JPS62107061A - Device for melting metal - Google Patents

Device for melting metal

Info

Publication number
JPS62107061A
JPS62107061A JP24562285A JP24562285A JPS62107061A JP S62107061 A JPS62107061 A JP S62107061A JP 24562285 A JP24562285 A JP 24562285A JP 24562285 A JP24562285 A JP 24562285A JP S62107061 A JPS62107061 A JP S62107061A
Authority
JP
Japan
Prior art keywords
crucible
metal
flux
focus
filament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24562285A
Other languages
Japanese (ja)
Other versions
JPH0723536B2 (en
Inventor
Yoshihiro Kobayashi
小林 喜広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24562285A priority Critical patent/JPH0723536B2/en
Publication of JPS62107061A publication Critical patent/JPS62107061A/en
Publication of JPH0723536B2 publication Critical patent/JPH0723536B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent the hole digging effect of a molten metal and to efficiently and safely melt and evaporate the metal in a crucible by monitoring the temp. of a crucible material and controlling a focusing coil to adjust the focus of an electron beam flux. CONSTITUTION:The electron ray flux 19 released from a filament 10 mounted to a filament power source is roughly adjusted in the beam flux width by a collimator 11 and is passed through an acceleration electrode 12, by which the energy thereof is amplified. The beam flux 19 is then deflected by a deflecting coil 13 and is finely adjusted by the focusing coil 14; thereafter, the beam flux bombards and heats the molten metal 2 in the crucible 1. The electron beam flux 19 is changed over to a small focus beam and large focus beam by a control circuit 5 via a driving circuit 8 for adjustment and a magnetic field generating power source 9. The focus of the flux 19 is adjusted or the bombardment and heating is stopped by the circuit 5 when the temp. increase of the crucible 1 is detected by a sensor 3 embedded in the crucible 1.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は例えば真空蒸着や同位体分離技術のように真空
空間において、連続的に金属を溶解、蒸気化する金属の
溶解装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a metal melting apparatus that continuously melts and vaporizes metal in a vacuum space, such as in vacuum evaporation or isotope separation technology.

[発明の技術的背景とその問題点] 電子衝撃加熱法による金属の溶解方法は、高温に加熱さ
れたフィラメント(熱陰極)から放出される熱電子を高
電圧で加速し、それを被加熱体の金属に衝突させ、電子
の運動エネルギを熱エネルギに変換して加熱、溶解する
。この電子衝撃加熱法は加熱温度の制御が容易でエネル
ギ密度が大きくとれるために高温が得られ、高融点金属
の溶解が行なえることから種々の用途に利用されている
[Technical background of the invention and its problems] The method of melting metal by electron impact heating accelerates thermionic electrons emitted from a filament (hot cathode) heated to a high temperature with a high voltage, and then transfers them to a heated object. The kinetic energy of the electrons is converted into thermal energy, which heats and melts the metal. This electron impact heating method is used for various purposes because the heating temperature can be easily controlled and high energy density can be obtained, allowing high temperatures to be obtained and melting of high melting point metals.

しかしながら、この電子衝撃加熱法を長時間連続的に金
属を溶解、蒸気化する装置やプラントレベルの大規模装
置に適用するにあたって次のような問題があった。
However, when applying this electron impact heating method to equipment that melts and vaporizes metal continuously over a long period of time or to large-scale plant-level equipment, there are the following problems.

(1)被溶解金属の溶解面において、電子束の焦点部か
ら溶解が進行するため、このエネルギ密度が大きい焦点
位置がどうしても深く堀られ、その反面、周囲部分が残
ってしまう゛穴掘り効果°′が生じ効率的な金属溶解が
できない。
(1) On the melting surface of the metal to be melted, melting progresses from the focal point of the electron flux, so the focal point where the energy density is high is inevitably dug deep, while the surrounding area remains. ' occurs and efficient metal melting cannot be performed.

(2)この穴掘り現象が極度に進行した場合、ルツボ材
が直接衝撃加熱され、ルツボ材の昇温が大きくなって被
溶解金属との間で、高温腐食が生じたり、ルツボの寿命
の短縮化、しいてはルツボの破損をまねく危険性がある
(2) If this drilling phenomenon progresses to an extreme extent, the crucible material will be directly impacted and heated, increasing the temperature of the crucible material and causing high-temperature corrosion with the metal to be melted, or shortening the life of the crucible. There is a risk of damage to the crucible.

(3)前記(1)項、(2)項の問題点から電子衝撃加
熱法の゛′大容量のルツボにより多山の金属溶解蒸気を
連続的に得る装置、システム”への適用は溶解金属の補
給やルツボの点検といった面のメインテナンス性も悪く
、また安全性を含めて有効とされなかった。
(3) Due to the problems in items (1) and (2) above, the application of the electron impact heating method to ``a device or system that continuously obtains a large number of molten metal vapors using a large-capacity crucible'' is not suitable for molten metal. Maintenance was poor in terms of replenishment and crucible inspection, and it was not considered to be effective in terms of safety.

[発明の目的] 本発明は上述したような問題点を解決するためになされ
たもので、被溶解金属の゛穴掘り効果″を防止して、ル
ツボ内の被溶解金属を万遍無く効率的かつ安全に溶解で
き大規模装置への適用が有効となりうる電子線衝撃加熱
による金属の溶解装置を提供することを目的とする。
[Object of the Invention] The present invention has been made to solve the above-mentioned problems, and it is possible to prevent the "burrowing effect" of the metal to be melted and to uniformly and efficiently distribute the metal to be melted in the crucible. It is an object of the present invention to provide an apparatus for melting metal by electron beam impact heating, which can melt metal safely and can be effectively applied to large-scale equipment.

[発明の概要] 本発明においては被溶解金属に照射する電子線束の広が
りを調整するコリメータと、被溶解金属の溶解面上にお
ける電子線束の焦点の大きざを調整する集束コイルとを
設け、この集束コイルを制御することにより、細い電子
線束(小焦点ビーム)による加熱溶解と、太い電子線束
(大焦点ビーム)によって連続的もしくは定期的に切換
えながら被溶解金属を溶解し蒸気化するとともにルツボ
に温度センサを装着し、そのルツボ材の異常温度上昇を
監視しながら上記制御を行なうことができるように構成
した金属の溶解装置である。
[Summary of the invention] The present invention includes a collimator that adjusts the spread of the electron beam irradiated to the metal to be melted, and a focusing coil that adjusts the size of the focal point of the electron beam on the melting surface of the metal to be melted. By controlling the focusing coil, the metal to be melted is melted and vaporized by heating and melting with a thin electron beam flux (small focus beam) and continuously or periodically switching between a thick electron beam flux (large focus beam) and melting into the crucible. This metal melting apparatus is equipped with a temperature sensor and is configured to perform the above control while monitoring abnormal temperature rises in the crucible material.

[発明の実施例j 以下、図面を参照しながら本発明に係る金属の溶wI装
置の一実施例を説明する。
[Embodiment j of the invention j Hereinafter, an embodiment of the metal melting device according to the present invention will be described with reference to the drawings.

図中、符号1は被溶解金属2を収容したルツボであり、
このルツボ1内には温度センサ3が埋設されている。こ
の温度センサは信号線4で制御回路5の入力側に接続さ
れている。制御回路5の出力側には電子加速電源6、フ
ィラメント電源7、調整駆動回路8および磁界発生電源
9が接続されている。フィラメント電源7には熱陰極と
してのフィラメント10が取着され、フィラメント10
と前記ルツボ1との間にはコリメータ11、加速電極1
2、偏向コイル13および集束ボイル14が順次配列さ
れている。なお、偏向コイル13および集束コイル14
は2段配列され、それぞれ磁界発生゛電源9に信号線1
5.16により接続されている。また、調整駆動回路8
とコリメータ11との間には微調整用モータ17が設け
られており、さらに電子加速電源6と加速電極12とは
信号線18により結線されている。
In the figure, reference numeral 1 is a crucible containing a metal to be melted 2,
A temperature sensor 3 is embedded within the crucible 1. This temperature sensor is connected to the input side of the control circuit 5 via a signal line 4. An electron acceleration power source 6, a filament power source 7, an adjustment drive circuit 8, and a magnetic field generation power source 9 are connected to the output side of the control circuit 5. A filament 10 as a hot cathode is attached to the filament power source 7, and the filament 10
A collimator 11 and an accelerating electrode 1 are provided between the crucible 1 and the crucible 1.
2. A deflection coil 13 and a focusing coil 14 are arranged in sequence. Note that the deflection coil 13 and the focusing coil 14
are arranged in two stages, each with a magnetic field generation power source 9 and a signal line 1.
5.16. In addition, the adjustment drive circuit 8
A fine adjustment motor 17 is provided between and the collimator 11, and the electronic acceleration power source 6 and the acceleration electrode 12 are connected by a signal line 18.

ここで、フィラメント電源7、フィラメント10、加速
電極12および電子加速電源6によって電子線束(ビー
ム)19の発生および加速が行なわれる。コリメータ1
1は電子線束19の絞り調整を行なうもので調整駆動回
路8からの指示信号によって作動する。
Here, an electron beam 19 is generated and accelerated by the filament power supply 7, the filament 10, the acceleration electrode 12, and the electron acceleration power supply 6. Collimator 1
Reference numeral 1 performs aperture adjustment of the electron beam bundle 19, and is activated by an instruction signal from the adjustment drive circuit 8.

偏向コイル13は金属溶解蒸気によりフィラメントが汚
染劣化することを防止する。また、集束コイル14は金
属溶解面における電子線束の線束調整く焦点調整)を行
なうこれら偏向コイル13および集束コイル14は磁界
発生電源9によって作動する。金属溶解用ルツボ1内に
収容された被溶解金属2の温度は温度監視用センサ3に
よって測定される。なお、制御回路5は本発明における
電子線ms加熱法の全体動作を司どる。
The deflection coil 13 prevents the filament from being contaminated and deteriorated by molten metal vapor. Further, the focusing coil 14 performs flux adjustment (focus adjustment) of the electron beam on the metal melting surface.The deflection coil 13 and the focusing coil 14 are operated by the magnetic field generating power source 9. The temperature of the metal to be melted 2 accommodated in the metal melting crucible 1 is measured by a temperature monitoring sensor 3. Note that the control circuit 5 controls the overall operation of the electron beam ms heating method in the present invention.

すなわち、基本的に電子線束19はフィラメント10か
ら発生し放出され、加速電極12の通過時にエネルギ増
幅される。そして、偏向コイル13により方向付けされ
て被溶解金属2を衝撃加熱する。本発明では前述したよ
うに金属を効率良く溶解するために衝撃加熱面において
、電子線束の切換え制御を行なう。この制御を行なわせ
るために線束調整コリメータ11と集束コイル14が取
付けられている。
That is, basically, the electron beam flux 19 is generated and emitted from the filament 10, and its energy is amplified when it passes through the accelerating electrode 12. Then, the metal to be molten 2 is impact-heated by being directed by the deflection coil 13 . In the present invention, as described above, in order to efficiently melt metal, switching control of the electron beam flux is performed on the impact heating surface. A beam adjusting collimator 11 and a focusing coil 14 are installed to perform this control.

コリメータ11は電子線束19の発生部において線束幅
の粗調整を行なう役目を果しており、集束コイル14は
図示したように2個の組合せによって金Ii1溶解面上
における線束焦点の微調整を行なうものである。
The collimator 11 serves to roughly adjust the beam width at the generation part of the electron beam 19, and the focusing coil 14 finely adjusts the beam focus on the gold Ii1 melting surface by a combination of two pieces as shown. be.

この両者を各々の調整駆動回路8、磁界発生電源9を介
してプログラミングされた制御回路5により動作させ、
細い電子線束および太い電子線束によるm撃加熱を連続
的または定期的に切換える。
Both are operated by the control circuit 5 programmed via the respective adjustment drive circuits 8 and magnetic field generation power sources 9,
The percussion heating by a thin electron beam bundle and a thick electron beam bundle is switched continuously or periodically.

更に、この切換え制御を安全に行なうためにルツボ1に
は温度監視用の温度センナ3を装着してあり、衝撃加熱
中は常にモニタされている。温度センサ3からの信号に
より制御回路5でルツボ1の異常温度上昇が検知認めら
れた場合は線束焦点の再調整もしくは衝撃加熱の中止が
なされるようになっている。
Furthermore, in order to perform this switching control safely, the crucible 1 is equipped with a temperature sensor 3 for temperature monitoring, and is constantly monitored during impact heating. If the control circuit 5 detects and recognizes an abnormal temperature rise in the crucible 1 based on a signal from the temperature sensor 3, the focus of the beam is readjusted or the impact heating is stopped.

すなわち、図示したように実線20はエネルギ密度が高
く、溶解能力が大きい細い電子線束で電子線衝撃加熱を
連続的に行なうことにより、゛穴掘り効果″′21が侵
攻することを示している。これを打開するためには破a
23のように゛穴掘り効果″21が深部にいたる竹に太
い電子線束を照射して周辺部も万遍なく溶して溶解面を
平滑化することが必要となる。太い電子線束とした場合
、エネルギ密度が低くなるため溶解能力的には低下する
が、穴掘り効果パの防止の面においては非常に有効とな
る。
That is, as shown in the figure, the solid line 20 indicates that the "burrowing effect"'21 occurs by continuously performing electron beam impact heating with a narrow electron beam flux having high energy density and high dissolving ability. In order to overcome this, break a
As shown in 23, it is necessary to irradiate a thick beam of electron beams to the bamboo that has the "burrowing effect" 21 to the depths, melting the surrounding area evenly and smoothing the melted surface.When using a thick beam of electrons Since the energy density is lower, the dissolving ability is lowered, but it is very effective in preventing the digging effect.

従って、細い電子線束の衝撃加熱(小焦点加熱)と太い
電子線束の衝撃加熱(大焦点加熱)を連続的または定期
的に切換え、安全に制御してやることによりルツボ1内
の金属2を均一に残漬なく溶解、蒸気化でき金属溶解の
効率化を計りうることができる。
Therefore, the metal 2 in the crucible 1 is left uniformly by switching continuously or periodically between impact heating of a thin electron beam bundle (small focus heating) and impact heating of a thick electron beam bundle (large focus heating) and controlling it safely. It can be melted and vaporized without soaking, making it possible to improve the efficiency of metal melting.

[発明の効果] 本発明に係る電子衝撃加熱法による金属の溶解装置によ
れば、次のような効果を奏する。
[Effects of the Invention] The metal melting apparatus using the electron impact heating method according to the present invention provides the following effects.

(1)金属溶解ルツボ(ハース)内の金属溶解面を平滑
化しながら溶解できるため、残漬がなくなり、金属溶解
の効率化を計ることができる。
(1) Since the metal melting surface in the metal melting crucible (hearth) can be melted while smoothing, there is no residue left behind, and the efficiency of metal melting can be improved.

(2)°“穴掘り効果″が防止でき、ルツボの直接加熱
による破損等の危険がなくなるため安全性、信頼性が向
上する。
(2) The "drilling effect" can be prevented, and the risk of damage to the crucible due to direct heating is eliminated, so safety and reliability are improved.

(3)ルツボの異常昇温がなくなるため被溶解金属との
間で生じる高温腐食を防止でき、金属溶解蒸気の品質が
向上する。
(3) Since there is no abnormal temperature rise in the crucible, high-temperature corrosion that occurs between the crucible and the metal to be melted can be prevented, and the quality of the metal melting vapor is improved.

(4)ルツボへの溶解金属の補給回数やルツボの点検回
数を減少化、省力化できるためメインテナンス性が向上
する。
(4) Maintenance efficiency is improved because the number of times the crucible is replenished with molten metal and the number of times the crucible is inspected can be reduced and labor saved.

(5)”大容量のルツボにより多量の金属溶解蒸気を連
続的に得る大規模装置、システム′”への適用が有効と
なる。
(5) Application to "a large-scale device or system that continuously obtains a large amount of molten metal vapor using a large-capacity crucible" is effective.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明に係る金属の溶解装置の一実施例を一部断面
で示す系統図である。
The figure is a partial cross-sectional system diagram showing an embodiment of the metal melting apparatus according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)被溶解金属を収容するルツボと、このルツボの温
度を測定する温度センサと、この温度センサの信号を入
力する制御回路と、この制御回路からの出力信号をそれ
ぞれ受信する電子加速電源・フィラメント電源・調整駆
動回路および磁界発生電源と、前記フィラメント電源に
接続されたフィラメントと前記ツルボ間に順次配列され
たコリメータ・加速電極・偏向コイルおよび集束コイル
とからなり、前記加速電極は前記電子加速電源に、前記
コリメータは前記調整駆動回路に、前記偏向コイルおよ
び集束コイルは前記磁界発生電源にそれぞれ接続されて
いることを特徴とする金属の溶解装置。
(1) A crucible that accommodates the metal to be melted, a temperature sensor that measures the temperature of this crucible, a control circuit that inputs the signal of this temperature sensor, and an electronic acceleration power source that receives the output signal from this control circuit. It consists of a filament power supply/adjustment drive circuit, a magnetic field generation power supply, and a collimator/acceleration electrode/deflection coil and focusing coil arranged in sequence between the filament connected to the filament power supply and the crucible, and the acceleration electrode is used to accelerate the electrons. A metal melting apparatus characterized in that the collimator is connected to the adjustment drive circuit, and the deflection coil and the focusing coil are connected to the magnetic field generation power source.
JP24562285A 1985-10-31 1985-10-31 Metal melting equipment Expired - Lifetime JPH0723536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24562285A JPH0723536B2 (en) 1985-10-31 1985-10-31 Metal melting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24562285A JPH0723536B2 (en) 1985-10-31 1985-10-31 Metal melting equipment

Publications (2)

Publication Number Publication Date
JPS62107061A true JPS62107061A (en) 1987-05-18
JPH0723536B2 JPH0723536B2 (en) 1995-03-15

Family

ID=17136419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24562285A Expired - Lifetime JPH0723536B2 (en) 1985-10-31 1985-10-31 Metal melting equipment

Country Status (1)

Country Link
JP (1) JPH0723536B2 (en)

Also Published As

Publication number Publication date
JPH0723536B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
US3303319A (en) Method and apparatus for the working of material by radiant energy
RU2012111218A (en) ION-PLASMA ELECTRON RADIATORS FOR Smelting Furnace
US3177535A (en) Electron beam furnace with low beam source
US3015013A (en) High density radiant heat systems
JPS62107061A (en) Device for melting metal
US6151384A (en) X-ray tube with magnetic electron steering
US4262160A (en) Evaporator feed
US3170019A (en) Electron beam furnace
US3267529A (en) Apparatus for melting metals under high vacuum
JP3302710B2 (en) Substrate heating method using low voltage arc discharge and variable magnetic field
US2968715A (en) Fusion welding method and apparatus
US3446934A (en) Electron beam heating apparatus
JPH0297666A (en) Metal vapor generator
JP2002324507A (en) X-ray generator and x-ray device using it
JP3825933B2 (en) Electron beam irradiation apparatus, electron beam drawing apparatus using the electron beam irradiation apparatus, scanning electron microscope, and point light source type X-ray irradiation apparatus
US3412196A (en) Electron beam vacuum melting furnace
Eaton Electron beam fusion and its applications
Yeheskel et al. An intense electron beam source
JPH02125868A (en) Electron-beam vapor deposition device
JPS5887742A (en) High-luminance ion source
JP2008050667A (en) Thin-film-forming apparatus
JPH0733570B2 (en) Vapor deposition equipment
JPS6221474A (en) Electron beam machine
GB1145013A (en) Improvements in or relating to cold cathode, glow discharge devices
JPH0394819A (en) Metal vapor generator

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term