JPS6210546A - Device for deflecting air flow direction in air conditioner and method of deflecting air flow - Google Patents

Device for deflecting air flow direction in air conditioner and method of deflecting air flow

Info

Publication number
JPS6210546A
JPS6210546A JP60149550A JP14955085A JPS6210546A JP S6210546 A JPS6210546 A JP S6210546A JP 60149550 A JP60149550 A JP 60149550A JP 14955085 A JP14955085 A JP 14955085A JP S6210546 A JPS6210546 A JP S6210546A
Authority
JP
Japan
Prior art keywords
temperature
air
heat exchanger
detecting
detection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60149550A
Other languages
Japanese (ja)
Other versions
JPH0559333B2 (en
Inventor
Keiko Togamura
栂村 桂子
Naoki Shimokawa
下河 直樹
Katsumi Fukuda
克己 福田
Yasunori Himeno
姫野 保則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60149550A priority Critical patent/JPS6210546A/en
Publication of JPS6210546A publication Critical patent/JPS6210546A/en
Publication of JPH0559333B2 publication Critical patent/JPH0559333B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To improve the comfortableness of a residential space and particularly the comfortableness at the time of starting the space heating by concentrating the blow-off direction from a state where it is branched into right and left hands to downward one place, when the detected temperature reaches a predetermined value. CONSTITUTION:When the blow-off temperature immediately after the starting of a space heating operation is low, a middle motor 3 and a lefthand motor 9a is rotated rightwards, and the righthand motor 9b is rotated leftwards and then stopped. Then, the blow-off air assumes horizontal branched flows and blow-off air mixes together only at the upper part of the residential space and a space heating operation can be carried out without affording cold feeling to the person's body. Next, when the blow-off temperature has been increased, the middle motor 3 and the lefthand motor 9a are rotated leftwards, and the righthand motor 9b is rotated rightwards, and then stopped. Then, the blow-off air assumes the downward concentration, and a warm air flow is directly applied to the person's body to enable increasing the space heating effect.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空気調和機の吹き出し方向を制御する風向偏
向装置および風向偏向方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a wind direction deflection device and a wind direction deflection method for controlling the blow direction of an air conditioner.

従来の技術 現在まで、居住空間の快適性の向とを図るために空気調
和機の風向偏向装置として、種々の装置が考えられてき
た。
BACKGROUND OF THE INVENTION Until now, various devices have been devised as wind deflection devices for air conditioners in order to improve the comfort of living spaces.

例えば、吹出口を水平方向と垂直方向とに有し、吹き出
し温度が設定温度よりも低い時には水平方向に吹き出し
、設定温度よりも高い時には垂直方向に吹き出す装置が
ある。(特公昭55−1081a号公報) すなわちこの第1の従来例の構Fy、は、いわゆるコー
ルドドラフトを防止するもので、暖房効果を高めること
ができる。
For example, there is a device that has blow-off ports in the horizontal and vertical directions, and blows out in the horizontal direction when the blow-out temperature is lower than the set temperature, and blows out in the vertical direction when the blow-out temperature is higher than the set temperature. (Japanese Patent Publication No. 55-1081a) That is, the structure Fy of this first conventional example prevents so-called cold draft, and can enhance the heating effect.

またさらに、広い居住空間内の快適性を向上させるため
に、左右偏向羽根と上下偏向羽根を一定周期でスクィン
グさせる装置がある。(米国特許第3257931号明
細書) この第2の従来例を第10図、第11図に示す。
Furthermore, in order to improve the comfort in a large living space, there is a device that squeaks the left and right deflection blades and the top and bottom deflection blades at a constant period. (US Pat. No. 3,257,931) This second conventional example is shown in FIGS. 10 and 11.

吹田口101の前面部には、垂直方向に吹き出し空気を
偏向する上下偏向羽根102、水平方向に吹き出し空気
を偏向する左右偏向羽根103.104が設けられてい
る。そして上下偏向羽根102は連結桟105aレバー
アーム106aを介してベローズ107aに接続されて
いる。また左右偏向羽根103.1041d、それぞれ
連結桟105b、105c、レバーアーム106b。
The front surface of the Suita mouth 101 is provided with vertical deflection blades 102 that deflect the blown air in the vertical direction, and left and right deflection blades 103 and 104 that deflect the blown air in the horizontal direction. The upper and lower deflection blades 102 are connected to a bellows 107a via a connecting bar 105a and a lever arm 106a. Also, left and right deflection blades 103 and 1041d, respectively connecting bars 105b and 105c, and lever arm 106b.

108c、を介してベロニス゛107b、107cに接
続されている。また各ベローズ107a。
108c, and are connected to Veronis 107b and 107c. Also, each bellows 107a.

107b、107cKはそれぞれヒータ108a。107b and 107cK are heaters 108a, respectively.

108b、108cか巻かれている。109はヒータ1
08a1108b、108cの通電を制御するマイクロ
スイッチである。
108b and 108c are wound. 109 is heater 1
This is a microswitch that controls the energization of 08a1108b and 108c.

上記構成にオイて、ヒータ108a、108b。In addition to the above configuration, heaters 108a and 108b.

108cに通電を行なうことによりベローズ107a、
107b、107cは伸び、このベローズ107bの伸
びによりマイクロスイッチを動作させヒータ108a、
108b、108cへの通電を停止する。その結果、ベ
ローズ107a。
By energizing 108c, the bellows 107a,
107b and 107c are expanded, and the expansion of the bellows 107b operates the microswitch to operate the heater 108a,
Power supply to 108b and 108c is stopped. As a result, bellows 107a.

107b、107cは冷却され縮む。そ、してこの動作
を繰り返すことにより吹き出し空気のゆらぎ効果を得る
ことができる。
107b and 107c are cooled and contracted. By repeating this operation, the effect of fluctuating the blown air can be obtained.

発明が解決しようきする問題点 しかしながら上記第1の従来構成では、単に垂直方向の
偏向制御しかできないので、例えば暖房時の冷風は直接
人体にあたらないようにすることができるが、一方向(
前方向)への吹き出しとなるために居住空間内の空気の
移動が大きくなり、体感的には実際の室温以下の温度に
感じてしまう。
Problems to be Solved by the Invention However, in the first conventional configuration described above, deflection control is only possible in the vertical direction, so, for example, cold air during heating can be prevented from directly hitting the human body;
As the air blows out in the forward direction, the movement of air within the living space becomes large, and the temperature feels lower than the actual room temperature.

また第2の従来構成では、水平方向への吹き出し偏向可
能なものではあるが、吹き出し温度に無関係にスクィン
グするため、特に暖房運転時の立上り時間の短縮や、効
率的な暖房を行なうことができないという問題を有して
いた。
In addition, in the second conventional configuration, although the airflow can be deflected in the horizontal direction, the airflow is squeezed regardless of the airflow temperature, so it is not possible to shorten the start-up time during heating operation or perform efficient heating. There was a problem.

本発明は、空気調和機を用いた居住空間の快適性の向上
、特に暖房運転開始時の快適性の向とを図ることを目的
とする。
An object of the present invention is to improve the comfort of a living space using an air conditioner, particularly to improve the comfort at the start of heating operation.

問題点を解決するための手段 上記問題点を解決するために本発明は、冷媒を圧縮し、
室内熱交換器、室外熱交換器とともに冷凍サイクルを構
成する圧縮機と、送風機と前記室内熱交換器とを内部に
有する室内ユニットと、この室内ユニ7トに設けられ前
記室内熱交換器を通過した空気°を吹き出す吹出口と、
この吹出口から吹き出される空気を上下方向に偏向する
上下偏向羽根き、前記吹出口の左右に独立して設けられ
かつ前記吹出口から吹き出される空気を左右方向に分岐
して偏向する左右偏向羽根と、前記上下偏向羽根と左右
偏向羽根をそれぞれ独立して偏向駆動する駆動手段と、
前記吹き出し温度または室温を検出する温度検出手段と
、あらかじめ設定した温度を記憶する設定温度記憶手段
を有し、前記吹出口から吹き出される空気が左右に分岐
されている状態において、前記検出温度が所定値に到達
したときに前記上下偏向羽根を、吹き出し方向が下方外
  用 上記構成により本発明の空気調和機の風向偏向袋Bは、
吹き出し温度がある設定温度になったとき、水平分流吹
き出しから下方集中吹き出しきなるために、吹き出し温
度が低い時には、居住空間上部のみで空気の混合作用を
行ない、体感的に寒さを感じることなく暖房を行なうこ
とができる。
Means for Solving the Problems In order to solve the above problems, the present invention compresses a refrigerant,
an indoor unit that includes a compressor, a blower, and the indoor heat exchanger that constitute a refrigeration cycle together with an indoor heat exchanger and an outdoor heat exchanger; An outlet that blows out the air that has been
Vertical deflection blades that vertically deflect the air blown out from the air outlet, and left and right deflection blades that are provided independently on the left and right sides of the air outlet and branch and deflect the air blown out from the air outlet in the left and right directions. a blade, a drive means for independently driving the vertical deflection blade and the left and right deflection blades to deflect;
It has a temperature detecting means for detecting the blowing temperature or the room temperature, and a set temperature storing means for storing a preset temperature, and when the air blowing out from the blowing outlet is branched to the left and right, the detected temperature is With the above configuration, the wind direction deflection bag B of the air conditioner of the present invention has the following configuration:
When the air outlet temperature reaches a certain set temperature, the horizontal branch air outlet starts to blow out downwardly, so when the air outlet temperature is low, the air is mixed only in the upper part of the living space, heating the living space without making you feel cold. can be done.

また吹き出し温度が高い時には、居住空間下部の一箇所
に集中して暖房を行なうため、直接人体に温風をあて、
暖房効果を高めることができ、快適性の向とを図ること
ができる。
In addition, when the temperature of the air outlet is high, heating is concentrated in one area at the bottom of the living space, so hot air is directly applied to the human body.
The heating effect can be enhanced and comfort can be improved.

実施例 以下、本発明の一実施例による空気調和機の風向偏向装
置を図面を用いて説明する。
Embodiment Hereinafter, a wind direction deflection device for an air conditioner according to an embodiment of the present invention will be explained with reference to the drawings.

第1図は同装置の要部分解斜視図である。FIG. 1 is an exploded perspective view of essential parts of the device.

同図に示すように、吹き出し方向にわずかにわん曲し、
コアンダ効果によって上下の風向偏向を行う上下偏向羽
根1は、その長手方向にシャフト2を有しくこのシャフ
ト2け中モータ(ステッピングモータ)3に接続されて
いる。また吹き出し空気をコアンダ効果によって水平方
向に偏向する左右偏向羽根は、連結桟4aに連結された
左偏向羽根5aと、連結桟4bK連結された右偏向羽根
5bとから構成されている。そして左偏向羽根5aは、
羽根用レバーアーム6a、ロッド7a、モータ用L/)
<−アーム8aを介して左モータ(ステッピングモータ
)9aに接続し、右偏向羽根5bは、羽根用レバーアー
ム6b、ロッ)’7b、モータ用レバーアーム8bを介
して右モータ(ステッピングモータ)9bに接続してい
る。ここで左偏向羽根5a/iこの左偏向羽根5aよす
も左側に中心を有するようにわずかにわん曲し、右偏向
羽根5bはこの右偏向羽根5bよりも右側に中心を有す
るようにわずかにわん曲している。すなわち後述する吹
出口12の両側部13a、13bとで前述のコアンダ現
象を発生させ、風向偏向を行うためである。前記コアン
ダ効果については、従来より周知の技術であるため、説
明を省略する。
As shown in the figure, it is slightly curved in the direction of the balloon,
A vertical deflection blade 1 that deflects the wind direction vertically by the Coanda effect has a shaft 2 in its longitudinal direction, and the shaft 2 is connected to a stepping motor 3. The left and right deflection vanes that horizontally deflect the blown air by the Coanda effect are composed of a left deflection vane 5a connected to the connecting bar 4a and a right deflecting vane 5b connected to the connecting bar 4bK. And the left deflection blade 5a is
Blade lever arm 6a, rod 7a, motor L/)
<-The right deflection blade 5b is connected to the left motor (stepping motor) 9a via the arm 8a, and the right deflection blade 5b is connected to the right motor (stepping motor) 9b via the lever arm 6b for the blade, the right motor (stepping motor) 9b via the lever arm 8b for the motor. is connected to. Here, the left deflection blade 5a/i is slightly curved so that its center is on the left side, and the right deflection blade 5b is slightly curved so that its center is on the right side of this right deflection blade 5b. It's curved. That is, this is to cause the aforementioned Coanda phenomenon to occur on both sides 13a and 13b of the air outlet 12, which will be described later, and to deflect the wind direction. Since the Coanda effect is a well-known technique, its explanation will be omitted.

なお本実施例では、中モータ3、左モータ9a。In this embodiment, the middle motor 3 and the left motor 9a.

右モータ9bで駆動手段を構成しているが、左右偏向羽
根を駆動するモータを一つとすることも可能で、さらに
はギヤあるいはクラッチ等の切換手段を用いることによ
り上下偏向羽根1と左右偏向羽根を単一のモータで制御
することも可能である。
Although the right motor 9b constitutes the driving means, it is also possible to use a single motor for driving the left and right deflection blades, and furthermore, by using a switching means such as a gear or a clutch, the upper and lower deflection blades 1 and the left and right deflection blades can be switched. It is also possible to control the motor with a single motor.

またモータはステッピングモータに限らず、誘導電動機
等でもよい。
Further, the motor is not limited to a stepping motor, but may be an induction motor or the like.

またモータのかわりに、周囲温度によって変化する形状
記憶合金製バネを用いることも考えられ、この場合には
本発明の必須要件である温度検出手段や設定温度記憶手
段をこの合金自体が有することになる。また左右偏向羽
根を左偏向羽根5aと右偏向羽根sbに2分割にしたの
は、本発明の目的とする集中、分流動作を容易に行なえ
る上にそれぞれ独立して風向制御できるためであり、さ
らに示すように単一の連結桟4で連接してもよい。
It is also possible to use a shape memory alloy spring that changes depending on the ambient temperature instead of the motor, and in this case, the alloy itself has the temperature detection means and set temperature storage means, which are essential requirements of the present invention. Become. In addition, the reason why the left and right deflection blades are divided into two parts, the left deflection blade 5a and the right deflection blade sb, is to facilitate the concentration and separation operations that are the object of the present invention, and also to be able to independently control the wind direction. Further, as shown, a single connecting bar 4 may be used for connection.

また左偏向羽根5a右偏向羽根5bをわん曲させたのは
、コアンダ効果によって風向偏向を行う他に、本発明の
目的とする集中分流効果を高めるたの め体形状であり、前記コアシダ効果を考慮しなければた
とえわん曲していない平面的な形状でもよく、さらには
わん面方向をそれぞれ逆にしたものであってもよい。
In addition, the left deflection blade 5a and the right deflection blade 5b are curved in order to not only deflect the wind direction by the Coanda effect but also to enhance the concentrated flow splitting effect that is the object of the present invention. If not, it may be a planar shape that is not curved, or even a shape in which the directions of the curved surfaces are reversed.

次に、第1図に示した風向偏向装置を装着する室内ユニ
ット10の斜視図を第3図に示す。同図において、室内
ユニット10の前面には室内空気を吸い込む吸込口11
を有し、この吸込口11の下部に上下偏向羽根1と左右
偏向羽根5a15bを有する吹田口12が設けられてい
る。この吹田口12の両側部13a、13bはそれぞれ
外方向へ前述の如くコアンダ効果にて風向偏向を行うた
めに漸次拡大する曲面となっている。また下面部14も
前述の如くコアンダ効果にて風向偏向を行うために漸次
拡大する曲面となっている。
Next, FIG. 3 shows a perspective view of the indoor unit 10 to which the wind direction deflection device shown in FIG. 1 is installed. In the same figure, the front of the indoor unit 10 has a suction port 11 for sucking indoor air.
At the lower part of this suction port 11, a Suita port 12 having upper and lower deflection blades 1 and left and right deflection blades 5a15b is provided. Both sides 13a and 13b of the Suita mouth 12 are respectively curved surfaces that gradually expand outward in order to deflect the wind direction by the Coanda effect as described above. Further, as described above, the lower surface portion 14 is also a curved surface that gradually expands in order to deflect the wind direction by the Coanda effect.

この室内ユニツ)10の側断面図を第4図に示す。吸込
口11に対向する位置に室内熱交換器15fc有し、こ
の室内熱交換器15から吹田口12に至る通風路中に送
風機16を有している。
A side sectional view of this indoor unit 10 is shown in FIG. An indoor heat exchanger 15fc is provided at a position facing the suction port 11, and a blower 16 is provided in the ventilation path from the indoor heat exchanger 15 to the Suita port 12.

示 次に本実施例の冷凍サイクルを第5図r号。同図におい
て、圧縮機17、四方弁18、室内熱交換器15、キャ
ピラリチューブ19、室外熱交換器20が環状に連結さ
れている。ここで冷媒は暖房運転時には、圧縮機17、
四方弁18、室内熱交換器15、キャピラリチューブ1
9、室外熱交換器20の順に流れ、冷房運転時には、圧
縮機17、四方弁18、室外熱交換器20.キャピラリ
チューブ19、室内熱交換器15の順に流れる。
The refrigeration cycle of this example is shown in Figure 5, number r. In the figure, a compressor 17, a four-way valve 18, an indoor heat exchanger 15, a capillary tube 19, and an outdoor heat exchanger 20 are connected in a ring. Here, during heating operation, the refrigerant is supplied to the compressor 17,
Four-way valve 18, indoor heat exchanger 15, capillary tube 1
9, the outdoor heat exchanger 20, and during cooling operation, the compressor 17, the four-way valve 18, the outdoor heat exchanger 20. It flows through the capillary tube 19 and the indoor heat exchanger 15 in this order.

ここで21a〜21dは吹き出し温度を間接的に検出す
る温度検出手段である。すなわち21 aは室内熱交換
器20の配管温度を検出する温度センサ、21bは圧縮
機17の電流を検出する電流検出器、21cは圧縮機1
7の吐出配管の圧力を検出する圧力検出器、21dは室
内熱交換器15の配管圧力を検出する圧力検出器である
。吹き出し温度を検出するには、直接吹出口12に温度
セン−!7″を設けることか考えられるが、上記各部の
温度、圧力、電流からも検出することかでき、いずれか
を選択あるいは組合わせて用いることも可能である。
Here, 21a to 21d are temperature detection means that indirectly detect the temperature of the air outlet. That is, 21a is a temperature sensor that detects the pipe temperature of the indoor heat exchanger 20, 21b is a current detector that detects the current of the compressor 17, and 21c is the compressor 1.
7 is a pressure detector that detects the pressure of the discharge pipe, and 21d is a pressure detector that detects the pipe pressure of the indoor heat exchanger 15. To detect the temperature of the air outlet, attach a temperature sensor directly to the air outlet 12! 7'' may be considered, but it can also be detected from the temperature, pressure, and current of each of the above parts, and any of these can be selected or used in combination.

また21eは吸い込み温度を検出する温度検出器であり
、室温を検出する温度検出手段の一例であって吸込み口
近刃に限るものではない。
Further, 21e is a temperature detector for detecting the suction temperature, which is an example of a temperature detecting means for detecting room temperature, and is not limited to the blade near the suction port.

次に本実施例の要部回路図を第6図に示す。マイクロコ
ンピュータ22内には、あらかじめ設定した温度を記憶
する記憶部23、この記憶部23に記憶された設定値と
久方値との比較から適宜出力信号を発生する駆動信号発
生手段24を有している。このマイクロコンピュータの
入方剣にはコンパレータ25を介して温度検出手段であ
るブーミスタ21が接続され、出力側には各モークロ1
9a、9bヘパルス出力を供給するバッファ26を介し
て駆動手段である中モータ3、左モータ9a。
Next, a circuit diagram of the main part of this embodiment is shown in FIG. The microcomputer 22 includes a storage section 23 that stores a preset temperature, and a drive signal generation means 24 that generates an appropriate output signal from a comparison between the set value stored in the storage section 23 and a long-term value. ing. A boomister 21, which is a temperature detection means, is connected to the input terminal of this microcomputer via a comparator 25, and each mocro 1 is connected to the output side.
The middle motor 3 and the left motor 9a, which are driving means, are connected via a buffer 26 that supplies pulse output to the motors 9a and 9b.

右モータ9bが接続されている。ここで27はバイアス
抵抗、28Lfiスキヤン抵抗である。
The right motor 9b is connected. Here, 27 is a bias resistor and 28Lfi scan resistor.

次に本実施例の動作を第7図に示す。同図は暖房運転時
のフローチャートである。
Next, the operation of this embodiment is shown in FIG. This figure is a flowchart during heating operation.

吹き出し温度tはブーミスタ21で検出した温度であり
tlは設定温度である。この吹き出し温度tが設定温度
t1よりも低い時には、中モータaを右回転、左モータ
9aを右回転、右モータ9b々。
The blowout temperature t is the temperature detected by the boomister 21, and tl is the set temperature. When this blowout temperature t is lower than the set temperature t1, the middle motor a is rotated clockwise, the left motor 9a is rotated clockwise, and the right motor 9b is rotated.

を左回転させて停止する。ここで中モータ3を回転させ
ることは上下偏向羽根1を水平位置(必要に応じては上
方位置)に、左モータ9aを右回転させることは左偏向
羽根5aを左側に、右モータ9bを左回転させることは
右偏向羽根5bを右側に駆動することを示す。
Rotate counterclockwise to stop. Here, rotating the middle motor 3 means moving the upper and lower deflection blades 1 to the horizontal position (upward position if necessary), and rotating the left motor 9a to the right moves the left deflection blade 5a to the left and the right motor 9b to the left. Rotating indicates driving the right deflection blade 5b to the right.

すなわち吹き出し空気は水平分流となり第8図に示すよ
うになる。このとき、上下偏向羽根1、左偏向羽根5a
%右偏向羽根5bは、それぞれどのような初期状態にあ
るかわからないが、各モータ9a19b、3  の駆動
後は必ず上記のような位置に回動するものである。すな
わち、初期状態において駆動後の位置と同位置にすでに
偏向しているときには、ストッパー等の負荷抵抗でモー
タの回転をさせないか、あるいはモータを空回転させる
。そして各モータ9a、9b、3  の回転後(必要に
応じて回転前あるいは回転中)は再びサーミスタ21の
温度と設定温度とを比較する。
That is, the blown air becomes horizontally divided as shown in FIG. At this time, the upper and lower deflection blades 1, the left deflection blades 5a
Although it is not known what initial state each right deflection blade 5b is in, it is sure to rotate to the above position after each motor 9a19b, 3 is driven. That is, when the deflection is already at the same position as the position after driving in the initial state, the motor is not rotated by a load resistance such as a stopper, or the motor is idled. After each motor 9a, 9b, 3 rotates (before or during rotation, as required), the temperature of the thermistor 21 and the set temperature are again compared.

次にブーミスタ21の温度tが設定温度t1よりも高い
場合には、中モータ3を左回転、左モータ9aを左回転
、右モータ9bを右回転させて停止する。すなわち吹き
出し空気は下方集中となり第9図に示すようになる。
Next, when the temperature t of the boomister 21 is higher than the set temperature t1, the middle motor 3 is rotated to the left, the left motor 9a is rotated to the left, and the right motor 9b is rotated to the right and then stopped. That is, the blown air is concentrated downward, as shown in FIG. 9.

上記のような動作を行なうことにより、体感的に好まし
くない冷風は直接人体にあたらないように水平分流吹き
出しとなり、吹き出し温度が十分に高いときには直接人
体に吹きかかっても支障がないために下方集中吹き出し
となる。
By performing the above operation, the cold air that is not pleasant to the body is diverted horizontally so that it does not directly hit the human body, and when the temperature of the air outlet is high enough, it is concentrated downward because there is no problem even if it blows directly to the human body. It becomes a speech bubble.

このような動作を暖房運転開始時についてその効果を説
明する。
The effect of such an operation at the start of heating operation will be explained.

まず暖房運転開始直後の吹き出し温度は低いため、人体
に直接あたるのは好ましくない。また人体に直接あたら
なくても居住空間内の空気が大きく移動することは実際
の室温以下に感じるため、居住空間内の空気の移動は小
さい方が好ましい。
First, since the temperature of the air outlet immediately after heating operation starts is low, it is not desirable for the air to directly hit the human body. Furthermore, even if the air within the living space does not directly hit the human body, the air within the living space will feel lower than the actual room temperature, so it is preferable that the movement of the air within the living space be small.

すなわち水平分流吹き出しとすることにより、居住空間
上部のみで吹き出し空気が混ざりあい、人体に寒さを感
じさせることなく暖房作用を行なう。
In other words, by using horizontal branching air, the blown air mixes only in the upper part of the living space, providing a heating effect without making the human body feel cold.

次に吹き出し温度か高くなった時には、下方集中吹き出
しとなるため、人体に直接暖風をあて、暖房効果を高め
ることができる。このとき、すでに壁面もある程度暖め
られているために、居住空間内に部分的に低温場所が生
じることもない。
The next time the temperature of the airflow increases, the airflow becomes concentrated downward, allowing warm air to be applied directly to the human body, increasing the heating effect. At this time, since the wall surface has already been warmed to some extent, there is no possibility that a low temperature area will occur in the living space.

上記実施例では、吹き出し温度によって上記動作を行な
い暖房運転時の制御を説明したが、室温によって上記動
作を行なうことにより居住空間の快適性を向上すること
も同様に可能である。
In the above-mentioned embodiment, the above-mentioned operations are performed according to the temperature of the air outlet to control the heating operation, but it is also possible to improve the comfort of the living space by performing the above-mentioned operations according to the room temperature.

すなわち例えば冷房運転時、室温が一定温度まで下がっ
ている場合には水平分流吹き出しとすることにより居住
空間全体を均一に冷房し、室温が一定温度より上がった
場合、すなわち居住空間が広かったり人の出入りがはげ
しくて空気調和機の能力が足らずに室全体の冷房が不可
能な場合には下方集中吹き出しとすることにより、居住
空間下部のみを集中的に冷房し、快適性を向上させるこ
とができる。
In other words, for example, during cooling operation, if the room temperature has fallen to a certain temperature, the horizontal branch air outlet is used to uniformly cool the entire living space, and if the room temperature rises above a certain temperature, that is, if the living space is large or there are too many people If the air conditioner is unable to cool the entire room due to heavy traffic and the air conditioner does not have enough capacity to cool the entire room, it is possible to centrally cool only the lower part of the living space and improve comfort by using downward concentrated blowing. .

また冷房運転開始時のように室温が高い場合には水平分
流吹き出しとして室全体を冷房し、室温がある一定温度
に下がった後は下方集中とすることにより、圧縮機の運
転時間の短1aを図り経済的にも安く効果的な冷房を行
なうことができる。
In addition, when the room temperature is high, such as at the start of cooling operation, the entire room is cooled by using a horizontal branch blower, and after the room temperature has fallen to a certain temperature, the air is concentrated downward, thereby reducing the compressor operating time 1a. It is possible to provide effective cooling at a low and economical cost.

発明の効果 本発明は上記実施例の説明から明らかなように、吹き出
し温度がある設定温度になったとき、水平分流吹き出し
から下方集中吹き出しとなるために、吹き出し温度が低
い時には居住空間上部のみで空気の混合作用を行なう。
Effects of the Invention As is clear from the description of the above-mentioned embodiments, when the air outlet temperature reaches a certain set temperature, the horizontal branch air outlet changes to a downward concentrated air outlet, so that when the air outlet temperature is low, only the upper part of the living space Performs air mixing action.

すなわちこの時、水平吹き出しであるとともに分流吹き
出しであるために、居住空間上部のみでの空気の混合作
用を向上することができ、居住空間下部での大きな空気
移動を防止することができるので、体感的に寒さを感じ
ることがない。
In other words, at this time, since it is a horizontal blowout and a branch blowout, it is possible to improve the mixing effect of air only in the upper part of the living space, and it is possible to prevent large air movement in the lower part of the living space, so you can experience I never feel cold.

さらに吹き出し温度が高い時には、下方集中吹き出しと
なるので、居住空間下部の一箇所、すなわち部屋の中央
、もしくは直接人体に吹き出し空気があたるために、素
早い暖房効果の実感を期待することができる。
Furthermore, when the temperature of the air is high, the air is concentrated downward, so the air hits one area at the bottom of the living space, in the center of the room, or directly on the human body, so you can expect a quick heating effect.

また室温の変化によって上記動作を行なう場合であって
も同様に効果的な暖房、冷房を行なうことができる。
Furthermore, even when the above operations are performed due to changes in room temperature, effective heating and cooling can be performed in the same way.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す風向偏向装置の分解斜
視図、第2図は同風向偏向装置における左右偏向羽根の
異なる連結状態を示す構成図、第3図は同風向偏向装置
を具備した空気調和機の斜視図、第4図は同空気調和機
の縦断面図、第5図は同空気調和機の冷媒回路図、第6
図は同空気調和機の要部の電気回路図、第7図は同風向
偏向装置の制御内容を示すフローチャート、第8図は同
空気調和機における水平分流吹田状態を示す説明図、第
9図は同下方集中吹出状態を示す説明図、第10図、第
11図はそれぞれ従来例を示す風向偏向装置の要部斜視
図および要部断面図である。 1・・・・・・上下風向偏向羽根、3・・・・中モータ
、5a・・・・・・左偏向羽根、5b・・・・・・右偏
向羽根、9a・・・・左モータ、9b・・・・・右モー
タ、10・・・・・・室内ユニット、12・・・・吹出
口、15・・・・・・室内熱交換器、17・・・・・圧
縮機、20・・・・・・室外熱交換器、21a・・・・
・・温度センサ、21b・・・・・・電流検出器、21
c、21d・・・・・・圧力検出器、22・・・・・・
マイクロコンピュータ、23・・・・・・記憶部、24
・・・・・・駆動信号発生手段。 第21!! 21−−−’、温J燵甘ンアー
Fig. 1 is an exploded perspective view of a wind deflection device showing an embodiment of the present invention, Fig. 2 is a configuration diagram showing different connection states of left and right deflection blades in the wind deflection device, and Fig. 3 is a diagram showing the wind deflection device in different connection states. A perspective view of the equipped air conditioner, FIG. 4 is a longitudinal sectional view of the air conditioner, FIG. 5 is a refrigerant circuit diagram of the air conditioner, and FIG.
The figure is an electrical circuit diagram of the main parts of the air conditioner, Figure 7 is a flowchart showing the control details of the air deflection device, Figure 8 is an explanatory diagram showing the horizontal shunt Suita state in the air conditioner, and Figure 9 10 and 11 are a perspective view and a cross-sectional view of a main part of a conventional wind direction deflection device, respectively. 1... Vertical wind direction deflection blade, 3... Middle motor, 5a... Left deflection blade, 5b... Right deflection blade, 9a... Left motor, 9b... Right motor, 10... Indoor unit, 12... Air outlet, 15... Indoor heat exchanger, 17... Compressor, 20... ...Outdoor heat exchanger, 21a...
...Temperature sensor, 21b...Current detector, 21
c, 21d...pressure detector, 22...
Microcomputer, 23... Storage section, 24
・・・・・・Drive signal generation means. 21st! ! 21----', warm

Claims (10)

【特許請求の範囲】[Claims] (1)冷媒を圧縮し、室内熱交換器、室外熱交換器とと
もに冷凍サイクルを構成する圧縮機と、送風機と前記室
内熱交換器とを内部に有する室内ユニットと、この室内
ユニットに設けられ前記室内熱交換器を通過した空気を
吹き出す吹出口と、この吹出口から吹き出される空気を
上下方向に偏向する上下偏向羽根と、前記吹出口の左右
に独立して設けられかつ前記吹出口から吹き出される空
気を左右方向に分岐して偏向する左右偏向羽根と、前記
上下偏向羽根と左右偏向羽根をそれぞれ独立して偏向駆
動する駆動手段と、前記吹出口からの吹き出し温度また
は室温を検出する温度検出手段と、あらかじめ設定した
温度を記憶する設定温度記憶手段と、前記吹出口からの
送風が分岐するように位置している左右偏向羽根の状態
において、前記温度検出手段により検出した温度が設定
温度記憶手段に記憶された設定温度になったことを検出
し、前記上下偏向羽根を上方位置から下方向へ回動させ
るとともに左右偏向羽根を前記吹出口からの送風が一箇
所に集中するように回動させる信号を前記駆動手段に与
える駆動信号発生手段とを備えた空気調和機の風向偏向
装置。
(1) An indoor unit that includes a compressor that compresses a refrigerant and constitutes a refrigeration cycle together with an indoor heat exchanger and an outdoor heat exchanger, a blower, and the indoor heat exchanger; an air outlet that blows out the air that has passed through the indoor heat exchanger; a vertical deflection blade that vertically deflects the air that is blown out from the air outlet; left and right deflection vanes for branching and deflecting air in the left and right directions; driving means for independently driving the upper and lower deflection vanes and the left and right deflection vanes to deflect the air; and a temperature for detecting the temperature of the air blown from the outlet or the room temperature. The temperature detected by the temperature detection means is the set temperature in the state of the detection means, the set temperature storage means for storing a preset temperature, and the left and right deflection vanes positioned so that the air from the air outlet diverges. It is detected that the set temperature stored in the storage means has been reached, and the upper and lower deflection blades are rotated downward from the upper position, and the left and right deflection blades are rotated so that the air from the air outlet is concentrated in one place. A wind direction deflection device for an air conditioner, comprising drive signal generating means for giving a signal for causing the drive means to move.
(2)吹き出し温度を検出する温度検出手段を、室内熱
交換器の配管温度を検出する温度検出器とした特許請求
の範囲第1項記載の空気調和機の風向偏向装置。
(2) The wind direction deflection device for an air conditioner according to claim 1, wherein the temperature detection means for detecting the temperature of the air outlet is a temperature detector for detecting the pipe temperature of an indoor heat exchanger.
(3)吹き出し温度を検出する温度検出手段を、圧縮機
電流もしくは圧縮機電流を含む電流検出手段とした特許
請求の範囲第1項記載の空気調和機の風向偏向装置。
(3) A wind direction deflection device for an air conditioner according to claim 1, wherein the temperature detection means for detecting the temperature of the air outlet is a compressor current or a current detection means including the compressor current.
(4)吹き出し温度を検出する温度検出手段を、圧縮機
吐出配管または室内熱交換器の配管の圧力を検出する圧
力検出手段とした特許請求の範囲第1項記載の空気調和
機の風向偏向装置。
(4) A wind direction deflection device for an air conditioner according to claim 1, wherein the temperature detection means for detecting the outlet temperature is a pressure detection means for detecting the pressure of the compressor discharge pipe or the pipe of the indoor heat exchanger. .
(5)吹き出し温度を検出する温度検出手段を、室内熱
交換器の配管温度を検出する温度検出器と、圧縮機電流
もしくは圧縮機電流を含む電流検出手段より構成した特
許請求の範囲第1項記載の空気調和機の風向偏向装置。
(5) Claim 1, wherein the temperature detection means for detecting the blowout temperature is constituted by a temperature detector for detecting the pipe temperature of the indoor heat exchanger, and a compressor current or a current detection means including the compressor current. The described air conditioner wind deflection device.
(6)冷媒を圧縮し、室内熱交換器、室外熱交換器とと
もに冷凍サイクルを構成する圧縮機と、送風機と前記室
内熱交換器とを内部に有する室内ユニットと、この室内
ユニットに設けられ前記室内熱交換器を通過した空気を
吹き出す吹出口と、この吹出口から吹き出される空気を
上下方向に偏向する上下偏向羽根と、前記吹出口の左右
に独立して設けられかつ前記吹出口から吹き出される空
気を左右方向に偏向する左右偏向羽根と、前記上下偏向
羽根と左右偏向羽根をそれぞれ往復駆動する駆動手段と
、前記吹出口からの送風温度または室温が所定値に到達
したときに前記駆動手段へ出力する出力手段を備え、前
記送風温度または室温が所定値に到達する以前は、送風
方向を水平もしくは上方向でかつ左右へ分岐した方向と
し、前記送風温度または室温が所定値に到達したときに
、前記送風方向を下方向でかつ1箇所に集中した方向に
変更する空気調和機の風向偏向方法。
(6) an indoor unit that includes a compressor that compresses a refrigerant and constitutes a refrigeration cycle together with an indoor heat exchanger and an outdoor heat exchanger, a blower and the indoor heat exchanger; an air outlet that blows out the air that has passed through the indoor heat exchanger; a vertical deflection blade that vertically deflects the air that is blown out from the air outlet; left and right deflection vanes that deflect the air left and right in the left and right directions; driving means that reciprocates the upper and lower deflection vanes and the left and right deflection vanes, respectively; An output means is provided for outputting the output to the means, and before the air blowing temperature or room temperature reaches a predetermined value, the air blowing direction is horizontal or upward and branched to the left and right, and the air blowing temperature or room temperature reaches the predetermined value. A method for deflecting wind direction of an air conditioner, wherein the air blowing direction is changed downward and concentrated in one place.
(7)送風温度を検出する温度検出手段を、室内熱交換
器の配管温度を検出する温度検出器とした特許請求の範
囲第6項記載の空気調和機の風向偏向方法。
(7) The method for deflecting the wind direction of an air conditioner according to claim 6, wherein the temperature detection means for detecting the air temperature is a temperature detector for detecting the pipe temperature of an indoor heat exchanger.
(8)送風温度を検出する温度検出手段を、圧縮機電流
もしくは圧縮機電流を含む電流検出手段とした特許請求
の範囲第6項記載の空気調和機の風向偏向方法。
(8) The method for deflecting the wind direction of an air conditioner according to claim 6, wherein the temperature detection means for detecting the air temperature is a compressor current or a current detection means including the compressor current.
(9)送風温度を検出する温度検出手段を、圧縮機吐出
配管または室内熱交換器の配管の圧力を検出する圧力検
出手段とした特許請求の範囲第6項記載の空気調和機の
風向偏向方法。
(9) The method for deflecting the wind direction of an air conditioner according to claim 6, wherein the temperature detection means for detecting the air temperature is the pressure detection means for detecting the pressure of the compressor discharge pipe or the pipe of the indoor heat exchanger. .
(10)送風温度を検出する温度検出手段を、室内熱交
換器の配管温度を検出する温度検出器と、圧縮機電流も
しくは圧縮機電流を含む電流検出手段より構成した特許
請求の範囲第6項記載の空気調和機の風向偏向方法。
(10) Claim 6, wherein the temperature detection means for detecting the air temperature is constituted by a temperature detector for detecting the pipe temperature of the indoor heat exchanger, and a compressor current or a current detection means including the compressor current. The described air conditioner wind deflection method.
JP60149550A 1985-07-08 1985-07-08 Device for deflecting air flow direction in air conditioner and method of deflecting air flow Granted JPS6210546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60149550A JPS6210546A (en) 1985-07-08 1985-07-08 Device for deflecting air flow direction in air conditioner and method of deflecting air flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60149550A JPS6210546A (en) 1985-07-08 1985-07-08 Device for deflecting air flow direction in air conditioner and method of deflecting air flow

Publications (2)

Publication Number Publication Date
JPS6210546A true JPS6210546A (en) 1987-01-19
JPH0559333B2 JPH0559333B2 (en) 1993-08-30

Family

ID=15477606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60149550A Granted JPS6210546A (en) 1985-07-08 1985-07-08 Device for deflecting air flow direction in air conditioner and method of deflecting air flow

Country Status (1)

Country Link
JP (1) JPS6210546A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510813A (en) * 1978-07-07 1980-01-25 Furukawa Electric Co Ltd Method of extending wire in long zone
JPS5628419U (en) * 1979-08-13 1981-03-17

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510813A (en) * 1978-07-07 1980-01-25 Furukawa Electric Co Ltd Method of extending wire in long zone
JPS5628419U (en) * 1979-08-13 1981-03-17

Also Published As

Publication number Publication date
JPH0559333B2 (en) 1993-08-30

Similar Documents

Publication Publication Date Title
JPS6210547A (en) Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction
JPS6210546A (en) Device for deflecting air flow direction in air conditioner and method of deflecting air flow
JPS62194158A (en) Control of operation of air-conditioning machine
JPS6210548A (en) Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction
JPS6210541A (en) Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction
JPS62237241A (en) Method of deflecting air direction of air conditioner
JPS6210539A (en) Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction
JPS62119351A (en) Deflecting method for wind direction of air conditioner
JPS62288440A (en) Air flow direction deflecting device of air conditioner
JPS6210544A (en) Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction
JPS62131139A (en) Deflection of airflow direction of air-conditioning machine
JPS62131140A (en) Deflection of airflow direction of air-conditioning machine
JPS6219638A (en) Device for deflecting air flow direction of air conditioner and method of deflecting air flow direction
JPH0561543B2 (en)
JPS6210538A (en) Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction
JPS6210536A (en) Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction thereof
JPS62131150A (en) Operation control of air-conditioning machine
JPS62131145A (en) Deflection of airflow direction of air-conditioning machine
JPS6210543A (en) Device for deflecting air flow in air conditioner
JPS62194157A (en) Deflection of airflow direction of air-conditioning machine
JPS62131154A (en) Deflection of airflow direction of air-conditioning machine
JPS62125246A (en) Method of controlling operation of air conditioner
JPS62158936A (en) Deflecting method of airflow direction of air-conditioning machine
JPS6210549A (en) Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction
JPS62288439A (en) Air flow direction deflecting device of air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term