JPS62105112A - Compact photographic lens - Google Patents

Compact photographic lens

Info

Publication number
JPS62105112A
JPS62105112A JP24500085A JP24500085A JPS62105112A JP S62105112 A JPS62105112 A JP S62105112A JP 24500085 A JP24500085 A JP 24500085A JP 24500085 A JP24500085 A JP 24500085A JP S62105112 A JPS62105112 A JP S62105112A
Authority
JP
Japan
Prior art keywords
lens
convex surface
object side
positive
positive meniscus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24500085A
Other languages
Japanese (ja)
Inventor
Hirobumi Tsuchida
博文 槌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP24500085A priority Critical patent/JPS62105112A/en
Publication of JPS62105112A publication Critical patent/JPS62105112A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily execute working, and also to reduce a focal movement caused by a temperature variation, by providing a positive meniscus lens whose convex surface has been turned to an object side, a biconcave lens, a positive meniscus lens whose convex surface has been turned to an image side, a positive lens having a convex surface to the object side, and a diaphragm, and specifying various conditions. CONSTITUTION:The titled lens is constituted of four groups and four pieces consisting of the first lens of a positive meniscus lens whose convex surface has been turned to an object side, the second lens of a biconcave lens, the third lens of a positive meniscus lens whose convex surface has been turned to an image side, the fourth lens of a positive lens having a convex surface to the object side, and a diaphragm, in order from the object side, and conditions shown by inequalities (1)-(2) are set. In this way, a partial charge of power of the third lens is reduced, becomes a strong meniscus, and a Z coefficient becomes small, but since a refractive index is low, plastic can be used. In this way, working is easily executed, and a focal shift caused by a temperature change can also be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は明るさがF3.5程度、画角が60゜以上で望
遠比が1.0に近いビハインド絞り写真用レンズに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a behind-the-aperture photographic lens with a brightness of approximately F3.5, an angle of view of 60° or more, and a telephoto ratio close to 1.0.

〔従来の技術〕[Conventional technology]

従来、コンパクトなカメラレンズとしては、トリブレッ
ト又はテツサータイプか特開昭55−73014号公報
に示されるような4群4枚の望遠タイプが主流を占めて
いた。ところが、トリブレット又はテツサータイプでは
望遠比が1.1程度と大きいのが一般的であり、後者は
内部に絞りが配設されているためにコスト的に問題があ
る。これらの問題を解決するための望遠比が1.0に近
いビハインド絞りレンズとして、特開昭59−1601
18号公報に示されるようなトリブレットタイプのもの
と、特開昭59−152413号公報に示されるような
トリブレットの第3レンズを2つに分割した4群4枚タ
イプのものが考えられている。
Conventionally, the mainstream of compact camera lenses has been the triplet or Tetsusar type, or the telephoto type with four elements in four groups as shown in Japanese Patent Application Laid-open No. 73014/1983. However, the triplet or Tetsusar types generally have a telephoto ratio as high as about 1.1, and the latter has a cost problem because it has an internal aperture. To solve these problems, we developed a behind-the-scenes aperture lens with a telephoto ratio close to 1.0.
A triplet type as shown in Japanese Patent Laid-Open No. 152413/1982 and a four-element type in four groups in which the third lens of the triplet is divided into two are considered. ing.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、トリプレットタイプのもので全長を短く
すると、像面性が良好に補正されにくく、また各群のパ
ワーが強いことから僅かの偏芯で収差が大きく変化して
しまう偏芯に弱いレンズ系となり、更にペノツヴアール
和を小さくするために凸レンズにコスト高の高屈折率、
低分散のガラスを用いる必要が生じるという問題がある
。また、4群4枚タイプのものでは第3、第4レンズが
強いメニスカスとなって加工性が悪くなってしまうか、
プラスチックレンズを用いて加工は容易にできても温度
変化によるピント移動が大きいという新たな問題を生じ
てしまう。
However, if the total length of a triplet type lens is shortened, it is difficult to properly correct the image plane, and since the power of each group is strong, the lens system becomes vulnerable to eccentricity, where a slight eccentricity can cause a large change in aberration. , In order to further reduce the Penotsuvial sum, a convex lens with an expensive high refractive index is used.
A problem arises in that it becomes necessary to use a glass with low dispersion. Also, with the 4-group, 4-element type, the 3rd and 4th lenses will have a strong meniscus, resulting in poor workability.
Although processing can be easily done using plastic lenses, a new problem arises in that the focus shifts significantly due to temperature changes.

本発明はこのような問題点に着目して成されたものであ
り、望遠比が1.0に近いビハインド絞りレンズであり
ながら、加工し−易く安価であって、プラスチックを用
いたときの温度変化によるピント移動も少ないレンズを
提供することを目的とする。
The present invention has been made by focusing on these problems, and although it is a behind-the-aperture lens with a telephoto ratio close to 1.0, it is easy to process, inexpensive, and has low temperature when made of plastic. It is an object of the present invention to provide a lens whose focus is less likely to shift due to changes.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に基づくレンズ系は、第1図に示すように、物体
側より順に物体側に凸面を向けた正メニスカスレンズの
第1レンズの第2レンズ、像側に凸面を向けた正メニス
カスレンズの第3レンズ、物体側に凸面を有する正レン
ズの第4レンズ、そして絞りを配置した4群4枚より成
ると共に以下の諸条件を満足するようにしたレンズ系で
ある。
As shown in FIG. 1, the lens system based on the present invention includes, in order from the object side, the first lens, the second lens of a positive meniscus lens with a convex surface facing the object side, and the second lens of a positive meniscus lens with a convex surface facing the image side. This lens system consists of a third lens, a fourth lens which is a positive lens having a convex surface on the object side, and four lenses in four groups in which an aperture is arranged, and satisfies the following conditions.

(1)  ni  > 1.65 (21nt< 1.7 (3)  ns < 1.65 (4)  na > 1.65 (5)  ν1〉40 (6)ν2<45 (7)0.3〈β4 < 1.7 (s)  Z4 > 0.06 (9)  2f  < f、 < 5f但し、 ni+第iレンズの屈折率 ν、;第iレンズのアツベ数 β、;次式で表わされる第4レンズの形状rB −r7 r?+第4レンズの物体側面の曲率半径r8;第4レン
ズの像側面の曲率半径 Z4 ;次式で表わされる第4レンズのZ係数ER,;
第4レンズの有効半径 「3 ;第3レンズの焦点距離 「 ;全系の焦点距離 である。
(1) ni > 1.65 (21nt < 1.7 (3) ns < 1.65 (4) na > 1.65 (5) ν1>40 (6) ν2<45 (7) 0.3<β4 < 1.7 (s) Z4 > 0.06 (9) 2f < f, < 5f where: ni + refractive index ν of the i-th lens; Abbe number β of the i-th lens; the fourth lens expressed by the following formula Shape rB -r7 r?+Radius of curvature of the object side of the fourth lens r8; Radius of curvature of the image side of the fourth lens Z4; Z coefficient ER of the fourth lens expressed by the following formula;
The effective radius of the fourth lens is "3; the focal length of the third lens is the focal length of the entire system.

〔作用〕[Effect]

条件(1)、 (21,(41〜(6)は色収差を補正
しつつ、ペソツヴアール和を小さな値として像面性を良
好に保つための条件である。条件(11,(21,(4
)の範囲を越えると像面性を良好に保つことが困難とな
り、条件(5)、 (61の範囲を越えると色収差の補
正が困難となる。
Conditions (1), (21, (41 to (6)) are the conditions for correcting chromatic aberration and keeping the image quality by keeping the Peso-Tsuvual sum to a small value.Conditions (11, (21, (4)
), it becomes difficult to maintain good image plane properties, and when conditions (5) and (61) are exceeded, it becomes difficult to correct chromatic aberration.

条件(31,(41は第3.第4レンズのレンズ形状及
びパワー配分を良好に保つための条件であり、この範囲
を越えると以下に述べるレンズ形状及びパワー配分が困
難となる。
Conditions (31, (41) are conditions for keeping the lens shape and power distribution of the third and fourth lenses favorable. If this range is exceeded, the lens shape and power distribution described below become difficult.

安価なレンズを実現するためには加工し易いレンズ形状
とすることが非常に大切である。ここで加工し易いレン
ズ形状とは、曲率がゆるく、芯取りがし易いことであり
、そのためには形状ファクターβは絶対値が小さく、Z
係数は大きい方が望ましい。そこで第4レンズの形状を
規定する条件が(7)、 (81である0条件(7)の
上限を越えると研磨コストが高くなる上、歪曲収部が正
の方向に増大して好ましくない、下限を越えると第4レ
ンズが大きなパワーをもつようになってパワー配分の要
求からこの第4レンズが物体側に寄ることになり第3レ
ンズとの間隔をとることが困難となる。間隔がとれたと
しても、歪曲収差が負の方向に悪化し、好ましくない。
In order to realize an inexpensive lens, it is very important to have a lens shape that is easy to process. Here, a lens shape that is easy to process is one that has a gentle curvature and is easy to center.
A larger coefficient is desirable. Therefore, the condition that defines the shape of the fourth lens is (7). If the upper limit of the 0 condition (7), which is (81), is exceeded, the polishing cost will increase, and the distortion accommodation portion will increase in the positive direction, which is undesirable. If the lower limit is exceeded, the fourth lens will have a large power, and due to power distribution requirements, this fourth lens will move closer to the object side, making it difficult to maintain a distance from the third lens. Even if this is the case, the distortion aberration worsens in the negative direction, which is not desirable.

条件(8)の範囲を越えると第4レンズの芯取りが著し
く困難となる。
If the range of condition (8) is exceeded, centering of the fourth lens becomes extremely difficult.

これらの条件を満足させて、像面性が良くコマ収差も良
好に補正されたレンズ系を得るには、前述したように条
件(31,(4)を満足することが必要になる。ここで
第3.第4レンズ共に低い屈折率のガラスを用いると、
ペンツヴアール相が正の大きな値をとり、像面性を良好
に保つことが困難であり、逆に第3.第4レンズ共に高
い屈折率のガラスを用いると、共に強いメニスカスとな
り、Z係数が小さく、加工性の悪いレンズ形状となって
しまう。また、ns > 1.65 。
In order to satisfy these conditions and obtain a lens system with good field properties and well corrected coma aberration, it is necessary to satisfy conditions (31, (4)) as described above. 3. If you use glass with a low refractive index for both the 4th lens,
The Penzval phase takes on a large positive value, making it difficult to maintain good image plane properties, and conversely, the 3rd phase takes on a large positive value. If glass with a high refractive index is used for both the fourth lens, both lenses will have a strong meniscus, resulting in a lens shape with a small Z coefficient and poor workability. Also, ns > 1.65.

n= < 1.65とすると像面性は良好に保つことが
できるが、第3レンズが大きなパワーをもつようになり
、第2レンズと第3レンズの間隔が増大する上、第4レ
ンズが物体側に凸面を向けた強いメニスカスとなり、絞
りとの間隔が広くなって、周辺光量を十分にとるこをが
できなくなるので好ましくない。
If n = < 1.65, the image plane property can be maintained well, but the third lens will have a large power, the distance between the second lens and the third lens will increase, and the fourth lens will have a large power. This is undesirable because it becomes a strong meniscus with the convex surface facing the object side, and the distance from the aperture becomes wide, making it impossible to obtain a sufficient amount of peripheral light.

第3レンズの焦点距離は条件(9)に示すような範囲に
もっていくことが必要であり、下限を越えると温度変化
による影響が大きくなりピントずれが起きてしまう。ま
た、上限を越えると第2レンズとの間隔がとりにくくな
り、F / 3.5の明るさを保つことが困難となる。
It is necessary that the focal length of the third lens falls within the range shown in condition (9); if the lower limit is exceeded, the influence of temperature changes will become greater and defocus will occur. Furthermore, if the upper limit is exceeded, it becomes difficult to maintain a sufficient distance from the second lens, making it difficult to maintain the brightness of F/3.5.

間隔がとれたとしても歪曲収差及びコマ収差が悪化する
Even if the distance can be maintained, distortion and coma aberration will worsen.

〔実施例〕〔Example〕

以上のようにすると第3レンズのパワーの分担が少なく
なり、強いメニスカスとなり、またZ係数が小さくなる
が、屈折率が低いためプラスチックを用いることができ
る。このため、加工上の問題が避けられ、またパワーの
分担が少ないのでプラスチックレンズの温度変化による
ピントずれも少なくできる。更にレンズ中心部と周辺部
における厚みが略均−になるため、プラスチックの成形
も容易である。
By doing so, the power shared by the third lens will be reduced, resulting in a strong meniscus, and the Z coefficient will be reduced, but since the refractive index is low, plastic can be used. Therefore, processing problems can be avoided, and since the power is shared less, it is possible to reduce out-of-focus caused by temperature changes in the plastic lens. Furthermore, since the thickness at the center and peripheral parts of the lens is approximately equal, molding of plastic is easy.

以下に第3レンズにプラスチックを用いた実施例を示す
An example in which the third lens is made of plastic will be shown below.

実施例1 f−100F/3.5   26+=64”ER* =
11.7    βa−1,3Z4−0.09f3 =
 2.8f   望遠比1.04r+ ” 28.18
0 d、 = 7.396  ni−1,77250vl−
49,66r t  ”  115.148 d、−1,598 r s  ” −260,701 ds  −5,421FI2 − 1.64769  
yt  −33,8Or、−24,839 da  ””  4.344 rs  −43,377 ds  =  2.959  13  =  1.49
216 7/3 − 57.5Or、−−33,628 d、−0,444 rt  ”  59.206 dy  −3,254na  −1,69350pg 
 =  50.81r a  ”  443.787 実施例2 第2図は第2実施例のレンズ構成を示す断面図である。
Example 1 f-100F/3.5 26+=64”ER*=
11.7 βa-1,3Z4-0.09f3 =
2.8f Telephoto ratio 1.04r+” 28.18
0 d, = 7.396 ni-1,77250vl-
49,66 r t ” 115.148 d, -1,598 r s ” -260,701 ds -5,421 FI2 - 1.64769
yt -33,8Or, -24,839 da "" 4.344 rs -43,377 ds = 2.959 13 = 1.49
216 7/3 - 57.5Or, -33,628 d, -0,444 rt" 59.206 dy -3,254na -1,69350pg
= 50.81ra'' 443.787 Example 2 FIG. 2 is a sectional view showing the lens configuration of the second example.

f−100F/3.6   2ω−646ER,、=1
1.9    da = 0.7   Za = 0.
1fユ=3.9f   望遠比1.06 r I −26,896 d、−7,396J  =  1.72000  ν1
 =  50.25r t  =  109.373 dt  ”  1.657 r 3  =  205.918 ds  −3,550nt  −1,625881/i
  −35,70r4− 24.953 d4− 4.793 r 、  = −34,916 ds  =  2.663  13 − 1.4921
6   Wz  −57,5Or 、= −30,23
8 db 冨 0.444 r、=  69.930 d7 − 3.254   na  =  1.696
80  ya  −55,52rs  =  419.
178 実施例3 f−100F/3.5   2ω−64″ER* −1
1,7β4−1.6   Z4−0.08fs−2,3
f   望遠比1.04 ri  −27,871 d+  −7,1011+  −1,78800ν+ 
 =  47.38r、=  117.875 d2− 1.598 r=  ”  270.812 d3 − 5.274   nt  −1,67270
Wt  −32,1Or、−24,806 aa  −4,409 r 、  = −46,944 ds  =  2.959  1s  =  1.50
430   Vs  =  57.80rb  =  
34.254 a、−0,444 rt  −58,225 a7− 2.959   na  −1,72000v
a  =  43.70r m  ”245.562 但し、 f ;全系の焦点距離 f、;第3レンズの焦点距離 F  ;Fナンバー 2ω;画角 ER,、;第4レンズの有効半径 β4 ;次式で表わされる第4レンズの形状r、−r。
f-100F/3.6 2ω-646ER,,=1
1.9 da = 0.7 Za = 0.
1f Yu = 3.9f Telephoto ratio 1.06 r I -26,896 d, -7,396J = 1.72000 ν1
= 50.25r t = 109.373 dt ” 1.657 r 3 = 205.918 ds -3,550nt -1,625881/i
-35,70r4- 24.953 d4- 4.793 r, = -34,916 ds = 2.663 13 - 1.4921
6 Wz -57,5Or, = -30,23
8 db depth 0.444 r, = 69.930 d7 - 3.254 na = 1.696
80 ya -55,52rs = 419.
178 Example 3 f-100F/3.5 2ω-64″ER* -1
1,7β4-1.6 Z4-0.08fs-2,3
f Telephoto ratio 1.04 ri -27,871 d+ -7,1011+ -1,78800ν+
= 47.38r, = 117.875 d2 - 1.598 r = ” 270.812 d3 - 5.274 nt -1,67270
Wt -32,1Or, -24,806 aa -4,409 r, = -46,944 ds = 2.959 1s = 1.50
430Vs = 57.80rb =
34.254 a, -0,444 rt -58,225 a7- 2.959 na -1,72000v
a = 43.70 r m ”245.562 However, f ; Focal length of the entire system f, ; Focal length of the third lens F ; F number 2ω; Angle of view ER, , ; Effective radius β4 of the fourth lens; The shapes of the fourth lens are represented by r, -r.

r、;第4レンズの物体側面の曲率半径r8:第4レン
ズの像側面の曲率半径 Z4 ;次式で表わされる第4レンズのZ係数ERt 
;第4レンズの有効半径 rl ;物体側より順次に各面の曲率半径di ;物体
側より順次に各レンズの肉厚及び空気間隔 nii物体側より順次に各レンズの屈折率ν1 ;物体
側より順次に各レンズのアツベ数である。
r,; Radius of curvature of the object side surface of the fourth lens r8: Radius of curvature of the image side surface of the fourth lens Z4; Z coefficient ERt of the fourth lens expressed by the following formula
; Effective radius rl of the fourth lens ; Radius of curvature di of each surface sequentially from the object side; Thickness and air gap nii of each lens sequentially from the object side; Refractive index ν1 of each lens sequentially from the object side; The Atsube number of each lens is shown in sequence.

〔発明の効果〕〔Effect of the invention〕

第3図乃至第5図は夫々実施例1乃至3の収差曲線図で
ある。これらの収差曲線図からも明らかなように、本発
明によれば、各収差とも良好に補正されたコンパクトで
安価なレンズが提供される。特に、高い像高に亘ってコ
ントラストの高い写真を得ることができ、歪曲収差もほ
とんど目立たない上周辺光量も十分である。更に、第3
.第4レンズを偏芯に強(することができる。また、第
3レンズにプラスチックを用いた場合の温度変化による
影響も少ない。
3 to 5 are aberration curve diagrams of Examples 1 to 3, respectively. As is clear from these aberration curve diagrams, the present invention provides a compact and inexpensive lens in which each aberration is well corrected. In particular, it is possible to obtain photographs with high contrast over a high image height, and the amount of light at the upper periphery is sufficient, with almost no noticeable distortion. Furthermore, the third
.. The fourth lens can be made resistant to eccentricity. Also, when plastic is used for the third lens, it is less affected by temperature changes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明第1.第3実施例のレンズ構成の断面図
、第2図は本発明第2実施例のレンズ構成の断面図、第
3図乃至第5図は夫々本発明の第1乃至第3実施例の収
差曲線図である。
FIG. 1 shows the first aspect of the present invention. FIG. 2 is a cross-sectional view of the lens structure of the second embodiment of the present invention, and FIGS. 3 to 5 are aberration curves of the first to third embodiments of the present invention, respectively. It is a diagram.

Claims (1)

【特許請求の範囲】 物体側より順に物体側に凸面を向けた正メニスカスレン
ズの第1レンズ、両凹レンズの第2レンズ、像側に凸面
を向けた正メニスカスレンズの第3レンズ、物体側に凸
面を有する正レンズの第4レンズ、そして絞りを配置し
た4群4枚より成り、以下の諸条件を満足することを特
徴とするコンパクトな写真用レンズ。 (1)n_1>1.65 (2)n_2<1.7 (3)n_3<1.65 (4)n_4>1.65 (5)ν_1>40 (6)ν_2<45 (7)0.3<β_4<1.7 (8)Z_4>0.06 (9)2f<f_3<5f 但し、 n_i;第iレンズの屈折率 ν_i;第iレンズのアッベ数 β_4;次式で表わされる第4レンズの形状ファクター
 β_4=(r_8+r_7)/(r_8−r_7)r
_7;第4レンズの物体側面の曲率半径 r_8;第4レンズの像側面の曲率半径 Z_4;次式で表わされる第4レンズのZ係数Z_4=
(ER_4|1/r_7−1/r_8|)/2ER_4
;第4レンズの有効半径 f_3;第3レンズの焦点距離 f;全系の焦点距離 である。
[Claims] In order from the object side, the first lens is a positive meniscus lens with a convex surface facing the object side, the second lens is a biconcave lens, the third lens is a positive meniscus lens with a convex surface facing the image side, and the third lens is a positive meniscus lens with a convex surface facing the image side. A compact photographic lens comprising four lenses in four groups in which a fourth lens is a positive lens having a convex surface and an aperture, and satisfies the following conditions. (1) n_1>1.65 (2) n_2<1.7 (3) n_3<1.65 (4) n_4>1.65 (5) ν_1>40 (6) ν_2<45 (7) 0.3 <β_4<1.7 (8) Z_4>0.06 (9) 2f<f_3<5f where, n_i; refractive index ν_i of the i-th lens; Abbe number β_4 of the i-th lens; fourth lens expressed by the following formula Shape factor β_4=(r_8+r_7)/(r_8-r_7)r
_7; Radius of curvature of the object side of the fourth lens r_8; Radius of curvature of the image side of the fourth lens Z_4; Z coefficient of the fourth lens expressed by the following formula Z_4=
(ER_4|1/r_7-1/r_8|)/2ER_4
; Effective radius f_3 of the fourth lens; Focal length f of the third lens; Focal length of the entire system.
JP24500085A 1985-10-31 1985-10-31 Compact photographic lens Pending JPS62105112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24500085A JPS62105112A (en) 1985-10-31 1985-10-31 Compact photographic lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24500085A JPS62105112A (en) 1985-10-31 1985-10-31 Compact photographic lens

Publications (1)

Publication Number Publication Date
JPS62105112A true JPS62105112A (en) 1987-05-15

Family

ID=17127089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24500085A Pending JPS62105112A (en) 1985-10-31 1985-10-31 Compact photographic lens

Country Status (1)

Country Link
JP (1) JPS62105112A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983026A (en) * 1986-12-27 1991-01-08 Minolta Camera Kabushiki Kaisha Focal length changeable lens system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983026A (en) * 1986-12-27 1991-01-08 Minolta Camera Kabushiki Kaisha Focal length changeable lens system
US5086355A (en) * 1986-12-27 1992-02-04 Minolta Camera Kabushiki Kaisha Focal length changeable lens system

Similar Documents

Publication Publication Date Title
JP2001281535A (en) Gauss type photographing lens
JPH0217084B2 (en)
JPH04118612A (en) Retrofocus type wide-angle lens
JPS63247713A (en) Photographing lens for which floating is utilized
JPS61221719A (en) Small-sized zoom lens
JPS58108510A (en) Switching type variable power lens system
JPH07306360A (en) Variable focal length lens
JPS6229767B2 (en)
JPS61148414A (en) Compact zoom lens
JPS6154202B2 (en)
US3524697A (en) Achromatic super wide-angle lens
US3941457A (en) Symmetrical type four-component lens system
US4139265A (en) Modified gauss type photographic lens
JPS5812567B2 (en) wide angle zoom lens
US3885862A (en) Zoom lens
JPS6140086B2 (en)
JPS62105112A (en) Compact photographic lens
JPH01512A (en) Albada zoom finder
JPS6048014B2 (en) wide field eyepiece
US2587347A (en) High-speed four-component photographic objective
JPS6292908A (en) Compact photographic lens
JPS62177514A (en) Wide angle zoom lens
JPS59228220A (en) Large diameter macro lens
JPS5814650B2 (en) Zoom optical system for microscopes
JPS6396622A (en) Zoom lens