JPS62105120A - Reflection type liquid crystal electro-optical device - Google Patents
Reflection type liquid crystal electro-optical deviceInfo
- Publication number
- JPS62105120A JPS62105120A JP60245157A JP24515785A JPS62105120A JP S62105120 A JPS62105120 A JP S62105120A JP 60245157 A JP60245157 A JP 60245157A JP 24515785 A JP24515785 A JP 24515785A JP S62105120 A JPS62105120 A JP S62105120A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- light
- incident
- optical axis
- optical device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は反射型液晶電気光学装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a reflective liquid crystal electro-optical device.
本発明は一対基板間に強誘電性液晶を保持し上記基板の
少なくとも一方の基板上に上記強誘電性液晶の光散乱効
果を制御する手段を設けた液晶電気光学W Iにおいて
、一方の基板上に反射面を形成し、入射光軸と上記強誘
電性液晶のらせん軸とが互いに直角となるように入射を
入射せしめることにより高効率かつ高い消光比を有する
光スイッチングを可能とした。更に上記光散乱効果をマ
トリックス状に配置した能動スイッチング素子により制
御し、上記のように入射せしめた反射光をスクリーン上
に結像させることにより明るく高コントラスト比を有す
る投射画像を得ることができた。The present invention provides a liquid crystal electro-optical W I in which a ferroelectric liquid crystal is held between a pair of substrates, and means for controlling the light scattering effect of the ferroelectric liquid crystal is provided on at least one of the substrates. By forming a reflective surface on the ferroelectric liquid crystal and allowing the incident light to enter so that the incident optical axis and the helical axis of the ferroelectric liquid crystal are perpendicular to each other, optical switching with high efficiency and high extinction ratio was made possible. Furthermore, by controlling the above-mentioned light scattering effect using active switching elements arranged in a matrix, and by forming an image of the incident reflected light on a screen, it was possible to obtain a bright projected image with a high contrast ratio. .
強誘電性液晶の光散乱効果を用いた液晶電気光学装置と
しては1984年度のフエロエレクトリックス誌第59
巻の145ページに記載されているように過渡的な散乱
型(TSM型)のものが知られている。これは−軸方向
に配向した強誘電性液晶層に交流電界を印加し他の一軸
方向に再配向させる際生じる光散乱を連続的に引き起こ
すものである。これにより透過と散乱を切り換え高効率
かつ高速な光スィッチが可能となる。A liquid crystal electro-optical device using the light scattering effect of ferroelectric liquid crystal was published in Ferro Electrics Magazine No. 59 in 1984.
A transient scattering type (TSM type) is known as described on page 145 of Vol. This continuously causes light scattering that occurs when an alternating current electric field is applied to a ferroelectric liquid crystal layer oriented in the -axis direction to reorient it in the other uniaxial direction. This enables highly efficient and high-speed optical switching by switching between transmission and scattering.
〔発明が解決しよとする問題点及び目的〕しかしながら
、上述の従来技術においては入射光源にハロゲンランプ
等の非コヒーレント光を用いた場合高コントラスト比が
得られないという問題点を有する。上記問題点を解決す
る手段としては強誘電性液晶層を厚くすることにより光
散乱効果を増し消光比を向上させるという手段があるが
、この方法では逆に応答測度が遅くなり、また駆動電圧
も高くなる。[Problems and Objects to be Solved by the Invention] However, the above-mentioned prior art has the problem that a high contrast ratio cannot be obtained when non-coherent light such as a halogen lamp is used as the incident light source. One way to solve the above problems is to increase the light scattering effect and improve the extinction ratio by increasing the thickness of the ferroelectric liquid crystal layer, but this method conversely slows down the response measurement and also reduces the driving voltage. It gets expensive.
そこで本発明は上述の問題点を解決するものでその目的
とするところは高効率かつ高い消光比を有する液晶光ス
イッチングを提供するとともに該液晶光スイッチングモ
ードを用いて明るく高コントラストを有する画像を提供
するところにある。SUMMARY OF THE INVENTION The present invention is intended to solve the above-mentioned problems, and its purpose is to provide liquid crystal optical switching with high efficiency and high extinction ratio, and to provide bright, high-contrast images using the liquid crystal optical switching mode. It's there.
[問題を解決するための手段]
本発明の反射型液晶電気光学装置は一対の基板間に強誘
電性液晶を保持し、上記基板の少なくとも一方の基板上
に上記強誘電性液晶の光散乱効果を制御する手段を設け
た液晶電気光学装置において一方の基板上に反射面を形
成し、上記強誘電性液晶のらせん軸方間と入射光軸方向
が互いに直角となることを特徴とする6更に上記光散乱
効果を制御する手段として能動スインチング素子をマト
リックス状に形成し、かつ上記反射面からの出射光をス
クリーン上に結像させる手段をもうけたことを特徴とす
る。[Means for Solving the Problems] A reflective liquid crystal electro-optical device of the present invention holds a ferroelectric liquid crystal between a pair of substrates, and displays the light scattering effect of the ferroelectric liquid crystal on at least one of the substrates. 6. In the liquid crystal electro-optical device provided with a means for controlling the ferroelectric liquid crystal, a reflective surface is formed on one of the substrates, and the direction of the helical axis of the ferroelectric liquid crystal and the direction of the incident optical axis are perpendicular to each other. 6. The present invention is characterized in that active switching elements are formed in a matrix as means for controlling the light scattering effect, and means is provided for forming an image of the light emitted from the reflecting surface on a screen.
本発明の作用を図3.4を坩いて説明する。 The operation of the present invention will be explained with reference to FIG. 3.4.
一般に光散乱型スイッチングモードは反射型にすること
により光路長が2倍となるため散乱効率が増し消光比が
向上する。しかしながら本発明のように強誘電液晶、と
りわけカイラルスメクチックC相を用いる場合には単純
に散乱効率は向上しない。本発明者らは図3に示される
ように強誘電性液晶のらせん軸方向6に対して直角とな
るように入射光を光軸1の方向からパネルの法線方向5
に対して適当な入射角θ7で入射した場合、最大効率で
光散乱が起こり消光比が最大となることを実験的に確認
した。入射光を光軸1と光軸3の方向から入射せしめた
ときの出射光2と出射光4の散乱状態での出射光強度は
それぞれ図4の1と2でしめされている。出射光角度が
法線に対してθにおいては強誘電性液晶のらせん軸に対
して直角となるような方向に入射を入射せしめた場合(
光軸1)の方が出射光強度は小さい。従って消光比は高
い。一方、透過型と比較して、セル厚は特に厚くする必
要が無いため、応答速度、駆動電圧が遅くかつ高くなる
ことはない。従って上述のように入射光の光軸が上記強
誘電性液晶のらせん軸に対して直角となるように入射光
を入射せしめて強誘電性液晶の光散乱効果を反射モード
で光散乱効果スイッチングに用いることにより光の利用
効率の高く、高速で、消光比の伶れた液晶光スイッチン
グ状に配置した能動スイッチング素子により実行し、上
記反射光をスクリーン上に投射することにより明るい高
コントラスト比を有する画像を得ることができる。Generally, when the light scattering type switching mode is changed to a reflective type, the optical path length is doubled, so that the scattering efficiency is increased and the extinction ratio is improved. However, when a ferroelectric liquid crystal, particularly a chiral smectic C phase, is used as in the present invention, the scattering efficiency simply does not improve. As shown in FIG.
It has been experimentally confirmed that when the light is incident at an appropriate incident angle θ7, light scattering occurs with maximum efficiency and the extinction ratio becomes maximum. The output light intensities in the scattered state of the output light 2 and the output light 4 when the incident light is made incident from the directions of the optical axis 1 and the optical axis 3 are shown by 1 and 2 in FIG. 4, respectively. When the incident light is incident in a direction such that the output light angle is perpendicular to the helical axis of the ferroelectric liquid crystal at θ with respect to the normal line (
The intensity of the emitted light is smaller on the optical axis 1). Therefore, the extinction ratio is high. On the other hand, compared to the transmission type, the cell thickness does not need to be particularly thick, so the response speed and driving voltage are slow and do not become high. Therefore, as described above, the light scattering effect of the ferroelectric liquid crystal is switched in the reflection mode by making the incident light enter such that the optical axis of the incident light is perpendicular to the helical axis of the ferroelectric liquid crystal. By using active switching elements arranged in a liquid crystal optical switching pattern with high light utilization efficiency, high speed, and poor extinction ratio, the reflected light is projected onto a screen, resulting in a bright and high contrast ratio. You can get the image.
図1は本実施例の液晶ライトバルブの断面図である。以
下図1を用いて本実施例を説明する。FIG. 1 is a sectional view of the liquid crystal light valve of this embodiment. This embodiment will be described below using FIG. 1.
透明基板上に能動スイッチング素子の代表的な例として
薄膜トランジスター2を形成した。対抗基板上に反射面
3を形成し、量基板上に高分子薄膜を配向RM 導層し
て形成し、ラビング処理を行った後、上記一対の基板間
にスペーサーを介して液晶セルを組み真空下で強誘電性
液晶を封入した。A thin film transistor 2 was formed on a transparent substrate as a typical example of an active switching element. A reflective surface 3 is formed on the counter substrate, a polymer thin film is formed as an oriented RM conductive layer on the substrate, and after a rubbing process, a liquid crystal cell is assembled between the pair of substrates with a spacer interposed therebetween, and the liquid crystal cell is placed in a vacuum. A ferroelectric liquid crystal was sealed at the bottom.
用いた強誘電性液晶を以下に示されるもののの混合物で
ある。The ferroelectric liquid crystal used was a mixture of those shown below.
OCH。OCH.
−〇1lHt、l□
Cll H2□10@−N = CIf■−C〜○CH
zCH。-〇1lHt, l□ Cll H2□10@-N = CIf■-C~○CH
zCH.
H3
C1H2,,410■−C−co−C−0−C1(ZC
H。H3 C1H2,,410■-C-co-C-0-C1(ZC
H.
CH。CH.
本発明におけては用いる強誘電性液晶は上記のものに限
定されるわけではなぐ、強誘電性液晶を示す液晶であれ
ば何んでも良い。しかしながらより高速な、より高効率
かつ高消光比を実現するためには自発分極の大きく、不
変屈折の大きい液晶が好ましい。The ferroelectric liquid crystal used in the present invention is not limited to those mentioned above, but any liquid crystal that exhibits ferroelectric liquid crystal may be used. However, in order to achieve higher speed, higher efficiency, and higher extinction ratio, liquid crystals with large spontaneous polarization and large invariant refraction are preferable.
上記液晶セルの薄膜トランジスター側にプリズムをはり
あわせた二次元反射型液晶ライトバルブを得た。A two-dimensional reflective liquid crystal light valve was obtained in which a prism was attached to the thin film transistor side of the liquid crystal cell.
本実施例の反射型液晶ライトバルブは入射光を光軸6の
方向から入射させた。強誘電性液晶層4のらせん軸5と
入射光軸6は直角となるようにしである。このような構
成で本液晶ライトバルブを動作させた。フレーム毎に入
力信号の極性を変えることによりマトリックス部に交流
信号を印加し散乱状態を、またフレーム毎に極性を一定
することにより透過状態をそれぞれ引き起こした。これ
により透過状態においては約90%の明るさををし、消
光比が1:15という光の利用効率が高く消光比の高い
光のスイッチングが可能となった。The reflective liquid crystal light valve of this embodiment allows incident light to enter from the direction of the optical axis 6. The helical axis 5 of the ferroelectric liquid crystal layer 4 and the incident optical axis 6 are arranged to be at right angles. This liquid crystal light valve was operated with this configuration. By changing the polarity of the input signal for each frame, an alternating current signal was applied to the matrix to create a scattering state, and by keeping the polarity constant for each frame, a transparent state was created. As a result, the brightness is approximately 90% in the transmission state, and the extinction ratio is 1:15, making it possible to switch light with a high extinction ratio.
またスイッチング速度は約1013であった。これは従
来の不マテフク液晶に比較して著しく速いものである。Moreover, the switching speed was about 1013. This is significantly faster than conventional liquid crystals.
〔実施例2〕
本実施例においては実施例1と同様の方法で作った反射
型液晶パネルを用いて投射型液晶ディスプレイを作った
。図2は本実施例にδける投射型液晶ディスプレイの構
成図である。能動スイッチング素子としてポリシリコン
薄膜トランジスターを透明基板上に設け、反射面付対向
基板を用い強誘電性液晶セルを組み薄膜トランジスター
側にプリズムをはり合わせライトバルブとした。ここで
能動スイッチング素子は上記ポリシリコン薄膜トランジ
スターに限定されるわけではなく、アモルファスシリコ
ン薄膜トランジスター、MOS)ランシスター、 M
I M素子1等でも良い。また反射面と能動スイッチン
グ素子等を対向させる必要)よなく反射面、例えばシリ
コン基板上に能動スイッチング素子を形成しても良い。[Example 2] In this example, a projection type liquid crystal display was manufactured using a reflective liquid crystal panel manufactured in the same manner as in Example 1. FIG. 2 is a configuration diagram of a projection type liquid crystal display according to this embodiment. A polysilicon thin film transistor was placed on a transparent substrate as an active switching element, and a ferroelectric liquid crystal cell was assembled using an opposing substrate with a reflective surface, and a prism was attached to the thin film transistor side to form a light valve. Here, the active switching element is not limited to the above-mentioned polysilicon thin film transistor, but may also include an amorphous silicon thin film transistor, MOS) run sister, M
An IM element 1 or the like may also be used. Furthermore, the active switching element may be formed on the reflective surface, for example, a silicon substrate, without requiring that the reflective surface and the active switching element or the like face each other.
上記反射型液晶ライトバルブを使って図2に示されるよ
うな投射型ディスプレイを構成した。楕円球面ミラーを
存する光源1から入射光をコンデンサレンズ2を介して
液晶ライトバルブ3に入射せしめ該液晶ライトバルブか
らの出射光を投射レンズ4を通してスクリーン5に結像
させた。投射画像のコントラスト比は約1=13であっ
た。また明度も高く、良好な画質を得ることができた。A projection type display as shown in FIG. 2 was constructed using the above reflective liquid crystal light valve. Incident light from a light source 1 including an ellipsoidal mirror is made to enter a liquid crystal light valve 3 via a condenser lens 2, and the output light from the liquid crystal light valve passes through a projection lens 4 and forms an image on a screen 5. The contrast ratio of the projected image was approximately 1=13. Furthermore, the brightness was high and good image quality could be obtained.
以上述べたように、本発明によれば、入射光をその光軸
が強誘電性液晶のらせん軸と直角となるように入射せし
め強誘電性液晶の光散乱効果を反射型の光スィッチに用
いることにより高速で、光の利用効率の高い、消光比の
大きなスイッチングが可能となった。更に上記光散乱効
果をマトリック状に配置した能動スイッチング素子によ
り制御し、出射光をスクリーン上に結像させることによ
り明るく高コントラスト比を有する投射画像を得ること
ができた。As described above, according to the present invention, the optical axis of the incident light is made perpendicular to the helical axis of the ferroelectric liquid crystal, and the light scattering effect of the ferroelectric liquid crystal is used in a reflective optical switch. This enables high-speed switching with high light utilization efficiency and a large extinction ratio. Furthermore, by controlling the above-mentioned light scattering effect using active switching elements arranged in a matrix and forming an image of the emitted light on a screen, a bright projected image with a high contrast ratio could be obtained.
第1回は反射型液晶パネルの断面図。
!、プリズム
2、薄膜トランジスター
3、反射面
4、/!晶層
5、らせん軸
6、入射光光軸
第2図は反射型液晶電気光学装置の構成図1、光源
2、コンデンサレンズ
3、反射型液晶ライトバルブ
4、投射レンズ
5、スクリーン
第3図は入射光軸とらせん軸との関係図1.3.入射光
軸
2.4.出射光軸
5、パネルの法線
6、らせん軸
7、入射角
第4図は出射光強度分布図
1、らせん軸に対して直交入射時の出射光強度2、らせ
ん軸に対して平行入射時の出射光強度以 上The first part is a cross-sectional view of a reflective liquid crystal panel. ! , prism 2, thin film transistor 3, reflective surface 4, /! The crystal layer 5, the helical axis 6, and the optical axis of the incident light (FIG. 2) are the configuration diagram of a reflective liquid crystal electro-optical device. Relationship between incident optical axis and helical axis Diagram 1.3. Incident optical axis 2.4. Output optical axis 5, panel normal 6, helical axis 7, incident angle Figure 4 shows the output light intensity distribution diagram 1, the output light intensity 2 when incident perpendicular to the helical axis, and the incident parallel to the helical axis. The output light intensity of
Claims (3)
少なくとも一方に上記強誘電性液晶の光散乱効果を制御
する手段を設けた液晶電気光学装置において、一方の基
板上に反射面を形成し、上記強誘電性液晶のらせん軸方
向と入射光軸方向が互いに直角となることを特徴とする
反射型液晶電気光学装置。(1) In a liquid crystal electro-optical device in which a ferroelectric liquid crystal is held between a pair of substrates and a means for controlling the light scattering effect of the ferroelectric liquid crystal is provided on at least one of the substrates, a reflective surface is provided on one substrate. A reflective liquid crystal electro-optical device characterized in that the helical axis direction of the ferroelectric liquid crystal and the incident optical axis direction are perpendicular to each other.
チング素子をマトリックス状に形成したことを特徴とす
る特許請求の範囲の第1項記載の反射型液晶電気光学装
置。(2) A reflective liquid crystal electro-optical device according to claim 1, characterized in that active switching elements are formed in a matrix as means for controlling the light scattering effect.
せける手段を設けたことを特徴とする特許請求の範囲の
第1項記載の反射型電気光学装置。(3) The reflective electro-optical device according to claim 1, further comprising means for forming an image of the light emitted from the reflective surface onto a screen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60245157A JPS62105120A (en) | 1985-10-31 | 1985-10-31 | Reflection type liquid crystal electro-optical device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60245157A JPS62105120A (en) | 1985-10-31 | 1985-10-31 | Reflection type liquid crystal electro-optical device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62105120A true JPS62105120A (en) | 1987-05-15 |
Family
ID=17129461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60245157A Pending JPS62105120A (en) | 1985-10-31 | 1985-10-31 | Reflection type liquid crystal electro-optical device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62105120A (en) |
-
1985
- 1985-10-31 JP JP60245157A patent/JPS62105120A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5726723A (en) | Sub-twisted nematic liquid crystal display | |
US5532854A (en) | Folded variable birefringerence zeroth order hybrid aligned liquid crystal apparatus | |
JP3267224B2 (en) | Active matrix type liquid crystal display | |
JPH0743707A (en) | Liquid crystal display device and its production | |
JP3672602B2 (en) | Liquid crystal display | |
KR20180003687A (en) | Reflective liquid crystal display | |
JP2844768B2 (en) | Liquid crystal display | |
US6801285B1 (en) | Thin cell gap microdisplays with optimum optical properties | |
JPS62105120A (en) | Reflection type liquid crystal electro-optical device | |
JPH0720471A (en) | Reflection type liquid crystal display device | |
JP2003131268A (en) | Liquid crystal display device | |
JPH0456827A (en) | Reflection type liquid crystal panel | |
JPH1184357A (en) | Liquid crystal display device | |
JPH10268315A (en) | Reflection type liquid crystal display panel, and projection type liquid crystal display panel using the same | |
JP2913823B2 (en) | Liquid crystal display device and driving method thereof | |
JPS63314519A (en) | Display device | |
JPH11249179A (en) | Liquid crystal display cell | |
JPH0279894A (en) | Liquid crystal display device | |
JP3074805B2 (en) | Display element | |
JP2607380B2 (en) | Liquid crystal cell | |
JP2755428B2 (en) | Reflective liquid crystal display | |
JPH11160507A (en) | Diffuse reflection plate and its manufacture, and reflection type display device | |
JP2002031799A (en) | Liquid crystal display element | |
JPH10307292A (en) | Liquid crystal display device | |
JPS6210628A (en) | Liquid crystal electrooptic device |