleration operation amount for detecting the acceleration operation amount according to the detected acceleration operation amount. a retrieval means for retrieving an increased amount of fuel during acceleration from the storage means; and an interrupt pulse signal corresponding to the retrieved increased amount of fuel during acceleration inserted between the drive pulse signals at an early stage of acceleration to the fuel injection valve. an interrupt pulse output means for outputting, a pressure detection means for detecting the combustion chamber pressure of the engine, a calculation means for calculating the indicated mean effective pressure per stroke at the initial stage of acceleration based on the detected combustion pressure; A correction means for correcting the increased fuel amount during acceleration so that the indicated average effective pressure becomes the target indicated average effective pressure, and an updating means for rewriting the data in the storage means to the corrected increased fuel amount during acceleration. An acceleration increase control device for a vehicle fuel-injected internal combustion engine, characterized in that:
JP24695385A 1985-11-06 1985-11-06 Acceration increment control device for automobile engine of fuel injection type Pending JPS62107249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24695385A JPS62107249A (en) 1985-11-06 1985-11-06 Acceration increment control device for automobile engine of fuel injection type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24695385A JPS62107249A (en) 1985-11-06 1985-11-06 Acceration increment control device for automobile engine of fuel injection type

Publications (1)

Publication Number Publication Date
JPS62107249A true JPS62107249A (en) 1987-05-18

Family

ID=17156187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24695385A Pending JPS62107249A (en) 1985-11-06 1985-11-06 Acceration increment control device for automobile engine of fuel injection type

Country Status (1)

Country Link
JP (1) JPS62107249A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6368743A (en) * 1986-09-10 1988-03-28 Nissan Motor Co Ltd Fuel feeding control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6368743A (en) * 1986-09-10 1988-03-28 Nissan Motor Co Ltd Fuel feeding control device for internal combustion engine

Similar Documents

Publication Publication Date Title
US4348727A (en) Air-fuel ratio control apparatus
US5655363A (en) Air-fuel ratio control system for internal combustion engines
EP0142101B1 (en) Automotive engine control system capable of detecting specific engine operating conditions and projecting subsequent engine operating patterns
US4800857A (en) Apparatus for learn-controlling air-fuel ratio for internal combustion engine
JPS6411814B2 (en)
US4722313A (en) Method for detecting an extreme value position of a movable part
KR920016711A (en) Altitude Discrimination System and Its Engine Operation Parameter Control System
US5095743A (en) Method and apparatus for detecting deterioration of sucked air flow quantity-detecting device of engine
US4538578A (en) Air-fuel ratio control for an internal combustion engine
US5617836A (en) Engine control system for producing and responding to an index of maturity of adaptive learing
JPH0531649B2 (en)
JPS62107249A (en) Acceration increment control device for automobile engine of fuel injection type
JPH0684741B2 (en) Air flow meter deterioration detection device
US4617901A (en) Air-fuel ratio feedback control method for internal combustion engines
JP3535737B2 (en) Atmospheric pressure detection device for internal combustion engine
JPH076440B2 (en) Internal combustion engine control method
JPS6232338B2 (en)
JP2502500B2 (en) Engine controller
JP2582571B2 (en) Learning control device for air-fuel ratio of internal combustion engine
JP2520608B2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2750777B2 (en) Electronic control fuel supply device for internal combustion engine
US20050022788A1 (en) Method and device for operating an internal combustion engine
JP2528279B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH09126035A (en) Idling control device of multiple cylinder engine
JPH04311642A (en) Idling speed control device for internal combustion engine