JPS62105030A - Control method for inner laminar sheath flow of flow cell - Google Patents

Control method for inner laminar sheath flow of flow cell

Info

Publication number
JPS62105030A
JPS62105030A JP60243944A JP24394485A JPS62105030A JP S62105030 A JPS62105030 A JP S62105030A JP 60243944 A JP60243944 A JP 60243944A JP 24394485 A JP24394485 A JP 24394485A JP S62105030 A JPS62105030 A JP S62105030A
Authority
JP
Japan
Prior art keywords
flow
sample liquid
liquid
sheath
orifice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60243944A
Other languages
Japanese (ja)
Inventor
Akiko Watanabe
渡辺 昭子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60243944A priority Critical patent/JPS62105030A/en
Publication of JPS62105030A publication Critical patent/JPS62105030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)

Abstract

PURPOSE:To flow only sample liquid which contains particles to an optional position stably and thinnly through a wide flow passage by setting a jet Reynold's number Ren so that 5<Ren<25 and establishing a laminar state. CONSTITUTION:When the sample liquid 7 which contains particles flows in an orifice 5 as a potential contraction flow together with sheath liquid 8, the sample liquid containing the particles flows at an optional position in the laminar state. The diameter dsa of the current flow is expressed by an equation (where d0 is the diameter of the orifice, Qsa is the sample liquid Qt containing the particles, and Qt is the total flow rate of the sample liquid and sheath flow). Namely, when the diameter of the orifice 5 is made constant, the diameter of the flow of the sample liquid 7 containing the particles depends upon the flow rate of the sample liquid 7 and sheath liquid 8. for the purpose, the jet Reynold's number Ren is set larger than 5 and less than 25 and the flow rate of the sample liquid 7 and sheath liquid 8 is controlled to decrease the diameter of the flow of the sample liquid 7. Consequently, the sample liquid is flowed thinnly to the optional position.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、広い流路のフローセルの制御方法に係り、特
に粒子を含むサンプル液を任意の位置に細い流れで流す
ことができるフローセルの制御方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for controlling a flow cell with a wide flow path, and in particular, a method for controlling a flow cell that allows a sample liquid containing particles to flow in a thin flow to an arbitrary position. Regarding.

〔発明の背景〕[Background of the invention]

粒子を含んだサンプル液を、鞘状液の層流の中心に位置
させる装置については、特公昭51−24264号公報
に示されているように、光学的粒子検出のために粒子を
含んだサンプル液流がビームを透過することを目的とし
たものが知られている。
Regarding a device that positions a sample liquid containing particles at the center of a laminar flow of a sheath liquid, as shown in Japanese Patent Publication No. 51-24264, a sample liquid containing particles is placed at the center of a laminar flow of a sheath liquid for optical particle detection. There are known devices whose purpose is to transmit a liquid stream through a beam.

しかしながら、フローセル内での粒子を含んだサンプル
液流は、サンプル液、鞘状液流量、フローセル、オリフ
ィス流入角といった条件に大きく影響され、前述の特許
においはこれらの条件に対して言及されていなかった。
However, the flow of a sample liquid containing particles in a flow cell is greatly influenced by conditions such as the flow rate of the sample liquid, the sheath liquid flow rate, the flow cell, and the orifice inflow angle, and the above-mentioned patent does not mention these conditions. Ta.

粒子を含んだサンプル液を任意の位置で一定の流れの径
で流す場合、これらの条件による制御を行なう必要があ
った。
When a sample liquid containing particles is allowed to flow at an arbitrary position with a constant flow diameter, it is necessary to perform control based on these conditions.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、広い流路中において、粒子を懸濁して
含むサンプル液を、任意の位置に安定した細い流れで流
すことができるフローセルの制御方法を提供することで
ある。
An object of the present invention is to provide a flow cell control method that allows a sample liquid containing suspended particles to flow in a stable, thin flow to any position in a wide channel.

〔発明の概要〕[Summary of the invention]

フローセル内の粒子を含んでいるサンプル液、鞘状液の
流動には、粒子を含んでいるサンプル液鞘状液の流動条
件及びノズル、フローセルの幾何学的条件が影響する。
The flow of the sample liquid and sheath liquid containing particles in the flow cell is influenced by the flow conditions of the sample liquid sheath liquid containing particles and the geometrical conditions of the nozzle and flow cell.

第1図に示したようなフローセル内流動系を考える。フ
ローセル1に鞘状液8を鞘状液導入管3より入れ、その
中央に粒子を含んだサンプル液7をサンプル液導入管2
より流入させる。流入したサンプル液7は、鞘状液8と
ともにオリフィスに流入する。
Consider a flow system in a flow cell as shown in FIG. A sheath-like liquid 8 is introduced into the flow cell 1 through the sheath-like liquid introduction tube 3, and a sample liquid 7 containing particles is introduced into the center of the flow cell 1 through the sample liquid introduction tube 2.
Increase inflow. The sample liquid 7 flows into the orifice together with the sheath liquid 8.

このフローセル1内の流動には、粒子を含んだサンプル
液7が、ノズル2からフローセル1内に流入するときジ
ェットとして流れる領域9と、粒子を含んだサンプル液
7が、フローセル1内に流入した鞘状液8とともにオリ
フィス5に向ってポテンシャル流れとなって縮流する領
域10がある。
The flow inside the flow cell 1 includes a region 9 where the sample liquid 7 containing particles flows as a jet when it flows into the flow cell 1 from the nozzle 2, and a region 9 where the sample liquid 7 containing particles flows into the flow cell 1. There is a region 10 that forms a potential flow toward the orifice 5 together with the sheath liquid 8 and contracts.

粒子を含んだサンプル液7が、乱れることなくオリフィ
ス5に縮流するためには、ジェットとして流れる領域9
のi!1IIJIが必要となる。
In order for the sample liquid 7 containing particles to flow into the orifice 5 without being disturbed, a region 9 where the sample liquid 7 flows as a jet is required.
i! 1IIJI is required.

ジェット領域9内の粒子を含んだサンプル液7によるジ
ェットは、軸対称二次元かフリージェットの流れであり
、この流れにおいてはジェットの広がりの境界を決める
ことができる。ノズル2からの吹きだしが層流条件であ
れば、ジェットの広がり角βは、ノズル噴出レイノズル
数Re nに対してtanβ■Ran−”の関係となる
。この関係が持続できなくなると、もはやジェットは乱
流状態なり、フローセル1内の粒子を含んだサンプル液
は、オリフィスに縮流しない、つまり5MIJ流ジェク
ジエツトするように粒子を含むサンプル液9の噴出レイ
ノルズ数Ranを設定しなければならない。
The jet caused by the sample liquid 7 containing particles in the jet region 9 is an axisymmetric two-dimensional or free jet flow in which the boundaries of the jet spread can be determined. If the blowout from the nozzle 2 is under laminar flow conditions, the divergence angle β of the jet will have a relationship of tanβ■Ran−'' with respect to the number of Ray nozzles ejected from the nozzle Ren.If this relationship can no longer be maintained, the jet will no longer flow. In a turbulent flow state, the ejection Reynolds number Ran of the sample liquid 9 containing particles must be set so that the sample liquid containing particles in the flow cell 1 does not constrict into the orifice, that is, is ejected in a flow of 5 MIJ.

第2図は、ノズル2より噴出する粒子を含んだサンプル
液7の広がり角2βと、噴出レイノズル数Renとの関
係を調べた結果である。これによれば、ノズル、フロー
セルの幾何学的条件によらず5 < Re n < 2
5の範囲においしは、層流ジェット状態であるといえる
FIG. 2 shows the results of investigating the relationship between the spread angle 2β of the sample liquid 7 containing particles ejected from the nozzle 2 and the number Ren of ejecting Ray nozzles. According to this, 5 < Ren < 2 regardless of the geometrical conditions of the nozzle and flow cell.
It can be said that the odor in the range of 5 is in a laminar jet state.

本発明は、粒子を含んだサンプル液7の安定した流動を
実現すべくノズル噴出レイノノルズ数Ranを5 < 
Re n < 25とし、層流状態とすることによって
、粒子を含むサンプル液7だけを任意の位置に安定して
細く流すことを特徴とする。
In order to realize stable flow of the sample liquid 7 containing particles, the present invention sets the nozzle ejection Reynolds number Ran to 5 <
By setting Ren < 25 and creating a laminar flow state, only the sample liquid 7 containing particles is stably and thinly flowed to an arbitrary position.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図、第3図及び第4図に
従って説明する0本発明によるフローセルノは粒子を含
むサンプル液導入管2、鞘状液導入管3、フローセル底
部4、オリフィス5.オリフィス5オリフイス下降管6
なとから構成されている。
An embodiment of the present invention will be described below with reference to FIGS. 1, 3, and 4. The flow cell according to the present invention includes a sample liquid introduction tube 2 containing particles, a sheath-like liquid introduction tube 3, a flow cell bottom 4, Orifice 5. Orifice 5 Orifice downcomer 6
It is composed of.

第1図における流動系の粒子を含んだサンプル液7がポ
テンシャル流によって縮流する領10では、液全体の流
線は直線的に縮流する。この時の粒子を含んだサンプル
液7の縮流角度αは1次のようになる。
In a region 10 in FIG. 1 where the sample liquid 7 containing particles in the fluid system contracts due to the potential flow, the streamlines of the entire liquid contract linearly. At this time, the contraction angle α of the sample liquid 7 containing particles becomes linear.

ここで do ;オリテイス径 Qsa:粒子を含んだサンプル液 Qt;サンプル液、鞘状液8流量 θ:フローセルオリフイス流入角 すなわち、粒子を含んだサンプル液と鞘状液の流量フロ
ーセルオリフィス流入角θによってフローセル1内の粒
子を含んだサンプル液7の流動が影響され1粒子を含ん
だサンプル液7の流量が過大になると、層流状態で液全
体がオリフィス5に縮流しなくなり、ノズル2から粒子
を含んだサンプル液7がジェットのままオリフィス5に
衝突する。
Here, do; orifice diameter Qsa: sample liquid containing particles Qt; sample liquid, sheath liquid 8 flow rate θ: flow cell orifice inflow angle, that is, the flow rate of the sample liquid containing particles and sheath liquid according to the flow cell orifice inflow angle θ If the flow of the sample liquid 7 containing particles in the flow cell 1 is affected and the flow rate of the sample liquid 7 containing one particle becomes excessive, the entire liquid will no longer converge into the orifice 5 in a laminar flow state, and the particles will be removed from the nozzle 2. The sample liquid 7 contained therein collides with the orifice 5 as a jet.

粒子を含んだサンプル液7が、鞘状液8とともにポテン
シャル縮流となってオリフィス5に流入すれば、層流状
態では、粒子を含んだサンプル液は任意の位置に流れる
。その時の流れの径は次のようになる。
If the sample liquid 7 containing particles flows into the orifice 5 together with the sheath-shaped liquid 8 as a potential contraction flow, the sample liquid containing particles flows to an arbitrary position in a laminar flow state. The diameter of the flow at that time is as follows.

つまり、オリディス5径を一定にすれば、粒子を含んだ
サンプル液7の流れの径は、サンプル液7、鞘状液8流
量に依存することになる。前述の流量関係を考慮して、
層流状態でポンシャル縮流を実現しうる範囲であれば、
粒子を含んだサンプル液7、鞘状液8流量を制御するこ
とによって、サンプル液7の流れの怪を細くすることは
可能である。
In other words, if the diameter of the oridis 5 is kept constant, the diameter of the flow of the sample liquid 7 containing particles will depend on the flow rates of the sample liquid 7 and the sheath liquid 8. Considering the above flow rate relationship,
As long as it is within the range where ponsial contraction can be achieved in laminar flow,
By controlling the flow rates of the sample liquid 7 containing particles and the sheath liquid 8, it is possible to narrow the flow of the sample liquid 7.

次に、前記実施例に基づいて製作したフローセルにおけ
る実験結果を示す。第2図は、実験に使用したフローセ
ル20であり、このフローセル20のオリフィス23部
分の詳細は第3図に示す。
Next, experimental results for a flow cell manufactured based on the above example will be shown. FIG. 2 shows a flow cell 20 used in the experiment, and details of the orifice 23 portion of this flow cell 20 are shown in FIG.

このフローセル20においては、ノズル23径dn及び
ノズル21、オリフィス23間隔Qがそれぞれ (dn、Q) : (0,36,5,399) f (
0,4517925) t(0,61,5,79) (
+am) の場合、ジェット領域での粒子を含むサンプル液のジェ
ット広がり角βは、ノズル噴出レイノルズ数Renが5
<Ran25においてtanβooR61−”・”によ
り得られ、この時ジェットは、安定した層流フリージェ
ットになる。
In this flow cell 20, the diameter dn of the nozzle 23 and the interval Q between the nozzle 21 and the orifice 23 are (dn, Q): (0, 36, 5, 399) f (
0,4517925) t(0,61,5,79) (
+ am), the jet divergence angle β of the sample liquid containing particles in the jet region is determined by the nozzle ejection Reynolds number Ren of 5.
<obtained with tanβooR61-"・" at Ran25, at which time the jet becomes a stable laminar free jet.

ポテンシャル領域での、ポテンシャル縮流の限界流量比
は(d n )= (0,36,5,39) (m m
 )のときQ s a / Q s e = 0 、0
02であった。さらにこの範囲で流量を制御し得られた
粒子を含むサンプル液の細い流れは、do=122μに
おいてdsa=6.93μであった。
In the potential region, the critical flow rate ratio of potential contraction flow is (d n ) = (0, 36, 5, 39) (m m
) when Q s a / Q s e = 0, 0
It was 02. Further, the thin flow of the sample liquid containing particles obtained by controlling the flow rate within this range had dsa = 6.93μ at do = 122μ.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、広い流路のフローセル内
の粒子を含むサンプル液の流れを制御できるので、粒子
を含むサンプルを任意の位置に細状の流れが得られ、セ
ルソータ、血球カウンタなどに代表される細胞計測機器
において、計即精度向上のための位置決め及び高速処理
を実現するためのフロー系の確立できる。
As described above, according to the present invention, it is possible to control the flow of a sample liquid containing particles in a flow cell with a wide flow path, so a narrow flow of a sample containing particles can be obtained at an arbitrary position, and a cell sorter, a blood cell counter, etc. It is possible to establish a flow system for positioning and high-speed processing to improve instantaneous measurement accuracy in cell measurement equipment such as the following.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、フローセル内の流動状態図、第2図は、ノズ
ル噴出レイノズル数とジェットの広がり角の正接tan
βとの関係図、第3図は、本発明の制御方法の一実施例
を示すフローセル詳細図、第4図は第3図におけるフロ
ーセルに使用したオリフィスの詳細図である。 1.20・・・フローセル、2,21・・・粒子を含む
サンプル液導入管、ノズル、3,32・・・鞘状液導入
管、5,23・・・オリフィス、6,24・・・オリフ
ィス下降管、7・・・粒子を含むサンプル液、8・・・
鞘状液、9・・・ジェット領域、10・・・ポテンシャ
ル縮流Y  1  図 z Z 図 積出ReynaltLs数  Reh 1図
Figure 1 is a diagram of the flow state in the flow cell, and Figure 2 is the tangent tan of the number of nozzles ejecting Ray nozzles and the jet spread angle.
FIG. 3 is a detailed diagram of a flow cell showing an embodiment of the control method of the present invention, and FIG. 4 is a detailed diagram of an orifice used in the flow cell in FIG. 3. 1.20... Flow cell, 2, 21... Sample liquid introduction tube containing particles, nozzle, 3, 32... Sheath-shaped liquid introduction tube, 5, 23... Orifice, 6, 24... Orifice descending pipe, 7... sample liquid containing particles, 8...
Sheath liquid, 9...Jet region, 10...Potential contracture Y 1 Figure z Z Figure Unloaded Reynolds Ls number Reh 1 Figure

Claims (1)

【特許請求の範囲】[Claims] 1、粒子を懸濁して含んでいるサンプルの液の導入管と
、この液体に対する鞘状流を生ぜしめる鞘状液の導入管
と、フローセルを流通したこれらの液体が流入するオリ
フィスとからなるフローセルにおいて、粒子を含むサン
プル液噴出レイノズル数Renを5<Ren<25にす
ることを特徴とするフローセルの制御方法。
1. A flow cell consisting of an introduction tube for a sample liquid containing suspended particles, an introduction tube for a sheath-like liquid that generates a sheath-like flow for this liquid, and an orifice into which these liquids that have passed through the flow cell flow. A flow cell control method characterized in that the number Ren of Ray nozzles ejecting a sample liquid containing particles is set to 5<Ren<25.
JP60243944A 1985-11-01 1985-11-01 Control method for inner laminar sheath flow of flow cell Pending JPS62105030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60243944A JPS62105030A (en) 1985-11-01 1985-11-01 Control method for inner laminar sheath flow of flow cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60243944A JPS62105030A (en) 1985-11-01 1985-11-01 Control method for inner laminar sheath flow of flow cell

Publications (1)

Publication Number Publication Date
JPS62105030A true JPS62105030A (en) 1987-05-15

Family

ID=17111357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60243944A Pending JPS62105030A (en) 1985-11-01 1985-11-01 Control method for inner laminar sheath flow of flow cell

Country Status (1)

Country Link
JP (1) JPS62105030A (en)

Similar Documents

Publication Publication Date Title
US6861265B1 (en) Flow cytometer droplet formation system
US6111398A (en) Method and apparatus for sensing and characterizing particles
US4175662A (en) Method and device for sorting particles suspended in an electrolyte
US3871770A (en) Hydrodynamic focusing method and apparatus
Van der Welle Void fraction, bubble velocity and bubble size in two-phase flow
Sessoms et al. Droplet motion in microfluidic networks: Hydrodynamic interactions and pressure-drop measurements
EP0993600B1 (en) Method and apparatus for sensing and characterizing particles
JP2010528289A (en) Method and apparatus for particle trajectory variation compensation of electrostatic classifiers for flow cell cytometers
US7439075B2 (en) Method and device for withdrawing suspended microparticles from a fluidic microsystem
US5808737A (en) Pre-analysis chamber for a flow particle analyzer
Anderson et al. Particle motion in the stagnation zone of an impinging air jet
Kitron et al. Monte Carlo simulation of gas-solids suspension flows in impinging streams reactors
Esmail et al. Nonlinear theory of free coating onto a vertical surface
JPS62105030A (en) Control method for inner laminar sheath flow of flow cell
Young et al. Optical studies on the turbulent motion of solid particles in a pipe flow
Gadgil Optimization of a stagnation point flow reactor design for metalorganic chemical vapor deposition by flow visualization
Kubitschek Loss of resolution in Coulter counters
JPS61132841A (en) Method of operating microscope apparatus
Arrowsmith et al. The motion of a stream of monosized liquid drops in air
Afromowitz et al. Pinch field-flow fractionation using flow injection techniques
McMahon et al. Particles in tube flow at moderate Reynolds number
Kale et al. An experimental investigation of gas-particle flows through diffusers in the freeboard region of fluidized beds
US3485295A (en) Device for the treatment of a flow of liquid sectionalized by fluidal bubbles
Li et al. Numerical studies of the motion of spheroidal particles flowing with liquid metals through an electric sensing zone
Ovod Hydrodynamic Focusing of Particle Trajectories in light‐scattering counters and phase‐doppler analysers