JPS6210545A - Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction - Google Patents

Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction

Info

Publication number
JPS6210545A
JPS6210545A JP60149528A JP14952885A JPS6210545A JP S6210545 A JPS6210545 A JP S6210545A JP 60149528 A JP60149528 A JP 60149528A JP 14952885 A JP14952885 A JP 14952885A JP S6210545 A JPS6210545 A JP S6210545A
Authority
JP
Japan
Prior art keywords
air
temperature
heat exchanger
detecting
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60149528A
Other languages
Japanese (ja)
Inventor
Akira Yokouchi
横内 朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60149528A priority Critical patent/JPS6210545A/en
Publication of JPS6210545A publication Critical patent/JPS6210545A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To make it possible to shorten the rise-up time during the space heating operation and to carry out effective space heating by setting the blow-off direction to the downward when the blow-off air temperature reaches a predetermined value and switching from weak air flow to strong air flow. CONSTITUTION:When the blow-off temperature is low, a blower motor is set to the weak air flow, and a middle motor 3 and a lefthand motor 9a are rotated rightwards, a righthand motor 9b is rotated leftwards, and then stopped. Then, the blow-off air assumes horizontal branch flows. When the blow-off temperature increases in a certain degree, the middle motor 3 and the righthand motor 9b are rotated leftwards, and the lefthand motor 9a is rotated leftwards, and stopped, the blow-off air assumes downward branched flows, and the movement of air within a residential space is reduced and the wall surface is warmed, whereby the rise-up time can be shortened. When the blow-off temperature becomes high, a blower motor is set to a strong air flow, the middle motor 3, and the lefthand motor 9a are rotated leftwards, and the righthand motor 9b is rotated rightwards and stopped, the flow-off air is set to a downward concentration, and hence a warm air flow is directly applied to the body of a person to enable increasing of the space heating effect.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空気調和機の吹き出し方向を制御する風向偏
向装置および風向偏向方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a wind direction deflection device and a wind direction deflection method for controlling the blow direction of an air conditioner.

従来の技術 現在まで、居住空間の快適性の向上を図るために空気調
和機の風向偏向装置として2種々の装置が考えられてき
た。
2. Description of the Related Art Until now, two types of devices have been considered as wind deflection devices for air conditioners in order to improve the comfort of living spaces.

例えば、吹出口を水平方向と垂直方向とに有し。For example, it has air outlets in the horizontal direction and the vertical direction.

吹き出し温度が設定温度よりも低い時には水平方向に吹
き出し、設定温度よりも高い時には垂直方向に吹き出す
装置がある。(特公昭55−10813号公報) すなわちこの第1の従来例の構成は、いわゆるコールド
ドラフトを防止するもので、暖房効果を高めることがで
きる。
There is a device that blows out horizontally when the blowing temperature is lower than the set temperature, and blows out vertically when it is higher than the set temperature. (Japanese Patent Publication No. 55-10813) That is, the configuration of this first conventional example prevents so-called cold draft, and can enhance the heating effect.

またさらに、広い居住空間内の快適性を向上させるため
に、左右偏向羽根と上下偏向羽根を一定周期でスウィン
グさせる装置がある。(米国特許第3257931号明
細書) この第2の従来例を第11図、@12図に示す。
Furthermore, in order to improve comfort in a large living space, there is a device that swings the left and right deflection blades and the top and bottom deflection blades at a constant period. (US Pat. No. 3,257,931) This second conventional example is shown in FIGS. 11 and 12.

同図において、吹出口101の前面部に線、垂直方向に
吹き出し空気を偏向する上下偏向羽根102、水平方向
に吹き出し空気を偏向する左右偏向羽根103,104
が設けられている。そして上下偏向羽根102は連結機
105aレバーアーム106aを介してベローズ107
aに接続されている。また左右偏向羽根103.104
は。
In the figure, there are lines on the front surface of the air outlet 101, upper and lower deflection blades 102 that deflect the blown air in the vertical direction, and left and right deflection blades 103 and 104 that deflect the blown air in the horizontal direction.
is provided. The upper and lower deflection blades 102 are connected to a bellows 107 via a coupling device 105a and a lever arm 106a.
connected to a. In addition, left and right deflection blades 103 and 104
teeth.

それぞれ連結機105b、105c、レバーアーム10
6b、106cを介してベローズ107b。
Connectors 105b, 105c, lever arm 10, respectively
Bellows 107b via 6b and 106c.

107cに接現されている。また各ベローズ107a。107c. Also, each bellows 107a.

107b、107cにはそれぞれヒータ108a。Heaters 108a are provided in 107b and 107c, respectively.

108b、108cが巻かれている。109はヒータ1
08a、108b、108cの通電を制御するマイクロ
スインチである。
108b and 108c are wound. 109 is heater 1
This is a microsinch that controls energization of 08a, 108b, and 108c.

上記構成において、ヒータ108a、108b、108
cに通電を行なうことによりベローズ107a、107
b、107cは伸び、このベローズ107bの伸びによ
りマイクロスイッチを動作させヒータ108a、108
b、108cへの通電を停止する。その結果、ベローズ
107a、107b。
In the above configuration, heaters 108a, 108b, 108
By applying current to c, the bellows 107a, 107
b and 107c expand, and the expansion of the bellows 107b operates the microswitch to turn on the heaters 108a and 108.
b, stop supplying electricity to 108c. As a result, bellows 107a, 107b.

107cは冷却され縮む。107c is cooled and shrinks.

そしてこの動作を繰り返すことにより吹き出し空気のゆ
らぎ効果を得ることができる。
By repeating this operation, the effect of fluctuating the blown air can be obtained.

発明が解決しようとする問題点 しかしながら上記第1の従来構成では、単に垂直方向の
偏向制御しかできないので、例えば暖房時の冷風は直接
人体にあたらないようにすることができるが、一方向(
前方向)への吹き出しとなるために居住空間内の空気の
移動が大きくなシ。
Problems to be Solved by the Invention However, in the first conventional configuration described above, deflection control is only possible in the vertical direction.For example, the cold air during heating can be prevented from directly hitting the human body, but it is possible to control the deflection in one direction (
The movement of air within the living space is large as the air blows out in the forward direction.

体感的には実際の室温以下の温度に感じてしまう。Physically, the temperature feels lower than the actual room temperature.

また下方吹き出しは直接人体にあたるため、十分に吹き
出し温度が上がってからでなければならず。
In addition, since the downward blowing air directly hits the human body, the temperature of the blowing air must rise sufficiently.

特に運転開始から下方吹き出しまでに時間を要し、暖房
立上シが遅くなるという問題を有していた。
In particular, there was a problem in that it took a long time from the start of operation to the downward blowing, and the heating start-up was delayed.

また第2の従来構成では、水平方向への吹き出し偏向可
能なものではあるが、吹き出し温度に無関係にスイング
するだめ、特に暖房運転時の立上シ時間の短縮や、効率
的な暖房を行なうことができないという問題を有してい
た。
In addition, in the second conventional configuration, although the airflow can be deflected in the horizontal direction, it cannot swing regardless of the airflow temperature, so it is particularly difficult to shorten the start-up time during heating operation and perform efficient heating. The problem was that it was not possible.

また、上記両従来例は、送風量の変更が送風方向と無関
係に一様であるため、快適性の面でも改善の余地を有し
ていた。
Further, in both of the above conventional examples, since the amount of air blown is uniformly changed regardless of the direction of air blown, there is room for improvement in terms of comfort.

本発明は、空気調和機を用いた居住空間の快適性の向上
、特に暖房運転開始時の快適性の向上を図ることを目的
とする。
An object of the present invention is to improve the comfort of a living space using an air conditioner, particularly to improve the comfort at the start of heating operation.

問題点を解決するだめの手段 上記問題点を解決するために本発明は、冷媒を圧縮し、
室内熱交換器、室外熱交換器とともに冷凍サイクルを構
成する圧縮機と、送風機と前記室内熱交換器とを内部に
有する室内ユニットと、この室内ユニットに設けられ前
記室内熱交換器を通過した空気を吹き出す吹出口と、こ
の吹出口から吹き出される空気を上下方向に偏向する上
下偏向羽根と、前記吹出口の左右に独立して設けられか
つ前記吹出口から吹き出される空気を左右方向に分岐し
て偏向する左右偏向羽根と、前記上下偏向羽根と左右偏
向羽根をそれぞれ独立して偏向駆動する駆動手段と、前
記吹き出し温度を検出する温度検出手段と、あらかじめ
設定した温度を記憶する設定温度記憶手段を有し、前記
吹出口から吹き出される空気が左右に分岐されている状
態において、前記吹き出し空気温度が所定値に到達した
ときに前記上下偏向羽根を、吹き出し方向が下方となる
ように駆動するとともに吹き出し温度によって弱風から
強風に切換えるものである。
Means for Solving the Problems In order to solve the above problems, the present invention compresses the refrigerant,
An indoor unit that includes a compressor, a blower, and the indoor heat exchanger that constitute a refrigeration cycle together with an indoor heat exchanger and an outdoor heat exchanger, and air that is provided in this indoor unit and that has passed through the indoor heat exchanger. an air outlet that blows out air; a vertical deflection blade that vertically deflects the air blown from the air outlet; and a vertical deflection blade that is provided independently on the left and right sides of the air outlet and branches the air blown out from the air outlet in the left and right directions. left and right deflection blades for deflecting the air, driving means for independently deflecting and driving the upper and lower deflection blades and the left and right deflection blades, temperature detection means for detecting the temperature of the air outlet, and a temperature setting memory for storing a preset temperature. and driving the vertical deflection blade so that the blowing direction is downward when the blowing air temperature reaches a predetermined value in a state where the air blowing out from the blowing outlet is branched left and right. At the same time, the wind can be switched from weak to strong depending on the temperature of the air outlet.

作   用 上記構成により本発明の空気調和機の風向偏向装置は、
吹き出し温度がある設定温度になったとき、水平(上方
)分流吹き出しから下方分流吹き出しとなるために、吹
き出し温度が低い時には、居住空間上部のみで空気の混
合作用を行ない、体感的に寒さを感じることなく暖房を
行なうことができる。また吹き出し温度が高い時には、
居住空間下部の周辺部から暖房を行なう。さらに、吹き
出し温度により、吹き出し方向を変えるのみならず、風
量を弱風から強風に変える様にし、吹き出し温度の高い
時は、強風にし、高い暖房能力を実現し、温度分布の向
上、快適性の向上を図ることができる。
Operation With the above configuration, the air conditioner wind deflection device of the present invention has the following effects:
When the air outlet temperature reaches a certain set temperature, the horizontal (upward) branch air outlet changes to a downward air outlet, so when the air outlet temperature is low, the air is mixed only in the upper part of the living space, making you feel colder. You can heat the room without having to worry about it. Also, when the blowing temperature is high,
Heating is performed from the periphery of the lower part of the living space. Furthermore, depending on the temperature of the air outlet, not only can the direction of the air outlet be changed, but also the volume of air can be changed from weak to strong.When the temperature of the air outlet is high, the wind is turned to strong air, achieving high heating capacity, improving temperature distribution, and increasing comfort. You can improve your performance.

実施例 以下、本発明の一実施例による空気調和機の風向偏向装
置を図面を用いて説明する。
Embodiment Hereinafter, a wind direction deflection device for an air conditioner according to an embodiment of the present invention will be explained with reference to the drawings.

第1図は同装置の要部分解斜視図である。FIG. 1 is an exploded perspective view of essential parts of the device.

同図に示すように、吹き出し方向にわずかにわん曲し、
コアンダ効果によって上下の風向偏向を行う上下偏向羽
根1は、その長手方向にシャフト2を有し、このシャフ
ト2は中モータ(ステッピングモータ)3に接続されて
いる。また吹き出し空気をコアンダ効果によって水平方
向に偏向する左右偏向羽根は、連結機4aに連結された
左偏向羽根5aと、連結機4bに連結された右偏向羽根
5bとから構成されている。そして左偏向羽根5aハ、
羽根用レバーアーム6a、ロッド7a、モータ用レバー
アーム8aを介して左モータ(ステッピングモータ)9
aに接続し、右偏向羽根5bは、羽根用レバーアーム6
b、ロッド7b、モータ用レバーアーム8bを介して右
モータ(ステッピングモータ)9bに接続している。こ
こで左偏向羽根5aはこの左偏向羽根5aよりも左側に
中心を有するようにわずかにわん曲し、右偏向羽根5b
はこの右偏向羽根5bよりも右側に中心を有するように
わずかにわん曲している。すなわち後述する吹出口12
0両側部13a、13bとで前述のコアンダ現象を発生
させ、風向偏向を行うためである。前記コアンダ効果に
ついては、従来より周知の技術であるため、説明を省略
する。
As shown in the figure, it is slightly curved in the direction of the balloon,
A vertical deflection blade 1 that performs vertical wind direction deflection by the Coanda effect has a shaft 2 in its longitudinal direction, and this shaft 2 is connected to an intermediate motor (stepping motor) 3. The left and right deflection vanes that horizontally deflect the blown air by the Coanda effect are composed of a left deflection vane 5a connected to a coupler 4a and a right deflection vane 5b connected to a coupler 4b. And left deflection blade 5ac,
The left motor (stepping motor) 9 is connected via the blade lever arm 6a, rod 7a, and motor lever arm 8a.
a, and the right deflection blade 5b is connected to the blade lever arm 6.
It is connected to a right motor (stepping motor) 9b via a rod 7b and a motor lever arm 8b. Here, the left deflection blade 5a is slightly curved so that its center is on the left side of the left deflection blade 5a, and the right deflection blade 5b
is slightly curved so that its center is on the right side of the right deflection blade 5b. That is, the air outlet 12 described later
This is to generate the above-mentioned Coanda phenomenon on both sides 13a and 13b to deflect the wind direction. Since the Coanda effect is a well-known technique, its explanation will be omitted.

なお本実施例では、中モータ3%左モータ9a。In this embodiment, the middle motor 3% is the left motor 9a.

右モータ9bで駆動手段を構成しているが、左右偏向羽
根を駆動するモータを一つとすることも可能で、さらに
はギヤあるいはクラッチ等の切換手段を用いることによ
如上下偏向羽根1と左右偏向羽根を単一のモータで制御
することも可能である。
Although the right motor 9b constitutes the driving means, it is also possible to use a single motor for driving the left and right deflection blades, and furthermore, by using a switching means such as a gear or a clutch, it is possible to switch between the upper and lower deflection blades 1 and the left and right deflection blades. It is also possible to control the deflection vanes with a single motor.

またモータはステッピングモータに限らず、誘導電動機
等でもよい。
Further, the motor is not limited to a stepping motor, but may be an induction motor or the like.

またモータのかわシに、周囲温度によって変化する形状
記憶合金製バネを用いることも考えられ。
It is also conceivable to use a shape-memory alloy spring that changes depending on the ambient temperature for the motor.

この場合には本発明の必須要件である温度°検出手段や
設定温度記憶手段をこの合金自体が有することになる。
In this case, the alloy itself will have temperature detection means and set temperature storage means, which are essential requirements of the present invention.

また左右偏向羽根を左偏向羽根5aと右1桶向羽根5b
に2分割にしたのは、本発明の目的とする集中、分流動
作を容易に行なえる上にそれぞれ独立して風向制御でき
るだめであり、さらに敷砂な風゛面制御を行なうために
はさらに細分割する購成であってもよく、逆に分割せず
に第2図に示すように単一の連結機4で連接してもよい
In addition, the left and right deflection blades are the left deflection blade 5a and the right one bucket direction blade 5b.
The reason why it is divided into two parts is that it is not only possible to easily perform the concentration and separation operations that are the object of the present invention, but also to be able to control the wind direction independently of each other. It may be purchased to be subdivided, or conversely, it may be connected by a single connector 4 as shown in FIG. 2 without being divided.

また左偏向羽根5a、右偏向羽根5bをわん曲させたの
は、コアンダ効果によって風向偏向を行う他に1本発明
の目的とする集中、分流効果を高めるだめの形状であり
、前記コアンダ効果を考慮しなければたとえわん曲して
いない平面的な形状でもよく、さらにはわん白方向をそ
れぞれ逆にしたものであってもよい。
Furthermore, the left deflection blade 5a and the right deflection blade 5b are curved in order to not only deflect the wind direction by the Coanda effect but also to enhance the concentration and splitting effect which is an object of the present invention. If this is not taken into account, it may be a planar shape that is not curved, or it may even have a shape with the round directions reversed.

次に、第1図に示した風向偏向装置を装着する室内ユニ
ット10の斜視図を第3図に示す。
Next, FIG. 3 shows a perspective view of the indoor unit 10 to which the wind direction deflection device shown in FIG. 1 is installed.

同図において、室内ユニット10の前面には室内空気を
吸い込む吸込口11を有し、この吸込口11の下部に上
下偏向羽根1と左右偏向羽根5a、5bを有する吹出口
12が設けられている。この吹出口120両側部13a
、13bはそれぞれ外方向へ前述の如くコアンダ効果に
て風向偏向を行うために漸次拡大する曲面となっている
。また下面部14も前述の如くコアンダ効果にて風向偏
向を行うために漸次拡大する曲面となっている。
In the figure, the front of the indoor unit 10 has an inlet 11 for sucking indoor air, and below the inlet 11 is provided an outlet 12 having upper and lower deflection blades 1 and left and right deflection blades 5a and 5b. . This outlet 120 both sides 13a
, 13b are curved surfaces that gradually expand outward in order to deflect the wind direction by the Coanda effect as described above. Further, as described above, the lower surface portion 14 is also a curved surface that gradually expands in order to deflect the wind direction by the Coanda effect.

この室内ユニット10の側断面図を第4図に示す。吸込
口11に対向する位置に室内熱交換器15を有し、この
室内熱交換器15から吹出口12に至る通風路中に送風
機モータleaに連結された送風機tabを有している
A side sectional view of this indoor unit 10 is shown in FIG. An indoor heat exchanger 15 is provided at a position facing the suction port 11, and a blower tab connected to a blower motor lea is provided in the ventilation path from the indoor heat exchanger 15 to the blower outlet 12.

次に本実施例の冷凍サイクルを第5図に示す。Next, FIG. 5 shows the refrigeration cycle of this embodiment.

同図において、圧縮機17、四方弁18、室内熱交換器
15、キャピラリチューブ19、室外熱交換器20が環
状に連結されている。ここで冷媒は2暖房運転時には、
圧縮機17、四方弁18.室内熱交換器15.キャピラ
リチー−ブ19、室外熱交換器20の順に流れ、冷房運
転時には、圧縮機17、四方弁18、室外熱交換器20
.キャピラリチューブ19.室内熱交換器15の順に流
れる。
In the figure, a compressor 17, a four-way valve 18, an indoor heat exchanger 15, a capillary tube 19, and an outdoor heat exchanger 20 are connected in a ring. Here, the refrigerant is 2 during heating operation,
Compressor 17, four-way valve 18. Indoor heat exchanger 15. It flows in the order of capillary cheese 19 and outdoor heat exchanger 20, and during cooling operation, it flows through compressor 17, four-way valve 18, and outdoor heat exchanger 20.
.. Capillary tube 19. The heat flows through the indoor heat exchanger 15 in this order.

ここで21a〜21dは吹き出し温度を間接的に検出す
る温度検出手段である。すなわち21aは室内熱交換器
20の配管温度を検出する温度センサ、21bは圧i機
17の電流を検出する電流検出器、21Cは圧縮機17
の吐出配管の圧力を検出する圧力検出器、21dは室内
熱交換器15の配管圧力を検出する圧力検出器、21a
は吸込み温度(室温)を検出する温度センサである。吹
き出し温度を検出するには、直接吹出口12に温度セン
サを設けることが考えられるが、上記各部の温度、圧力
、電流からも検出することができ、いずれかを選択ある
いは組合わせて用いることも可能である。
Here, 21a to 21d are temperature detection means that indirectly detect the temperature of the air outlet. That is, 21a is a temperature sensor that detects the pipe temperature of the indoor heat exchanger 20, 21b is a current detector that detects the current of the pressure generator 17, and 21C is the compressor 17.
21d is a pressure detector that detects the pressure of the discharge pipe of the indoor heat exchanger 15; 21a is a pressure detector that detects the pressure of the pipe of the indoor heat exchanger 15;
is a temperature sensor that detects the suction temperature (room temperature). In order to detect the blowout temperature, it is conceivable to provide a temperature sensor directly at the blowout port 12, but it can also be detected from the temperature, pressure, and current of each of the above parts, and any one of them can be selected or used in combination. It is possible.

次に本実施例の要部回路図を第6図に示す。マイクロコ
ンピュータ22内には、あらかじめ設定した温度を記憶
する記憶部23.この記憶部23に記憶された設定蔭と
入力値との比較から適宜出力信号を発生する駆動信号発
生手段24を有している。このマイクロコンピュータの
入力側にはコンパレータ25を介して温度検出手段であ
るサーミスタ21が接続され、各モータ3.9a、9b
ヘパルス出力を供給するバッファ26を介して駆動手段
である中モータ3、左モータ9a、右モータ9bと、送
風機モータ16aが接続されている。
Next, a circuit diagram of the main part of this embodiment is shown in FIG. Inside the microcomputer 22, there is a storage section 23 that stores a preset temperature. It has a drive signal generating means 24 that generates an appropriate output signal from a comparison between the settings stored in the storage section 23 and the input value. A thermistor 21, which is temperature detection means, is connected to the input side of this microcomputer via a comparator 25, and each motor 3.9a, 9b
A blower motor 16a is connected to the middle motor 3, left motor 9a, right motor 9b, which are driving means, via a buffer 26 that supplies pulse output to the blower motor 16a.

ここで27はバイアス抵抗、28はスキャン抵抗である
Here, 27 is a bias resistor, and 28 is a scan resistor.

次に本実施例の動作を第7図に示す。同図は暖房運転時
のフローチャートである。
Next, the operation of this embodiment is shown in FIG. This figure is a flowchart during heating operation.

吹き出し温度tはサーミスタ21で検出した温度であり
t、、 t2.t3は設定温度である。この吹き出し温
度tが第1の設定温度t1 よりも低い時には送風機モ
ータ16aを弱風にし、中モータ3を右回転、左モータ
9aを右回転、右モータ9bを左回転させて停止する。
The blowout temperature t is the temperature detected by the thermistor 21, t,, t2. t3 is a set temperature. When the blowing temperature t is lower than the first set temperature t1, the blower motor 16a is set to a weak airflow, the middle motor 3 is rotated to the right, the left motor 9a is rotated to the right, and the right motor 9b is rotated to the left and then stopped.

ここで中モータ3を右回転させることは上下偏向羽根1
を水平位置(必要に応じては上方位置)に、左モータ9
aを右回転させることは左偏向羽根5aを左側に、右モ
ータ9bを左回転させることは右偏向羽根5bを右側に
駆動することを示す、すなわち吹き出し空気は水平(上
方)分流となシ第8図に示すようになる。
Here, rotating the middle motor 3 clockwise means that the vertical deflection blade 1
in the horizontal position (in the upper position if necessary) and the left motor 9
Rotating a to the right drives the left deflection blade 5a to the left, and rotating the right motor 9b to the left drives the right deflection blade 5b to the right. In other words, the blown air is diverted horizontally (upwards) and into the left direction. The result is as shown in Figure 8.

このとき、上下偏向羽根1、左偏向羽根5a、右偏向羽
根5bは、それぞれどのような初期状態にあるかわから
ないが、各モータ9a、9b、3の駆動後は必ず上記の
ような位置に回動するものである。すなわち、初期状態
において駆動後の位置と同位置゛にすでに偏向している
ときには、ストッパー等の負荷抵抗でモータの回転をさ
せないか2あるいはモータを空回転させる。
At this time, it is not known what initial state the upper and lower deflection blades 1, left deflection blade 5a, and right deflection blade 5b are in, but after driving each motor 9a, 9b, and 3, they must be rotated to the above positions. It is something that moves. That is, when the deflection is already at the same position as the position after driving in the initial state, the motor is not allowed to rotate by a load resistance such as a stopper, or the motor is allowed to rotate idly.

そして各モータ9a、9b、3の回転後(必要に応じて
回転前あるいは回転中)は再びサーミスタ21の温度と
設定温度とを比穀する。
After each motor 9a, 9b, 3 rotates (before or during rotation as required), the temperature of the thermistor 21 and the set temperature are compared again.

次にサーミスタ21の温度tが第1の設定温度t1より
も高く第2の設定温度t2以下の場合には、中モータ3
を左回転、左モータ9aを右回転、右モータ9bを左回
転させて停止する。すなわち吹き出し空気は下方分流と
なり第9図に示すようになる。この動作前にすでに第8
図のように水平分流状態にあるときは、実質的には上下
偏向羽根1のみが偏向することになる。
Next, if the temperature t of the thermistor 21 is higher than the first set temperature t1 and lower than the second set temperature t2, the middle motor 3
is rotated to the left, the left motor 9a is rotated to the right, and the right motor 9b is rotated to the left and then stopped. That is, the blown air becomes a downward branch as shown in FIG. Before this operation, the 8th
When the flow is in a horizontally divided state as shown in the figure, only the upper and lower deflection blades 1 are substantially deflected.

次にサーミスタ21の温度tが第2の設定温度t2より
も高い場合には、送風機モータ16aを強風にし暖房能
力の増大を図るとともに、中モータ3を左回転、左モー
タ9aを左回転、右モータ9bを右回転させて停止する
。すなわち吹き出し空気は下方集中かつ強風となり第1
0図に示すようになる。
Next, when the temperature t of the thermistor 21 is higher than the second set temperature t2, the blower motor 16a is turned on to strong air to increase the heating capacity, the middle motor 3 is rotated to the left, the left motor 9a is rotated to the left, and the left motor 9a is rotated to the right. The motor 9b is rotated clockwise and stopped. In other words, the blown air is concentrated downward and becomes a strong wind.
The result will be as shown in Figure 0.

ここで、風量を弱風から強風にしたり、分流から集中に
することにより、一般的に吹き出し温度tは若干低下す
る。吹き出し温度tが、第3の設定温度t3 (t3 
<t2 )以下になるまで、下方集中かつ強風で運転す
る。
Here, the blowout temperature t generally decreases slightly by changing the airflow from weak to strong, or from branched to concentrated. The blowout temperature t is the third set temperature t3 (t3
<t2) Operate with downward concentration and strong winds until the wind drops below t2).

上記のような動作を行なうことにより、体感的に好まし
くない冷風は直接人体にあたらないように弱風にて水平
分流吹き出しとなり、ある程度吹き出し温度が暖められ
ているときには間接的に人体にあたるように下方分流吹
き出しとなり、吹き出し温度が十分に高いときには直接
人体に吹きかかっても支障がないように強風にて下方集
中吹き出しとなる。
By performing the above operation, the cold air that is not pleasant to the body is diverted horizontally with weak wind so that it does not directly hit the human body, and when the temperature of the air is warmed to a certain extent, it is directed downward so that it indirectly hits the human body. The air blows out in separate streams, and when the air temperature is high enough, the air blows out in a downward direction with strong winds so that there is no problem even if the air blows directly onto the human body.

このような動作を暖房運転開始時についてその効果を説
明する。まず暖房運転開始直後の吹き出し温度は低いた
め、人体に直接あたるのは好ましくない。また人体に直
接あたらなくても居住空間内の空気が大きく移動するこ
とは実際の室温以下に感じるため、居住空間内の空気の
移動は小さい方が好ましい。すなわち水平分流吹き出し
かつ弱風にすることにより、居住空間上部のみで吹き出
し空気が混ざりあい、人体に寒さを感じさせるこ   
   。
The effect of such an operation at the start of heating operation will be explained. First, since the temperature of the air outlet immediately after heating operation starts is low, it is not desirable for the air to directly hit the human body. Furthermore, even if the air within the living space does not directly hit the human body, the air within the living space will feel lower than the actual room temperature, so it is preferable that the movement of the air within the living space be small. In other words, by using a horizontal branch outlet and a weak wind, the blown air mixes only in the upper part of the living space, which can make the human body feel cold.
.

となく暖房作用を行なう。It has a heating effect.

次にある程度吹き出し温度が高くなったときには、下方
分流吹き出しとなるため、居住空間の周辺から暖房作用
を行なうことになる。すなわち、この場合にあっても居
住空間内の空気の移動を小さくし人体に寒さを感じさせ
ずに暖房が行なえる。
Next, when the temperature of the air outlet becomes high to a certain extent, the air outlet is diverted downward, so that the heating effect is performed from the periphery of the living space. That is, even in this case, the movement of air within the living space is reduced and heating can be performed without making the human body feel cold.

さらに壁面をまず暖めることにより、立上シ時間を短縮
できるとともに、居住空間内の温度分布を均一にするこ
とができる。
Furthermore, by heating the wall surface first, the start-up time can be shortened and the temperature distribution within the living space can be made uniform.

そしてさらに吹き出し温度が高くなった時には、強風に
て下方集中吹き出しとなるため、人体に直接暖風をあて
、暖房効果を高めることができる。
When the temperature of the airflow becomes even higher, strong winds cause the airflow to concentrate downward, allowing warm air to be applied directly to the human body, thereby increasing the heating effect.

このとき、すでに壁面もある程度暖められているために
、居住空間内に部分的に低温場所が生じることもない。
At this time, since the wall surface has already been warmed to some extent, there is no possibility that a low temperature area will occur in the living space.

発明の効果 本発明は上記実施例の説明から明らかなように、吹き出
し温度がある設定温度になったとき、水平分流吹き出し
から下方分流吹き出しとなるために。
Effects of the Invention As is clear from the description of the above-described embodiments, the present invention is advantageous in that when the temperature of the air outlet reaches a certain set temperature, the horizontal branch air outlet changes to a downward branch air outlet.

吹き出し温度が低い時には居住空間上部のみで空気の混
合作用を行なう。すなわちこの時、水平吹き出しである
とともに分流吹き出し弱風であるために、居住空間上部
のみでの空気の混合作用を向上することができ、居住空
間下部での大きな空気移動を防止することができるので
、体感的に寒さを感じることがない。
When the blowout temperature is low, the air is mixed only in the upper part of the living space. In other words, at this time, since it is a horizontal blowout and a branch blowout with a weak wind, it is possible to improve the mixing effect of air only in the upper part of the living space, and it is possible to prevent large air movement in the lower part of the living space. , I don't physically feel the cold.

さらに吹き出し温度が高い時には、下方分流吹き出しと
なるので、居住空間下部周辺、すなわち壁面から暖める
ことになるので温度分布の均一化が図れる。さらに、下
方集中吹き出しかつ強風であると、直接人体に吹き出し
空気があたるために。
Further, when the temperature of the air outlet is high, the air outlet is directed downward, so that the heating is carried out from the lower part of the living space, that is, from the wall surface, thereby making the temperature distribution uniform. Furthermore, if the air is concentrated downward and the wind is strong, the blown air will directly hit the human body.

吹き出し温度が十分に高くなってからでないと下方吹き
出しを行なうことができないが1分流吹き出しであるた
めに、ある程度の温度上昇で下方吹き出しとすることが
でき、さらに弱風から強風に切9換え暖房効果の立上り
を早めることができる。
Downward blowing cannot be performed until the blowing temperature becomes sufficiently high, but since it is a one-minute flow blowout, downward blowing can be performed when the temperature rises to a certain degree, and further heating can be performed by switching from weak wind to strong wind. The onset of effects can be accelerated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は°本発明の一実施例を示す風向偏向装置の分解
斜視図、第2図は同風向偏向装置における左右偏向羽根
の異なる連結状態を示すgR成図、第3図は同風向偏向
装置を具備した空気調和機の斜視図、第4図は同空気調
和機の縦断面図、第5図は同空気調和機の冷凍サイクル
図、第6図は同空気調和機の要部の電気回路図、第7図
は同風向偏向装置の制御内容を示すフローチャート、第
8図は同空気調和機における水平分流吹出状態を示す説
明図、第9図は同下方分流吹出状態を示す説明図、第1
0図は同下方集中吹出状態を示す説明図。 第11図、第12図はそれぞれ従来例を示す風向偏向装
置の要部斜視図および要部断面図である。 1・・・・・・上下風向偏向羽根、3・・・・・・中モ
ータ、5a・・・・・・左偏向羽根、5b・・・・・・
右偏向羽根、9a・・・・・・左モータ、9b・・・・
・・右モータ、10・・・・・・室内ユニット、12・
・・・・・吹出口、15・・・・・・室内熱交換器、1
6a・・・・・・送風機モータ、16b・・・・・・送
風機、17・・・・・・圧縮機、20・・・・・・室外
熱交換器、21a、21e・・・・・・温度センサ、2
1b・・・・・・電流検出器、21゜・21d・・・・
・・圧力検出器、22・・・・・・マイクロコンピュー
タ、23・・・・・・記憶部、24・・・・・・駆動信
号発生手段。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名ノー
−一上下厘1笥偵勾J−1夛L 3−−−中モータ デa−−一友モータ タb −−−A謄 1ヒータ 第2図 /−−一上下風臼偏f4羽枚 lα−一一左偏向躬辰 第30       !jb−4’A#IA;I*/1
−rlA、ムロ 居 第 4 図            π−−−空内ユ=
クトδ−−−宣内p!!:史検器 /6α−−−通虱彩曵川モータ /6b−−一也虱機 21tt、 21b −−−:LJIン”j21b−−
一で丸秋池各 第 6 図                  21
−m−サーミスタ22−−−マイクロコン仁−一タ z3−−一記l九仔 第7図
Fig. 1 is an exploded perspective view of a wind deflection device showing an embodiment of the present invention, Fig. 2 is a diagram showing different connection states of left and right deflection blades in the wind deflection device, and Fig. 3 is a diagram showing the same wind deflection device. A perspective view of the air conditioner equipped with the device, Fig. 4 is a longitudinal sectional view of the air conditioner, Fig. 5 is a refrigeration cycle diagram of the air conditioner, and Fig. 6 is an electrical diagram of the main parts of the air conditioner. A circuit diagram, FIG. 7 is a flowchart showing the control contents of the air deflection device, FIG. 8 is an explanatory diagram showing the horizontal branch blowing state in the air conditioner, FIG. 9 is an explanatory diagram showing the downward branch blowing state, 1st
FIG. 0 is an explanatory diagram showing the downward concentrated blowing state. FIG. 11 and FIG. 12 are a perspective view and a sectional view of a main part of a conventional wind direction deflection device, respectively. 1... Vertical wind direction deflection blade, 3... Middle motor, 5a... Left deflection blade, 5b...
Right deflection vane, 9a...Left motor, 9b...
...Right motor, 10... Indoor unit, 12.
...Air outlet, 15...Indoor heat exchanger, 1
6a...Blower motor, 16b...Blower, 17...Compressor, 20...Outdoor heat exchanger, 21a, 21e... Temperature sensor, 2
1b...Current detector, 21°/21d...
. . . Pressure detector, 22 . . . Microcomputer, 23 . . . Storage section, 24 . . . Drive signal generation means. Agency's name Live Orthodox Toshio Nakao, 1 Nobu, Ichigashita 1 Shrine J -1 L 3 --- Medium Motode A -Ichiyomo Motata B --- A Ciputer's 1 Hita 2nd Fig. /--1 vertical wind deflection f4 blades lα-11 left deflection 30th! jb-4'A#IA;I*/1
-rlA, Muro 4th figure π---U=
Kuto δ --- Sennai p! ! : History test equipment / 6α --- Tsuyoshi Aya Hikigawa motor / 6b -- Kazuyagi 21tt, 21b ---: LJIN"j21b ---
Ichidemaruaki Pond Figure 6 21
-m-Thermistor 22--Microcontroller-1 z3--Iki l Jiuzai Fig. 7

Claims (10)

【特許請求の範囲】[Claims] (1) 冷媒を圧縮し、室内熱交換器、室外熱交換器と
ともに冷凍サイクルを構成する圧縮機と、送風機と前記
室内熱交換器とを内部に有する室内ユニットと、この室
内ユニットに設けられ前記室内熱交換器を通過した空気
を吹き出す吹出口と、この吹出口から吹き出される空気
を上下方向に偏向する上下偏向羽根と、前記吹出口の左
右に独立して設けられかつ前記吹出口から吹き出される
空気を左右方向に分岐して偏向する左右偏向羽根と、前
記上下偏向羽根と左右偏向羽根をそれぞれ独立して偏向
駆動する駆動手段と、前記吹出口からの吹き出し温度を
検出する温度検出手段と、あらかじめ設定した温度を記
憶する設定温度記憶手段と、前記吹出口からの送風が分
岐するように位置している左右偏向羽根の状態において
、前記温度検出手段により検出した温度が設定温度記憶
手段に記憶された設定温度になったことを検出し、前記
上下偏向羽根を上方位置から下方向へ回動させる信号を
前記駆動手段に与える駆動信号発生手段と、前記送風機
の風量を弱風から強風に変更する風量変更手段と、前記
送風機の風量切換手段に与える切換信号発生手段とを備
えた空気調和機の風向偏向装置。
(1) An indoor unit that includes a compressor that compresses a refrigerant and constitutes a refrigeration cycle together with an indoor heat exchanger and an outdoor heat exchanger, a blower, and the indoor heat exchanger; an air outlet that blows out the air that has passed through the indoor heat exchanger; a vertical deflection blade that vertically deflects the air that is blown out from the air outlet; left and right deflection vanes for branching and deflecting air in left and right directions; driving means for independently driving the upper and lower deflection vanes and left and right deflection vanes to deflect the air; and temperature detection means for detecting the temperature of air blown from the air outlet. a set temperature storage means for storing a preset temperature; and a set temperature storage means for storing the temperature detected by the temperature detection means in the state of the left and right deflection vanes positioned so that air from the air outlet diverges. a drive signal generating means for detecting that the temperature has reached a preset temperature stored in the controller and supplying a signal to the drive means to rotate the vertical deflection blade from an upper position downward; 1. A wind direction deflection device for an air conditioner, comprising: an air volume changing means for changing the air volume; and a switching signal generating means for applying a switching signal to the air volume switching means of the blower.
(2) 吹き出し温度を検出する温度検出手段を、室内
熱交換器の配管温度を検出する温度検出器とした特許請
求の範囲第1項記載の空気調和機の風向偏向装置。
(2) The wind direction deflection device for an air conditioner according to claim 1, wherein the temperature detection means for detecting the temperature of the air outlet is a temperature detector for detecting the pipe temperature of an indoor heat exchanger.
(3) 吹き出し温度を検出する温度検出手段を、圧縮
機電流もしくは圧縮機電流を含む電流検出手段とした特
許請求の範囲第1項記載の空気調和機の風向偏向装置。
(3) A wind direction deflection device for an air conditioner according to claim 1, wherein the temperature detection means for detecting the temperature of the air outlet is a compressor current or a current detection means including the compressor current.
(4) 吹き出し温度を検出する温度検出手段を、圧縮
機吐出配管または室内熱交換器の配管の圧力を検出する
圧力検出手段とした特許請求の範囲第1項記載の空気調
和機の風向偏向装置。
(4) The wind direction deflection device for an air conditioner according to claim 1, wherein the temperature detection means for detecting the outlet temperature is the pressure detection means for detecting the pressure of the compressor discharge pipe or the pipe of the indoor heat exchanger. .
(5) 吹き出し温度を検出する温度検出手段を、室内
熱交換器の配管温度を検出する温度検出器と、圧縮機電
流もしくは圧縮機電流を含む電流検出手段より構成した
特許請求の範囲第1項記載の空気調和機の風向偏向装置
(5) Claim 1, wherein the temperature detection means for detecting the blowout temperature is constituted by a temperature detector for detecting the pipe temperature of the indoor heat exchanger, and a compressor current or a current detection means including the compressor current. The described air conditioner wind deflection device.
(6)冷媒を圧縮し、室内熱交換器、室外熱交換器とと
もに冷凍サイクルを構成する圧縮機と、送風機と前記室
内熱交換器とを内部に有する室内ユニットと、この室内
ユニットに設けられ前記室内熱交換器を通過した空気を
吹き出す吹出口と、この吹出口から吹き出される空気を
上下方向に偏向する上下偏向羽根と、前記吹出口の左右
に独立して設けられかつ前記吹出口から吹き出される空
気を左右方向に偏向する左右偏向羽根と、前記上下偏向
羽根と左右偏向羽根を往復駆動する駆動手段と、前記吹
出口からの送風温度が所定値に到達したときに前記駆動
手段へ出力する出力手段と、前記送風機の送風量を変更
する風量変更手段を備え、前記送風温度が所定値に到達
する以前は、送風方向を水平もしくは上方向でかつ左右
へ分岐した方向とし、前記送風温度が所定値に到達した
ときに、前記送風方向を下方向でかつ左右へ分岐した方
向に変更するとともに送風量を増大方向に変更する空気
調和機の風向偏向方法。
(6) an indoor unit that includes a compressor that compresses a refrigerant and constitutes a refrigeration cycle together with an indoor heat exchanger and an outdoor heat exchanger, a blower and the indoor heat exchanger; an air outlet that blows out the air that has passed through the indoor heat exchanger; a vertical deflection blade that vertically deflects the air that is blown out from the air outlet; left and right deflection vanes for deflecting air in left and right directions; a drive means for reciprocating the upper and lower deflection vanes and the left and right deflection vanes; and an output to the drive means when the temperature of the air blown from the outlet reaches a predetermined value. and an air volume changing means that changes the air volume of the blower, and before the air temperature reaches a predetermined value, the air blowing direction is horizontal or upward and branched to the left and right, and the air blowing temperature is A method for deflecting wind direction of an air conditioner, which changes the blowing direction downward and branching to the left and right when the airflow reaches a predetermined value, and changes the blowing amount to an increasing direction.
(7)送風温度を検出する温度検出手段を、室内熱交換
器の配管温度を検出する温度検出器とした特許請求の範
囲第6項記載の空気調和機の風向偏向方法。
(7) The method for deflecting the wind direction of an air conditioner according to claim 6, wherein the temperature detection means for detecting the air temperature is a temperature detector for detecting the pipe temperature of an indoor heat exchanger.
(8)送風温度を検出する温度検出手段を、圧縮機電流
もしくは圧縮機電流を含む電流検出手段とした特許請求
の範囲第6項記載の空気調和機の風向偏向方法。
(8) The method for deflecting the wind direction of an air conditioner according to claim 6, wherein the temperature detection means for detecting the air temperature is a compressor current or a current detection means including the compressor current.
(9)送風温度を検出する温度検出手段を、圧縮機吐出
配管または室内熱交換器の配管の圧力を検出する圧力検
出手段とした特許請求の範囲第6項記載の空気調和機の
風向偏向方法。
(9) The method for deflecting the wind direction of an air conditioner according to claim 6, wherein the temperature detection means for detecting the air temperature is the pressure detection means for detecting the pressure of the compressor discharge pipe or the pipe of the indoor heat exchanger. .
(10)送風温度を検出する温度検出手段を、室内熱交
換器の配管温度を検出する温度検出器と、圧縮機電流も
しくは圧縮機電流を含む電流検出手段より構成した特許
請求の範囲第6項記載の空気調和機の風向偏向方法。
(10) Claim 6, wherein the temperature detection means for detecting the air temperature is constituted by a temperature detector for detecting the pipe temperature of the indoor heat exchanger, and a compressor current or a current detection means including the compressor current. The described air conditioner wind deflection method.
JP60149528A 1985-07-08 1985-07-08 Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction Pending JPS6210545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60149528A JPS6210545A (en) 1985-07-08 1985-07-08 Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60149528A JPS6210545A (en) 1985-07-08 1985-07-08 Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction

Publications (1)

Publication Number Publication Date
JPS6210545A true JPS6210545A (en) 1987-01-19

Family

ID=15477105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60149528A Pending JPS6210545A (en) 1985-07-08 1985-07-08 Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction

Country Status (1)

Country Link
JP (1) JPS6210545A (en)

Similar Documents

Publication Publication Date Title
JPS6210545A (en) Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction
JPH0559334B2 (en)
JPS6210548A (en) Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction
JPS6210538A (en) Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction
JPS6210543A (en) Device for deflecting air flow in air conditioner
JPS62194158A (en) Control of operation of air-conditioning machine
JPH057619B2 (en)
JPH0461254B2 (en)
JPS62131139A (en) Deflection of airflow direction of air-conditioning machine
JPS6210541A (en) Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction
JPS6210539A (en) Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction
JPH057621B2 (en)
JPS62131140A (en) Deflection of airflow direction of air-conditioning machine
JPS62131148A (en) Deflection of airflow direction of air-conditioning machine
JPH057620B2 (en)
JPS6256735A (en) Method and device for deflecting airflow in air-conditioning machine
JPS62158939A (en) Deflecting method of airflow direction of air-conditioning machine
JPH057617B2 (en)
JPS6210546A (en) Device for deflecting air flow direction in air conditioner and method of deflecting air flow
JPS62119351A (en) Deflecting method for wind direction of air conditioner
JPS62131150A (en) Operation control of air-conditioning machine
JPS62131151A (en) Deflection of airflow direction of air-conditioning machine
JPH0561543B2 (en)
JPS62131145A (en) Deflection of airflow direction of air-conditioning machine
JPS62218757A (en) Air flow direction deflecting device of air conditioner