JPS62106889A - Double-layered bed type dealkalization softening tower - Google Patents

Double-layered bed type dealkalization softening tower

Info

Publication number
JPS62106889A
JPS62106889A JP60246943A JP24694385A JPS62106889A JP S62106889 A JPS62106889 A JP S62106889A JP 60246943 A JP60246943 A JP 60246943A JP 24694385 A JP24694385 A JP 24694385A JP S62106889 A JPS62106889 A JP S62106889A
Authority
JP
Japan
Prior art keywords
exchange resin
tower
acidic cation
cation exchange
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60246943A
Other languages
Japanese (ja)
Inventor
Shigeru Takano
茂 高野
Kimimichi Nakada
中田 公道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP60246943A priority Critical patent/JPS62106889A/en
Publication of JPS62106889A publication Critical patent/JPS62106889A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remove an alkalinity component and to reduce installation cost, by passing raw water through a dealkalization softening tower, in which a double-layered bed consisting of a weak acidic cation exchange resin and a weak acidic cation exchange resin is formed to treat the same. CONSTITUTION:A raw water inflow pipe 5 is communicated with the upper part of an ion exchange tower 1 through a distributor 4 and one end of a treated water outflow pipe 6 is communicated with the lower part of the ion exchange tower 1. An acid regenerating solution inflow pipe 8 is communicated with the upper part of an H-type weak acidic cation exchange resin bed 2 through a regenerating solution distributor 7 and a collector 9 is provided to the intermediate part of both ion exchange resin beds 2, 3 and a waste regenerating solution outflow pipe 10 is communicated with the collector 9. Then, raw water flows in the tower 1 from the raw water inflow pipe 5 to be consistently passed through both ion exchange resin beds while treated water flows out from the treated water outflow pipe 6 and is subsequently treated by a decarbonator 15.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、弱酸性カチオン交換樹脂と強酸性カチオン交
換樹脂とを複層床に形成した脱アルカリ軟化塔に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a dealkalization softening tower in which a weakly acidic cation exchange resin and a strongly acidic cation exchange resin are formed in a multilayer bed.

〈従来の技術〉 ボイラー給水等において、スケールの発生防止および金
属の苛性脆化防止のために、原水中のカルシウムイオン
、マグネシウムイオン等の硬度成分と炭酸水素イオン等
のアルカリ度成分を除去する脱アルカリ軟化装置が用い
られている。
<Prior art> In order to prevent the formation of scale and caustic embrittlement of metals in boiler feed water, etc., dehydration is used to remove hardness components such as calcium ions and magnesium ions and alkalinity components such as hydrogen carbonate ions in raw water. An alkali softener is used.

従来の脱アルカリ軟化装置は、H膨強酸性カチオン交換
樹脂を充填したH塔と、Na形形成酸性カチオン交換樹
脂充填したNa塔と、脱炭酸塔を組み合わせたもので、
その代表的フローは第2図に示した通りである。
Conventional dealkalization softening equipment is a combination of an H tower filled with an H-swelling acidic cation exchange resin, an Na tower filled with an Na form-forming acidic cation exchange resin, and a decarboxylation tower.
A typical flow is shown in FIG.

すなわち原水の一部をH膨強酸性カチオン交換樹脂(イ
)を充填したH塔(ロ)に通水し、以下の反応により原
水中の全てのカチオンを水素イオンに置換する。
That is, a portion of the raw water is passed through an H tower (b) filled with an H-swelled acidic cation exchange resin (a), and all cations in the raw water are replaced with hydrogen ions by the following reaction.

R−(SO3H) z+ca (HCOz) z −R
(−So 3) zca+2cOz+2HzO”−(1
)R−(S(hll) z十Mg(HCOs) t→R
(−SO3) zMg+ZcO□+2HzO・・・(2
)R−(SOJ) z+cac It z=R(−3O
s) zca+2Hc l −(3)R−(SOJ) 
z+Mgc l t−R(−So:l) Jg+28C
l・・・(4)R−SO3H+NaHCO3→R−5O
Ja+COz+HzO−(5)R−So 、lI+Na
Cl −hR−5OJa+HCI!=−(6)一方原水
の他部をNa形形成酸性カチオン交換樹脂ハ)を充填し
たNa塔(ニ)に通水し、以下の反応により原水中のC
a、MgイオンをNaイオンに置換する。
R-(SO3H) z+ca (HCOz) z-R
(-So 3) zca+2cOz+2HzO"-(1
)R-(S(hll) z0Mg(HCOs) t→R
(-SO3) zMg+ZcO□+2HzO...(2
)R-(SOJ) z+cac It z=R(-3O
s) zca+2Hc l -(3)R-(SOJ)
z+Mgc l t-R(-So:l) Jg+28C
l...(4) R-SO3H+NaHCO3→R-5O
Ja+COz+HzO-(5)R-So, lI+Na
Cl-hR-5OJa+HCI! =-(6) On the other hand, the other part of the raw water is passed through the Na tower (d) filled with Na form-forming acidic cation exchange resin c), and the C in the raw water is removed by the following reaction.
a. Replace Mg ions with Na ions.

R−(SOJa) z+Ca (HCOa) z = 
R(−5Ot) zca+2NaHcO:+ ++ (
7)R−(SOJa) z+Mg (I(co:l) 
z →R(−3Ot) Jg+2NaHCOz −(8
)R−(SOzNa) z+cac Rz−=R(−3
Os) gca+2Na(: l−(9)R−(SOJ
a) z+Mgc l z−R(−3Oz) zMg+
2NaCl ・= (10)次いでH塔(ロ)の処理水
とNa塔(ニ)の処理水とを混合し、前記反応式(3)
、(4)、(6)によって生成したH塔処理水中に含ま
れる鉱酸でNa塔(ニ)の処理水に含まれる炭酸水素イ
オンを以下の反応により中和する。
R-(SOJa) z+Ca (HCOa) z=
R(-5Ot) zca+2NaHcO:+ ++ (
7) R-(SOJa) z+Mg (I(co:l)
z →R(-3Ot) Jg+2NaHCOz -(8
)R-(SOzNa)z+cac Rz-=R(-3
Os) gca+2Na(: l-(9)R-(SOJ
a) z+Mgc l z-R(-3Oz) zMg+
2NaCl ・= (10) Next, the treated water of the H tower (b) and the treated water of the Na tower (d) are mixed, and the reaction formula (3) is expressed.
, (4) and (6), the hydrogen carbonate ions contained in the treated water of the Na tower (d) are neutralized by the following reaction with the mineral acid contained in the H tower treated water.

NaHCOi+HC1−NaCj! +COz+HzO
・” (11)次いで当該混合水を脱炭酸塔(ホ)で処
理し、当該混合水中の炭酸ガスを除去し、処理水として
供するものである。
NaHCOi+HC1-NaCj! +COz+HzO
・” (11) Next, the mixed water is treated in a decarbonation tower (e) to remove carbon dioxide gas from the mixed water and used as treated water.

なお当該混合水中には反応式(1)、(2)、(5)に
起因する炭酸ガスも含まれる。
Note that the mixed water also contains carbon dioxide gas resulting from reaction formulas (1), (2), and (5).

〈発明が解決しようとする問題点〉 従来の脱アルカリ軟化装置は以下のような問題点がある
<Problems to be Solved by the Invention> The conventional dealkalization softening apparatus has the following problems.

すなわち脱アルカリ軟化塔としてH塔(ロ)とNa塔(
ニ)の二基を必要とするという他に、H塔(ロ)の処理
水とNa塔(ニ)の処理水を混合する際に、H塔(ロ)
の処理水が過剰となると脱アルカリ軟化水のpHが鉱酸
酸性となり、また逆にNa塔(ニ)の処理水が過剰とな
ると脱アルカリ軟化水の炭酸水素イオンが多くなり、脱
アルカリ軟化水としての目的を達し得ない。したがって
従来の脱アルカリ軟化装置には、H塔(ロ)とNa塔(
ニ)の流量比をコントロールするための流量比例制御機
構や、混合水のpHを測定してH塔(ロ)、Na塔(ニ
)のいずれか一方の?A ffiを制御するpH制御機
構などの計装的制御装置を必要とし、装置の設置コスト
が上昇する。
In other words, H tower (b) and Na tower (
In addition to requiring two units (d), when mixing the treated water of the H tower (b) and the treated water of the Na tower (d), the H tower (b)
If the treated water in (2) is in excess, the pH of the dealkalized softened water becomes mineral acidic, and conversely, if the treated water in the Na tower (d) is in excess, the amount of bicarbonate ions in the dealkalized water increases, causing the dealkalized softened water to become acidic. cannot achieve its purpose. Therefore, conventional dealkalization softening equipment includes an H tower (b) and an Na tower (
d) A flow rate proportional control mechanism for controlling the flow rate ratio, and measuring the pH of the mixed water to either the H tower (b) or the Na tower (d)? This requires an instrumental control device such as a pH control mechanism to control the Affi, increasing the installation cost of the device.

またH塔(ロ)を再生する際に、再生剤として塩酸等の
酸を用いるが、強酸性カチオン交換樹脂は再生効率が悪
く、再生時に必然的に化学当量以上の酸を必要とし、ラ
ンニングコストが高くなるとともに、再生廃液中の酸を
中和するのに余分なアルカリも必要とするなどの欠点も
有している。
Furthermore, when regenerating the H tower (b), an acid such as hydrochloric acid is used as a regenerating agent, but strongly acidic cation exchange resins have poor regeneration efficiency and inevitably require more than a chemical equivalent of acid during regeneration, resulting in running costs. It also has disadvantages, such as the fact that it requires an extra alkali to neutralize the acid in the recycled waste liquid.

本発明は従来の脱アルカリ軟化装置における上述した欠
点を解決し、装置の設置コスト並びにランニングコスト
を低下することができる脱アルカリ軟化装置を提供する
ことを目的とする。
An object of the present invention is to provide a dealkalization softening device that can solve the above-mentioned drawbacks of conventional dealkalization softening devices and reduce the installation cost and running cost of the device.

〈問題点を解決する手段〉 本発明はH形の弱酸性カチオン交換樹脂を上層に、Na
形の強酸性カチオン交換樹脂を下層に充填した複層床を
イオン交換塔内に形成するとともに、イオン交換塔の上
方部に原水流入管を、イオン交換塔の下方部に処理水流
出管を連通し、当該原水流入管から原水を流入して前記
複層床に一貫して通水することにより処理水流出管から
処理水を得ることを特徴とする複層床式脱アルカリ軟化
塔に関するものである。
<Means for solving the problems> The present invention uses an H-type weakly acidic cation exchange resin as an upper layer, and a Na
A multilayer bed filled with strongly acidic cation exchange resin in the lower layer is formed in the ion exchange tower, and a raw water inflow pipe is connected to the upper part of the ion exchange tower, and a treated water outflow pipe is connected to the lower part of the ion exchange tower. The present invention relates to a multi-layer bed type dealkalization softening tower, characterized in that raw water flows in from the raw water inflow pipe and is passed through the multi-layer bed consistently, thereby obtaining treated water from the treated water outflow pipe. be.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

H形の弱酸性カチオン交換樹脂は原水中の中性塩すなわ
ちCaC1,、M g S O4、NaCl2、Na1
s04等を分解する能力を有しておらず、アルカリ性塩
すなわち、Ca  (HC03)2、Mg (HCO3
)Z、N a HCO:I等のみを分解する能力を有し
ている。さらに弱酸性カチオン交換樹脂と強酸性カチオ
ン交換樹脂は沈降速度に差があるので逆洗により容易に
分離でき、上層を弱塩性カチオン交換樹脂層、下層を強
酸性カチオン交換樹脂層とした複層床を形成することが
でき、さらに弱酸性カチオン交換樹脂は再生効率が良く
、はぼ化学当量の再生剤で再生でき、またH形の弱酸性
カチオン交換樹脂のアルカリ性塩の分解における貫流容
量は、Na形が小さい程大きく、換言すれば、Na塩よ
りCa塩あるいはMg塩を分解する時の方が大きい。
Weakly acidic cation exchange resins in the H form are neutral salts in the raw water, namely CaC1, M g S O4, NaCl2, Na1
It does not have the ability to decompose s04, etc., and it does not have the ability to decompose alkaline salts such as Ca (HC03)2, Mg (HCO3
) Z, N a HCO:I, etc. only. In addition, weakly acidic cation exchange resins and strongly acidic cation exchange resins have different sedimentation rates, so they can be easily separated by backwashing. In addition, the weakly acidic cation exchange resin has good regeneration efficiency and can be regenerated with a chemical equivalent of the regenerant, and the throughflow capacity of the weakly acidic cation exchange resin in the H form for the decomposition of alkaline salts is The smaller the Na form is, the larger it is; in other words, it is larger when decomposing Ca salt or Mg salt than Na salt.

本発明は以下のような弱酸性カチオン交換樹脂の特性を
巧みに利用するもので、原水を先にH形の弱酸性カチオ
ン交換樹脂に通して原水中のCa(HCC)+)z、M
 g (HC03)z、N a HCO:1等のアルカ
リ性塩を分解し、脱アルカリと軟化の一部を行い、次い
でH形の弱酸性カチオン交換樹脂で分解することができ
なかった中性塩の形で存在する硬度すなわち(、aCJ
z、M g S Oa等をNa形の強酸性カチオン交換
樹脂で軟化するものであリ、かつ上記の反応を単独のイ
オン交換塔に形成した弱酸性カチオン交換樹脂と強酸性
カチオン交換樹脂の複層床で行うものである。
The present invention skillfully utilizes the properties of weakly acidic cation exchange resins as described below. Raw water is first passed through an H-type weakly acidic cation exchange resin to remove Ca(HCC)+)z, M in the raw water.
Decompose alkaline salts such as (HC03)z, N a HCO: 1, perform some dealkalization and softening, and then remove neutral salts that could not be decomposed with H-type weakly acidic cation exchange resin. The hardness present in the form i.e. (, aCJ
z, MgS Oa, etc., with a Na-type strongly acidic cation exchange resin, and the above reaction is carried out in a complex of a weakly acidic cation exchange resin and a strongly acidic cation exchange resin formed in a single ion exchange column. This is done on a layered bed.

以下に本発明を図面に基づいて説明する。The present invention will be explained below based on the drawings.

第1図は本発明の実施態様の一例のフローを示す説明図
であり、イオン交換塔1内にH形の弱酸性カチオン交換
樹脂層2を上層に、Na形の強酸性カチオン交換樹脂層
3を下層に充填した複層床を形成する。
FIG. 1 is an explanatory diagram showing a flow of an example of an embodiment of the present invention, in which an H-type weakly acidic cation exchange resin layer 2 is provided as an upper layer, and a Na-type strongly acidic cation exchange resin layer 3 is provided in an ion exchange column 1. A multilayer bed is formed by filling the lower layer with

イオン交換塔1の上部にはディストリビュータ4を介し
て原水流入管5を連通し、イオン交換塔の下部に処理水
流出管6の一端を連通ずる。また■(形の弱酸性カチオ
ン交換樹脂層2の上方部に再生液用ディストリビュータ
7を介して酸再生液流入管8を連通ずるとともに、両イ
オン交換樹脂層2および3の中間部にコレクタ9を設置
し、当該コレクタ9に再生廃液流出管10を連通ずる。
A raw water inflow pipe 5 is connected to the upper part of the ion exchange tower 1 via a distributor 4, and one end of a treated water outflow pipe 6 is connected to the lower part of the ion exchange tower. In addition, an acid regenerating liquid inflow pipe 8 is connected to the upper part of the weakly acidic cation exchange resin layer 2 of the form (■) via a regenerating liquid distributor 7, and a collector 9 is connected to the intermediate part of both the ion exchange resin layers 2 and 3. A recycled waste liquid outflow pipe 10 is connected to the collector 9.

さらに原水流入管5に逆洗水流出管11を連通ずるとと
もに、処理水流出管6に逆洗水流人管12、洗浄水流出
管13、塩再生液流入管14をそれぞれ連通する。なお
処理水流出管6の他端に公知の脱炭酸塔15を連通し、
16ないし23はそれぞれ弁を示す。
Furthermore, a backwash water outflow pipe 11 is communicated with the raw water inflow pipe 5, and a backwash water flow pipe 12, a wash water outflow pipe 13, and a salt regenerating liquid inflow pipe 14 are communicated with the treated water outflow pipe 6, respectively. A known decarboxylation tower 15 is connected to the other end of the treated water outflow pipe 6,
16 to 23 each indicate a valve.

〈作用〉 本発明において原水を通水処理する場合は弁16および
弁23を開口し、その他の弁を閉じ、原水を原水流入管
5から流入し、両イオン交換樹脂層に一貫して通水し、
処理水を処理水流出管6から流出し、次いで当該処理水
を脱炭酸塔15で処理する。
<Function> In the present invention, when raw water is passed through and treated, the valves 16 and 23 are opened, the other valves are closed, and the raw water is allowed to flow in from the raw water inflow pipe 5, and the water is passed through both ion exchange resin layers consistently. death,
The treated water flows out from the treated water outflow pipe 6, and then is treated in the decarbonation tower 15.

このような処理により、原水中のアルカリ性塩はH形の
弱酸性カチオン交換樹脂層2により以下の反応により分
解され、脱アルカリが達成されるとともに、原水中のア
ルカリ性塩となっているCa、Mg等の硬度成分が除去
される。
Through such treatment, the alkaline salts in the raw water are decomposed by the H-type weakly acidic cation exchange resin layer 2 through the following reaction, dealkalization is achieved, and Ca and Mg, which are the alkaline salts in the raw water, are decomposed by the following reaction. Hardness components such as

R−(COOH) z+Ca ()ICOx) z −
R(−COOH) zca+2cOz+2Hzo−’ 
(12)R−(COOH) z+Mg (HCO3) 
z→R(−COOH) zMg+2cOz+2Hzo・
・・(13)R−C0011+NaHCO3=R−CO
ONa+COz+HzO−(14)なおH形の弱酸性カ
チオン交換樹脂層2では中性塩となっているCa、Mg
等の硬度成分は除去できないが、当該硬度成分はNa形
の強酸性カチオン交換樹脂層3を通過する際に前述した
反応式(9)、(10)によりNaイオンに置換され、
処理水管6から流出する処理水はいわゆる脱アルカリ軟
化水となる。また(12)ないしく14)式によって生
成した炭酸ガスは脱炭酸塔15で除去する。
R-(COOH) z+Ca ()ICOx) z-
R(-COOH) zca+2cOz+2Hzo-'
(12) R-(COOH) z+Mg (HCO3)
z→R(-COOH) zMg+2cOz+2Hz・
...(13) R-C0011+NaHCO3=R-CO
ONa + COz + HzO- (14) In the H-type weakly acidic cation exchange resin layer 2, Ca and Mg are neutral salts.
Although the hardness components cannot be removed, when they pass through the Na-type strongly acidic cation exchange resin layer 3, they are replaced by Na ions according to the above-mentioned reaction formulas (9) and (10).
The treated water flowing out from the treated water pipe 6 becomes so-called dealkalized softened water. Further, carbon dioxide gas generated according to equations (12) to 14) is removed in a decarboxylation tower 15.

このような通水により、両イオン交換樹脂が各イオンに
よって飽和したら次のような再生を行う。
When both ion exchange resins are saturated with each ion by such water flow, the following regeneration is performed.

まず通水処理によりイオン交換樹脂層に詰まった懸濁物
を除去し、かつイオン交換樹脂層をほぐすために弁20
および17を開口して逆洗水流人管12から逆洗水を流
入し、両イオン交換樹脂層を膨張させ、懸濁物を含んだ
逆洗廃水を逆洗水流出管11から流出する。
First, the valve 20 is used to remove suspended matter clogging the ion exchange resin layer by water flow treatment and to loosen the ion exchange resin layer.
and 17 are opened to allow backwash water to flow in from the backwash water flow pipe 12 to expand both ion exchange resin layers, and backwash wastewater containing suspended matter flows out from the backwash water outflow pipe 11.

このような逆洗を実施した後、弁20および17を閉じ
イオン交換樹脂層を沈整する。なおこのような逆洗を行
っても前述したごとく強酸性カチオン交換樹脂の方が沈
降速度が速いので、上層が弱酸性カチオン交換樹脂N2
および下層が強酸性カチオン交換樹脂N3となった複層
床は維持される。
After performing such backwashing, valves 20 and 17 are closed to settle the ion exchange resin layer. Even if such backwashing is performed, as mentioned above, the strongly acidic cation exchange resin has a faster sedimentation rate, so the upper layer is the weakly acidic cation exchange resin N2.
The multilayer bed with the lower layer of strongly acidic cation exchange resin N3 is maintained.

次に弁18.19.20を開口して酸再生液流入管8か
ら再生用ディストリビュータ7を介して塩酸等の酸再生
液を流入し、同時に逆洗水流人管12から支持水を流入
し、当該再生液を弱酸性カチオン交換樹脂層2に接触さ
せてH形に再生するとともに、再生廃液および支持水を
コレクタ9を介して再生廃液流出管10から流出し、続
いて常法により押し出し操作を行う。
Next, the valves 18, 19, and 20 are opened to allow an acid regenerating liquid such as hydrochloric acid to flow in from the acid regenerating liquid inflow pipe 8 through the regeneration distributor 7, and at the same time, support water flows in from the backwash water flow pipe 12. The regenerated liquid is brought into contact with the weakly acidic cation exchange resin layer 2 to be regenerated into H-type, and the regenerated waste liquid and support water are discharged from the regenerated waste liquid outflow pipe 10 via the collector 9, and then extruded by a conventional method. conduct.

次に弁18.20を閉じるとともに弁19の開口はその
ままにしてさらに弁16.22を開口して、塩再生液流
入管14から塩化ナトリウム等の再生液を流入し、同時
に原水流入管5から支持水を流入し、当該再生液を強酸
性カチオン交換樹脂層3に接触させてNa形に再生する
とともに、再生廃液および支持水をコレクタ9を介して
再生廃液流出管10から流出し、続いて常法により押し
出し操作を行う。
Next, close the valve 18.20, leave the valve 19 open, and open the valve 16.22 to allow a regenerating liquid such as sodium chloride to flow in from the salt regenerating liquid inflow pipe 14, and at the same time from the raw water inflow pipe 5. Support water flows in, and the regenerated liquid is brought into contact with the strongly acidic cation exchange resin layer 3 to be regenerated into Na form, and the regenerated waste liquid and support water flow out from the regenerated waste liquid outflow pipe 10 via the collector 9, and then The extrusion operation is performed in a conventional manner.

次に弁19.22を閉じ弁16の開口はそのままにして
弁21を開口し、洗浄水としての原水を原水流入管5か
ら流入し、洗浄廃水を洗浄水流出管13から流出させて
両イオン交換樹脂を洗浄する。
Next, valves 19 and 22 are closed, valve 16 is left open, and valve 21 is opened, raw water as cleaning water flows in from the raw water inflow pipe 5, and cleaning waste water flows out from the cleaning water outflow pipe 13, and both ions are removed. Clean the replacement resin.

以上のような再生操作が終了した後、再び前述の通水処
理を行う。
After the regeneration operation as described above is completed, the above-mentioned water flow treatment is performed again.

なお再生操作としては上述したような方法の他に複層床
の上方から酸再生液を流入して両イオン交換樹脂層に一
貫して通液し、弱酸性カチオン交換樹脂をH形に再生し
た後、両イオン交換樹脂層の中間部から塩再生液を下降
流で流入して下層の強酸性カチオン交換樹脂をNa形に
再生する方法や、複層床の上方から酸再生液を流入して
両イオン交換樹脂層に一貫して通液し、弱酸性カチオン
交換樹脂をH形に再生した後、同様にして複層床の上方
から塩再生液を流入して両イオン交換樹脂層に一貫して
通液し、下層の強酸性カチオン交換樹脂をNa形に再生
する方法があり、いずれの再生方法でも処理水の水質や
収量に大差はない。
In addition to the above-mentioned method, the regeneration operation was carried out by injecting an acid regenerating solution from above the multilayer bed and passing it consistently through both ion exchange resin layers to regenerate the weakly acidic cation exchange resin into H-form. After that, a salt regenerating solution is introduced in a downward flow from the middle part of both ion exchange resin layers to regenerate the strongly acidic cation exchange resin in the lower layer into Na form, or an acid regenerating solution is introduced from above the multilayer bed. After the weakly acidic cation exchange resin was regenerated into H-form by consistently passing the liquid through both ion exchange resin layers, a salt regenerating solution was similarly flowed from above the multilayer bed to consistently flow through both the ion exchange resin layers. There is a method in which the strongly acidic cation exchange resin in the lower layer is regenerated into the Na form by passing the water through the water, and there is no significant difference in the quality or yield of the treated water with either regeneration method.

なお最後に説明した再生法はH形の弱酸性カチオン交換
樹脂層に塩再生液としての塩化ナトリウム液が接触する
こととなるが、弱酸性カチオン交換樹脂は中性塩分解能
力をほとんど有していないので、Na形になることはな
い。
In addition, in the regeneration method explained last, the H-type weakly acidic cation exchange resin layer is contacted with a sodium chloride solution as a salt regenerating solution, but the weakly acidic cation exchange resin has almost no ability to decompose neutral salts. Therefore, it will never become Na form.

次に弱酸性カチオン交換樹脂層2と強酸性カチオン交換
樹脂層3の充填量比を説明すると、当該充填量比は、原
水中に含まれているアルカリ性塩と、中性塩の形となっ
ているCas Mg等の硬度成分との比によって決定さ
れ、具体的には原水中に含まれるアルカリ性塩の形とな
っているCa、Mg、Na等のカチオンを弱酸性カチオ
ン交換樹脂層2で除去し、また原水中に含まれる中性塩
の形となっているCa 、 M g等の硬度成分を強酸
性カチオン交換樹脂層3で除去できるような樹脂量比と
する。
Next, the filling ratio between the weakly acidic cation exchange resin layer 2 and the strongly acidic cation exchange resin layer 3 will be explained. Specifically, cations such as Ca, Mg, and Na in the form of alkaline salts contained in the raw water are removed by the weakly acidic cation exchange resin layer 2. In addition, the resin amount ratio is such that hard components such as Ca and Mg in the form of neutral salts contained in the raw water can be removed by the strongly acidic cation exchange resin layer 3.

〈効果〉 以上説明したごとく本発明は原水のアルカリ性塩を分解
し、かつアルカリ性塩の形となっている硬度成分を除去
すべきH形の弱酸性カチオン交換樹脂層と中性塩の形と
なっている硬度成分を除去すべきNa形の強酸性カチオ
ン交換樹脂層とが、一つのイオン交換塔内に充填されて
いるので従来のようにH塔およびNa塔の2塔を必°要
とせず、また従来装置のようにH塔とNa塔の処理水を
混合することにより、Na塔処理水中の炭酸水素イオン
をH塔処理水中の鉱酸で中和せずに、原水中の炭酸水素
イオンを全て弱酸性カチオン交換樹脂層で分解するとと
もに、弱酸性カチオン交換樹脂が中性塩を分解しないの
で鉱酸を生成することがなく、したがって従来装置のよ
うな流量比例制御機構やpH制御機構などの計装的制御
装置を必要とせず、装置の設置コストを大幅に減少させ
ることができる。
<Effects> As explained above, the present invention decomposes alkaline salts in raw water and removes hardness components in the form of alkaline salts with an H-type weakly acidic cation exchange resin layer in the form of neutral salts. The Na-type strongly acidic cation exchange resin layer from which hardness components should be removed is packed in one ion exchange tower, so there is no need for two towers, an H tower and an Na tower, as in the past. In addition, by mixing the treated water from the H tower and the Na tower as in conventional equipment, the hydrogen carbonate ions in the raw water are removed without neutralizing the hydrogen carbonate ions in the Na tower treated water with the mineral acids in the H tower treated water. The weakly acidic cation exchange resin layer does not decompose neutral salts, so there is no generation of mineral acids. This eliminates the need for additional instrumentation and control equipment, significantly reducing the installation cost of the equipment.

さらに弱酸性カチオン交換樹脂は再生効率がよいので、
酸再生液でH形に再生する際、はぼ化学量論的な再生剤
の使用量ですみ、再生におけるランニングコストを低減
でき、かつ再生廃液に酸が全く含まれないような再生も
実施することもでき、これにより再生廃液の中和処理そ
のものを全く省略することもできる。
Furthermore, weakly acidic cation exchange resins have good regeneration efficiency, so
When regenerating into H-form using acid regenerating liquid, the amount of regenerating agent used is almost stoichiometric, reducing the running cost of regeneration, and also regenerating so that the regenerated waste liquid does not contain any acid at all. This also makes it possible to completely omit the neutralization treatment of the regenerated waste liquid.

また原水を先にH形の弱酸性カチオン交換樹脂層に通水
することにより、弱酸性カチオン交換樹脂の貫流容量を
大とすることができるとともに、原水中に存在するアル
カリ性塩の形となっている硬度成分を先に弱酸性カチオ
ン交換樹脂で除去できるので、使用する両イオン交換樹
脂の使用量を小さくすることができる。
In addition, by first passing the raw water through the H-type weakly acidic cation exchange resin layer, the flow capacity of the weakly acidic cation exchange resin can be increased, and the alkaline salts present in the raw water are Since the hardness component contained in the ion exchange resin can be removed first with the weakly acidic cation exchange resin, the amount of both ion exchange resin used can be reduced.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

〔実施例〕 内径150tm、直線部長さ2000 mmのイオン交
換塔内に強酸性カチオン交換樹脂アンバーライト(登録
商標、以下同様)IR−12QBを101充填し、その
上部に弱酸性カチオン交換樹脂アンバーライトIRC−
84を10β充填して上層を弱酸性カチオン交換樹脂、
下層を強酸性カチオン交換樹脂とした複層床を形成し、
以下の条件で原水を処理した。
[Example] In an ion exchange column with an inner diameter of 150 tm and a linear length of 2000 mm, 101 pieces of strong acidic cation exchange resin Amberlite (registered trademark, hereinafter the same) IR-12QB were filled, and the weakly acidic cation exchange resin Amberlite was placed above it. IRC-
Filled with 10β of 84, the upper layer is a weakly acidic cation exchange resin,
Forms a multilayer bed with the lower layer made of strongly acidic cation exchange resin,
Raw water was treated under the following conditions.

1、再生剤使用量 35%HC(!   1.6kg/ C(再生レベル1
60g/ e R)95%Na C11,Okg/C(
再生レヘル100g/ e R)2、通水条件 通水LV   28.3m/H(5001/h)通水温
度  15℃ 3、原水組成 Ca”+Mg”   97ppm  as  CaC0
゜Na” +K“    43    〃全カチオン 
  140     〃 HCO3−63〃 鉱酸アニオン   77    〃 塩構成アニオン 140   1 以上のような条件で5サイクル通水試験を行ったが、ア
ルカリ度(HCO,イオン)3ppm  as  Ca
co:+、硬度lppm as  CaCO3以下の処
理水が9007!/C得られ、また当該処理水水質と収
量は各サイクルとも同じであった。
1. Regenerant usage amount: 35% HC (! 1.6 kg/C (regeneration level 1)
60g/e R) 95% Na C11,Okg/C(
Regeneration level 100g/e R) 2, Water flow condition Water flow LV 28.3m/H (5001/h) Water flow temperature 15℃ 3, Raw water composition Ca"+Mg" 97ppm as CaC0
゜Na” +K“ 43 〃All cations
140 〃 HCO3-63 〃 Mineral acid anion 77 〃 Salt constituent anion 140 1 A 5-cycle water flow test was conducted under the above conditions, and the alkalinity (HCO, ions) was 3 ppm as Ca
co:+, treated water with hardness lppm as CaCO3 or less is 9007! /C was obtained, and the quality and yield of the treated water were the same in each cycle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施態様の一例のフローを示す説明図
であり、第2図は従来の脱アルカリ軟化装置のフローを
示す説明図である。 1・・・イオン交換塔 2・・・弱酸性カチオン交換樹脂層 3・・・強酸性カチオン交換樹脂層 4・・・ディストリビュータ 5・・・原水流入管     6・・・処理水流出管7
・・・再生液用ディストリビュータ 8・・・酸再生液流入管   9・・・コレクタ10・
・・再生廃液流出管  11・・・逆洗水流出管12・
・・逆洗水流人管   13・・・洗浄水流出管14・
・・塩再生液流入管  15・・・脱炭酸塔16〜23
・・・弁 (イ)・・・H膨強酸性カチオン交換樹脂(ロ)・・・
H塔 (ハ)・・・Na形形成酸性カチオン交換樹脂二)・・
・Na塔     (ホ)・・・脱炭酸塔層 ! 図 第2図 手続補正書(自発) 昭和62年1月73B 特許庁長官  黒 1)明 m  殿 1、事件の表示 昭和60年特許願第246943号 2、発明の名称 複層床式脱アルカリ軟化塔 3、補正をする者 事件との関係 特許出願人 住 所  東京都文京区本擺5丁目5番16号名 称 
 (440)  オルガノ株式会社代表者   永  
井  邦  夫 4、代理人〒113 置、 812−5151 5、補正の対象 明細書の発明の詳細な説明の欄 へぺ) 6、補正の内容 明細書中の下記事項を訂正願います。 1.第6頁3行目〜4行目に「弱塩性カチオン交換樹脂
層」とあるのを「弱酸性カチオン交換樹脂層」と訂正す
る。 2、第10頁12行目に「塩化ナトリウム等」とあるの
を「塩化ナトリウム液等」と訂正する。 3、第15頁13行目にr9001/CJとあるのをr
9000 It/C」と訂正する。 以上
FIG. 1 is an explanatory diagram showing the flow of an example of an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing the flow of a conventional dealkalization softening apparatus. 1... Ion exchange column 2... Weakly acidic cation exchange resin layer 3... Strongly acidic cation exchange resin layer 4... Distributor 5... Raw water inflow pipe 6... Treated water outflow pipe 7
...Regenerating liquid distributor 8...Acid regenerating liquid inflow pipe 9...Collector 10.
...Recycled waste liquid outflow pipe 11...Backwash water outflow pipe 12.
... Backwash water flow pipe 13 ... Wash water outflow pipe 14.
...Salt regeneration liquid inflow pipe 15...Decarbonation tower 16-23
...Valve (a)...H-swelled acidic cation exchange resin (b)...
H tower (c)... Na form forming acidic cation exchange resin 2)...
・Na tower (e)...Decarboxylation tower layer! Figure 2 Procedural amendment (voluntary) January 1988 73B Commissioner of the Patent Office Black 1) Akira M. 1, Indication of the case 1985 Patent Application No. 246943 2, Name of the invention Multi-layer bed type dealkalization softening Tower 3: Relationship with the case of the person making the amendment Patent applicant address: 5-5-16 Motosa, Bunkyo-ku, Tokyo Name:
(440) Organo Co., Ltd. Representative Nagai
Kunio Ii 4, Agent Address: 113, 812-5151 5. Go to the Detailed Description of the Invention column in the specification subject to amendment) 6. Contents of the amendment Please correct the following matters in the specification. 1. On page 6, lines 3 and 4, the phrase "weakly salty cation exchange resin layer" has been corrected to "weakly acidic cation exchange resin layer." 2. On page 10, line 12, "sodium chloride, etc." is corrected to "sodium chloride liquid, etc." 3. On page 15, line 13, replace r9001/CJ with r.
9000 It/C”. that's all

Claims (1)

【特許請求の範囲】[Claims] H形の弱酸性カチオン交換樹脂を上層に、Na形の強酸
性カチオン交換樹脂を下層に充填した複層床をイオン交
換塔内に形成するとともに、イオン交換塔の上方部に原
水流入管を、イオン交換塔の下方部に処理水流出管を連
通し、当該原水流入管から原水を流入して前記複層床に
一貫して通水することにより処理水流出管から処理水を
得ることを特徴とする複層床式脱アルカリ軟化塔。
A multilayer bed filled with an H-type weakly acidic cation exchange resin in the upper layer and a Na-type strongly acidic cation exchange resin in the lower layer is formed in the ion exchange tower, and a raw water inflow pipe is installed in the upper part of the ion exchange tower. A treated water outflow pipe is connected to the lower part of the ion exchange tower, and raw water is flowed in from the raw water inflow pipe and water is consistently passed through the multilayer bed, thereby obtaining treated water from the treated water outflow pipe. A multi-layered dealkalization softening tower.
JP60246943A 1985-11-06 1985-11-06 Double-layered bed type dealkalization softening tower Pending JPS62106889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60246943A JPS62106889A (en) 1985-11-06 1985-11-06 Double-layered bed type dealkalization softening tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60246943A JPS62106889A (en) 1985-11-06 1985-11-06 Double-layered bed type dealkalization softening tower

Publications (1)

Publication Number Publication Date
JPS62106889A true JPS62106889A (en) 1987-05-18

Family

ID=17156048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60246943A Pending JPS62106889A (en) 1985-11-06 1985-11-06 Double-layered bed type dealkalization softening tower

Country Status (1)

Country Link
JP (1) JPS62106889A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073630A (en) * 2006-09-22 2008-04-03 Japan Organo Co Ltd Regeneration method and system of ion exchange apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49133279A (en) * 1973-04-26 1974-12-20
JPS55116485A (en) * 1979-02-16 1980-09-08 Water Refining Co Method of removing alkalinity and hardness from water
JPS602102A (en) * 1984-05-23 1985-01-08 皆川 功 Field drilling apparatus for tractor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49133279A (en) * 1973-04-26 1974-12-20
JPS55116485A (en) * 1979-02-16 1980-09-08 Water Refining Co Method of removing alkalinity and hardness from water
JPS602102A (en) * 1984-05-23 1985-01-08 皆川 功 Field drilling apparatus for tractor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073630A (en) * 2006-09-22 2008-04-03 Japan Organo Co Ltd Regeneration method and system of ion exchange apparatus
JP4684197B2 (en) * 2006-09-22 2011-05-18 オルガノ株式会社 Ion exchange apparatus regeneration method and apparatus

Similar Documents

Publication Publication Date Title
US3589999A (en) Deionization process
TW200946910A (en) Method for minimizing corrosion, scale, and water consumption in cooling tower systems
EP0015098A1 (en) Process for removing alkalinity and hardness from water
US3062739A (en) Treatment of chemical wastes
US2660558A (en) Method for the purification of water by ion exchange
JPS6156039B2 (en)
JP5609174B2 (en) Water treatment system
WO2014064754A1 (en) Method of desalinating boron-containing solution
Verdickt et al. Applicability of ion exchange for NOM removal from a sulfate-rich surface water incorporating full reuse of the brine
US3147215A (en) Demineralisation of water
JP2015136336A (en) purification method and purification apparatus of sucrose solution
US3842002A (en) Method for removing sulfate and bicarbonate ions from sea water or brackish water through the use of weak anionic exchange resins containing amino groups of the primary and secondary type
EP4137462A1 (en) Method for softening drinking water, swimming and bathing pool water and/or process water
JPS62106889A (en) Double-layered bed type dealkalization softening tower
Myers et al. Synthetic-resin ion exchangers in water purification
BG61108B1 (en) Production of alkali metal carbonates
KR101280357B1 (en) Ion-exchange water softening system and process re-using concentrate and brine waste
US2127310A (en) Hydrogen zeolite water treatment
JPS5924876B2 (en) How to treat boron-containing water
KR101470620B1 (en) Ion exchange softening device for removing evaporation residue and hardness of water
JP2607534B2 (en) Device for removing odor components in pure water
US6281255B1 (en) Methods for regeneration of weakly basic anion exchange resins with a combination of an alkali metal carbonate and an alkali metal bicarbonate
Thompson et al. Ion-Exchange Treatment of Water Supplies [with Discussion]
Tiger et al. Demineralizing solutions by a two-step ion exchange process
RU2217382C1 (en) Method for removing oxygen from water