JPS62104712A - Mold for forming - Google Patents

Mold for forming

Info

Publication number
JPS62104712A
JPS62104712A JP60244080A JP24408085A JPS62104712A JP S62104712 A JPS62104712 A JP S62104712A JP 60244080 A JP60244080 A JP 60244080A JP 24408085 A JP24408085 A JP 24408085A JP S62104712 A JPS62104712 A JP S62104712A
Authority
JP
Japan
Prior art keywords
cement
strength
water
mold
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60244080A
Other languages
Japanese (ja)
Inventor
Etsuro Sakai
悦郎 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP60244080A priority Critical patent/JPS62104712A/en
Priority to US06/837,449 priority patent/US4708626A/en
Priority to KR1019860001815A priority patent/KR900002150B1/en
Priority to CN86102615.2A priority patent/CN1006052B/en
Priority to PCT/JP1986/000457 priority patent/WO1987001627A1/en
Priority to AU63370/86A priority patent/AU6337086A/en
Priority to EP19860905409 priority patent/EP0237575A1/en
Publication of JPS62104712A publication Critical patent/JPS62104712A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/30Mounting, exchanging or centering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/01Selection of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • B29C67/246Moulding high reactive monomers or prepolymers, e.g. by reaction injection moulding [RIM], liquid injection moulding [LIM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2821/00Use of unspecified rubbers as mould material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2863/00Use of EP, i.e. epoxy resins or derivatives thereof as mould material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2909/00Use of inorganic materials not provided for in groups B29K2803/00 - B29K2807/00, as mould material
    • B29K2909/02Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2909/00Use of inorganic materials not provided for in groups B29K2803/00 - B29K2807/00, as mould material
    • B29K2909/06Concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain a mold for FRP of easy forming, economy, high transferring and high strength, by utilizing a high strength cement and a mixture of a fiber and a synthetic resin as the main components. CONSTITUTION:A high strength cement with the compression strength higher than 1,000kgf/cm<2> is used. The main components consist of cement materials, ultrafine powder, high performance water-reducing agent and water. Single elements of alite, C3S, standard, premature strength, and white Poltland cements or their mixtures, or the mixed cement prepared from the high temperature furnace slag, flyash, etc. are used. The quantity of an ultrafine powder is preferable 40-5wt% against 60-95wt% of the cement material. The solid content of 1-5wt% against the cement material is used for the water-reducing agent consisting of naphthalenesulfonic acid, formaldehyde condensate salt and polycarboxylic acid salt, etc. Here, 10-30wt% of water against 100wt% of a mixture of the cement material and the ultrafine powder is desirably used. A thermohardening resin such as an unsaturated polyester, an epoxy, etc. for the synthetic resin and a hydrophobically treated glass fiber for the fiber are respectively used.

Description

【発明の詳細な説明】 〔産業上の利用方法〕 本発BAは高照度セメントからなり繊維補強プラスチッ
ク(以下F’RPという)を成形するための成形用型、
さらに詳しくは繊維と合成樹脂を主成分とする混会物金
成形し硬化させIR品t−得るための高強度セメント製
成形型に関する。
[Detailed Description of the Invention] [Industrial Application Method] The BA of the present invention is a mold for molding fiber-reinforced plastic (hereinafter referred to as F'RP) made of high-luminance cement;
More specifically, the present invention relates to a mold made of high-strength cement for obtaining an IR product by molding and curing a composite material mainly composed of fibers and synthetic resin.

〔従来技術〕[Prior art]

F’RPの機械成形方法として、繊維と合成樹脂を主成
分とする混合物全プレス成形あるいは射出成形などによ
り成形し、加熱等により硬化させる5heet  Mo
lding Compound  (SMC) や E
u1k  MoldingCompound (BMC
)成形方法等が注目を浴びている。これらは、従来のL
FRP (D成形方法、例えばスプレーアップ法等と比
較して成形サイクルが短く、又表面性状のすぐれた製品
が得られることなどの利点を有しており、自動車部品、
浴槽、建材、電気部品等の成形に利J@されている。特
に今後自動車車体等のプラスチック化等と関連して、自
動化可能な8MC成形法及び3MC成形法等の方法は、
その発展が期待されている。
The mechanical molding method for F'RP is to mold a mixture mainly composed of fibers and synthetic resin by full press molding or injection molding, and harden it by heating etc.
lding compound (SMC) and E
u1k Molding Compound (BMC
) The molding method etc. are attracting attention. These are conventional L
FRP (D molding method, for example, has advantages such as a shorter molding cycle and the ability to obtain products with excellent surface properties compared to spray-up methods, etc.), and is suitable for automobile parts,
It is used for molding bathtubs, building materials, electrical parts, etc. Especially in connection with the future plasticization of automobile bodies, etc., methods such as 8MC molding method and 3MC molding method that can be automated,
Its development is expected.

これらの成形に利用される型は鋳鉄製、アルミニウム製
及び樹脂製等があるが、鋳鉄製、アルミニウム製の型に
おいては型加工が複雑で、製作期間が長期間かか、るこ
となどからコスト高となる。
The molds used for these moldings are made of cast iron, aluminum, resin, etc., but molds made of cast iron and aluminum require complicated mold processing and require a long manufacturing period, resulting in high costs. Becomes high.

また、樹脂製の型においては、その成形方法は簡便であ
るものの、硬化させるために加熱上行なうことから、高
温下での耐久性に問題がある。
Furthermore, although the molding method for molds made of resin is simple, there is a problem with durability under high temperatures because the mold is heated to harden it.

以上のことより、その製造が簡便で、製作期間が短く、
加熱条件下での耐久性にすぐれたIFRP成形用型の出
現が切望されている。
From the above, it is easy to manufacture, the production period is short,
There is a strong desire for an IFRP mold that has excellent durability under heating conditions.

一万、セメントコンクリートは、常温成形が可能であり
、かつその取り扱いが容易であるため土木建築の分野で
広範に利用されている。しかしながら、従来用いられて
いるものは、材料分離やブリージングにより面の転写性
に劣るという欠点があり、成形型への応用と云う点から
は問題であつ九。
Cement concrete is widely used in the field of civil engineering and construction because it can be molded at room temperature and is easy to handle. However, the conventionally used ones have the disadvantage of poor surface transferability due to material separation and breathing, which is a problem from the point of view of application to molds.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のよ5なことより、本発明者は種々検#を加えた結
果、例えばセメント質物質、超微粉、高性能減水剤およ
び水を主成分とする高強度セメントを用いることにより
、加熱条件下での耐久性や面の転写性がすぐれた、製作
が容易なFRP成形用型を借ることができる知見t−得
て本発明全完成するに至った。
Based on the above, the present inventor has conducted various tests and found that, by using, for example, cementitious material, ultrafine powder, high-performance water reducing agent, and high-strength cement whose main components are water, The present invention was completed based on the knowledge that an easy-to-manufacture FRP molding mold with excellent durability and surface transferability can be used.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明は、高強度セメントからなり、繊維と曾成
樹脂全主成分とする混合物の成形用型である。
That is, the present invention is a mold for molding a mixture made of high-strength cement and having fibers and synthetic resin as the main components.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明における繊維と合成樹脂を主成分とする混合物を
成形し硬化させる方法とに、一般にSMC。
SMC is generally used in the method of molding and curing a mixture mainly composed of fibers and synthetic resin in the present invention.

BMC成形などと呼ばれるものであり、成形工程は図面
に示すごとくである。
This is called BMC molding, and the molding process is as shown in the drawings.

ここで述べる成形用型とは、SMCにおける加熱プレス
成形、BMCにおけるプレス成形、トランスファー成形
、射出成形やあるいは、これに準する成形方法において
用いるものである。
The mold described here is one used in hot press molding in SMC, press molding in BMC, transfer molding, injection molding, or a molding method similar thereto.

本発明の高強度セメントとは、例えば100100O/
 cm”程度以上の圧縮強度を示すものを云うが、これ
は強度よりむしろ面の転写性から水量が少い方が良いた
めである。又、材料分離、ブリージング等を減少させる
ことを考慮すると、セメント質物質、超微粉、高性能減
水剤および水金主成分とする高強度セメントを用いるこ
とが好ましい。
The high strength cement of the present invention is, for example, 100100O/
This is because it is better to use less water in terms of surface transferability rather than strength.Also, considering the reduction of material separation, breathing, etc. It is preferable to use a high strength cement based on cementitious material, ultrafine powder, high performance water reducing agent and water metal.

ここで云うセメント質物質とは、ニーライト、03日、
普通、早強、超早強、白色もしくは耐l#tel塩等各
種ポルトランドセメントなどの単独あるいは組み合せた
もの、さらには高炉スラグ、フライアンシュ等全混合し
た混合セメントなどが一般に用いられる。又、藁炉スラ
グを生体としてアルカリ刺激材と組る合せたものも用い
られる。
The cementitious material referred to here is Neelite, 03rd,
Ordinary, early-strength, ultra-early-strength, white or l#tel salt-resistant various types of Portland cement are used singly or in combination, and mixed cements such as blast furnace slag, flyash, etc. are generally used. Also used is a combination of straw furnace slag as a living body and an alkaline stimulant.

また、さbに膨張セメンIf用いて収縮補償したり1急
硬セメントを用いて短時間に所要強度を発現させたり、
石膏系の高強度混和材を併用することもできる。
In addition, we can use expanded cement If to compensate for shrinkage, or use rapid hardening cement to develop the required strength in a short time.
A gypsum-based high-strength admixture can also be used.

膨張セメントのj11成分としては、エトリンガイト系
のもの、例えば電気化学工業(社)製産品名「CBA”
 2 D J 、又は焼成CaOが好ましく、ts成C
五〇中でも1,100〜1,300℃で焼成され、平均
結晶径が10μ以下のものが好ましい。
The j11 component of expansive cement is ettringite type, such as "CBA" manufactured by Denki Kagaku Kogyo Co., Ltd.
2 D J or calcined CaO is preferable, and ts formed C
Among those in the 50 range, those fired at 1,100 to 1,300°C and having an average crystal diameter of 10 μm or less are preferred.

急硬セメントの急硬成分としてはカルシウムアルミネー
ト系のものがよく、例えばアルミナセメントやアルミナ
セメントと石膏の組み合せたものおよび電気化学工業(
配装、商品名「デンカIsJや小野田セメント((社)
製、商品名「ジェットセメント」などが用いられる。
The quick-hardening component of quick-hardening cement is preferably calcium aluminate-based, such as alumina cement, a combination of alumina cement and gypsum, and Denki Kagaku Kogyo (
Arrangement, product name “Denka IsJ Ya Onoda Cement (company)
manufactured by the company, and the product name ``Jet Cement'' is used.

また、高強度混和材は石膏系のものであり、例えば電気
化学工業(2)製、商品名「デンカΣ−1000J、日
本セメント((社)表、商品名「アテノシーパーミック
ス」等が有効である。
In addition, high-strength admixtures are gypsum-based, for example, Denka Kagaku Kogyo (2), product name "Denka Σ-1000J", Nippon Cement Co., Ltd., product name "Atheno Seaper Mix", etc. are effective. It is.

ここで使用する超微粉は、セメント質物質(平均粒径1
0〜30μ程度)の少なくとも1オーダー細かい平均粒
径全有するものであり、平均粒径が2オーダー低いもの
が混線物の流動特性の面から灯篭しい。具体的には、シ
リコン、含シリコン合金及びジルコニア′jk製造する
際に副生ずるシリカダスト(シリカヒユーム)やシリカ
質ダストが特に好適であり、炭酸カルシウム、シリカダ
スト、オパール質硅石、フライアッシュ、高炉スラグ、
酸化チタン及び酸化アルミニウムあるいはセメント質物
質の微粉砕品なども使用できる。特に1オパ一ル負硅石
、フライアッシュ及び高炉スラグ全分級器と粉砕機と全
併用することにより粉砕した超微粉の使用は硬化収縮を
改善するとい5面から有効である。
The ultrafine powder used here is a cementitious material (average particle size 1
0 to 30 μm), and those having an average particle size two orders of magnitude smaller are preferred from the viewpoint of the fluidity characteristics of the interfering material. Specifically, silica dust (silica fume) and siliceous dust, which are by-products during the production of silicon, silicon-containing alloys, and zirconia, are particularly suitable, and calcium carbonate, silica dust, opalescent silica, fly ash, and blast furnace slag are particularly suitable. ,
Finely pulverized products of titanium oxide and aluminum oxide or cementitious materials can also be used. In particular, the use of ultrafine powder that has been pulverized by using 1-opal silica, fly ash, and blast furnace slag in combination with a classifier and a pulverizer is effective in improving hardening shrinkage.

超微粉の使用社は、セメント質物負60〜95M量部に
対して40〜5亘賦部が好ましく、さらに好it、<は
65〜90!菫部に対して65〜10重量部である。5
1i部未満では、高強度発現効果が小さく、また、40
嵐蛍部をこえると混練物の流動性が著しく低下し、成形
することが困難となり、かつ、強度発現も不光分となる
It is preferable that the ultrafine powder be used in an amount of 40 to 5 parts per 60 to 95 M parts of the cementitious material, and more preferably 65 to 90 parts. The amount is 65 to 10 parts by weight based on the violet part. 5
If the amount is less than 1i part, the effect of developing high strength will be small, and if the amount is less than 40
When the temperature exceeds the storm point, the fluidity of the kneaded material decreases significantly, making it difficult to mold, and the strength development becomes opaque.

ここで云5i1性能減水剤(以下減水剤という)とはセ
メントに多4i添加しても凝結の過遅延や過度の9気運
行金伴なわない分散能力の大きな界面活性剤であって、
例えばナフタリンスルホン酸ホルムアルデヒド縮金物の
塩、メラミンスルホン酸ホルムアルデヒド縮合物の塩、
高分子蓋リグニンスルホン酸塩及びポリカルボン酸塩等
を主成分とするものがあげられる。
Here, 5i1 performance water reducing agent (hereinafter referred to as water reducing agent) is a surfactant with a large dispersion ability that does not cause excessive setting delay or excessive 9 air flow rate even if a large amount of 4i is added to cement.
For example, salts of naphthalene sulfonic acid formaldehyde condensates, salts of melamine sulfonic acid formaldehyde condensates,
Examples include those whose main components are polymer capped lignin sulfonates, polycarboxylate salts, and the like.

減水剤の使用fは、従来、セメント質物質に対し固形分
として0.6〜1X蓋%が使用されているが、本発明に
おいては、それよりも多量に添加することが好ましく、
1〜5重量部が更に好ましい。
Conventionally, a water reducing agent is used in an amount of 0.6 to 1X lid% as a solid content for a cementitious material, but in the present invention, it is preferable to add it in a larger amount.
More preferably 1 to 5 parts by weight.

減水剤は、混練物を低水/(セメント+超微粉)比(以
下低水粉体比という)で得るために必要なものであり、
10X量部を超えると硬化反応にかえって悪影響を与え
る。このよ5な高性能減水剤の使用量において、超微粉
を組み合せることにより、水粉体比が25チ以下でも通
常の方法により成形可能な流動性のある混線物を得るこ
とができる。
A water reducing agent is necessary to obtain a kneaded product with a low water/(cement + ultrafine powder) ratio (hereinafter referred to as low water powder ratio),
If it exceeds 10X parts, it will adversely affect the curing reaction. By combining the ultrafine powder with such a high performance water reducing agent in an amount of 5.5 mm, it is possible to obtain a fluid mixed material that can be molded by a conventional method even if the water/powder ratio is 25 mm or less.

ここで使用する水は成形上必要なものであり、高強度硬
化体を得るためにはできるだけ少量で良く、セメント質
物質と超微粉との混合物100重量部に対し水10〜6
0重址部が好ましく、12〜25重麓部が更に好ましい
。水量が60!童部より多いと高強度硬化体を得ること
が困難であり、10!i部より少ないと通常の流し込み
等の成形が困難となる。なお、圧密成形等においては、
これに制限されるものではなく10Xik部より少ない
場合においても成形が可能となる。また、押し出し成形
等の通常セメントコンクリートに用いられている成形方
法を用いることも可能である。
The water used here is necessary for molding, and in order to obtain a high-strength hardened product, it is sufficient to use as little water as possible.
A 0-layer base portion is preferable, and a 12-25 layer foot portion is more preferable. The amount of water is 60! If the amount is more than Dobe, it is difficult to obtain a high-strength cured product, and 10! If the amount is less than i part, normal molding such as pouring becomes difficult. In addition, in compression molding etc.
The present invention is not limited to this, and molding is possible even when the number of parts is less than 10Xik. Furthermore, it is also possible to use a molding method normally used for cement concrete, such as extrusion molding.

これ以外に一般に骨材を併用する場合が大半である。In most cases, aggregate is generally used in addition to this.

骨材は一般に土木建築の分野でコンクリートを調合する
際に使用されているもので良いが、より硬質なもの、具
体的には、モース硬度6以上好ましくは7以上、又はヌ
ープ圧子硬度700kg/M2以上さらに好ましくは8
00 # / mtx2以上のいずれかの基準で選定さ
れ友ものを用いると、強度を著しく向上させることがで
きるので好適である。
The aggregate may be one that is generally used when mixing concrete in the field of civil engineering and construction, but it may be a harder one, specifically one with a Mohs hardness of 6 or more, preferably 7 or more, or a Knoop indenter hardness of 700 kg/M2. More preferably 8
It is preferable to use a material selected based on any of the criteria of 00 #/mtx2 or more because the strength can be significantly improved.

□ この基準全満足するものを例示すれば、珪石、エメ
リー、黄鉄鉱、磁鉄鉱、黄玉、ローソン石、コランダム
、ツェナナイト、スピネル、緑柱石、金株石、電気石、
花崗岩、紅柱石、十字石、ジルコ負 ン、焼成ざ−キサイト、重焼ばん土負岩、炭化砿累、炭
化タングステン、フェロシリコンナイトライド、窒化硅
素、浴融シリカ、電融マグネシア、炭化硅素、立方晶量
化硼素及び鉄粉・鉄球などの金属婚がある。
□ Examples of materials that meet all of these criteria are silica, emery, pyrite, magnetite, yellow jade, lawsonite, corundum, zenanite, spinel, beryl, goldstone, tourmaline,
Granite, andalusite, cross stone, zirconite, calcined sarcosite, heavy calcined earthenite, sulfur carbide, tungsten carbide, ferrosilicon nitride, silicon nitride, bath-fused silica, fused magnesia, silicon carbide, There are metallic materials such as cubic quantified boron and iron powder and iron balls.

骨材の使用tは、通常、セメント質物質と超微粉との合
計に対して、5J[量倍菫以内で選択使用される。但し
、プレパックド工法やポストパックドエ汰等の%殊な成
形方法の場せには、この限りでない。
The amount of aggregate to be used is usually selected within 5J [amount times violet] for the total amount of cementitious material and ultrafine powder. However, this does not apply to special molding methods such as pre-packed construction methods and post-packed construction methods.

以上の配合の他に、各[[維や網の配合も可能である。In addition to the above formulations, it is also possible to incorporate fibers and nets.

繊維としては、鋳鉄などのびびり切削法による櫃維、ス
チール繊維、ステンレス繊維、石綿やアルミナ権維など
の各櫨天然および脅成鉱物稙維、炭素繊維、ガラス繊維
、及びポリプロピレン、ビニロン、アクリロニトリル、
セルロースなどの天然又μ合成の有機繊維等があげられ
る。また、補強として従来より用いられている鋼棒やF
RPロッド棒を用いることも可能であり、とぐに大型の
ものについては必要不可欠なものである。
Examples of fibers include cast iron fibers made by chatter cutting, steel fibers, stainless steel fibers, natural and synthetic mineral fibers such as asbestos and alumina fibers, carbon fibers, glass fibers, and polypropylene, vinylon, acrylonitrile,
Examples include natural fibers such as cellulose, and synthetic organic fibers. In addition, steel rods and F
It is also possible to use RP rods, which are indispensable for very large rods.

また、他の機能、例えば摺動性を付与するものとして二
硫化モリブデン、六方晶窒化硼系などの、云わゆる固体
潤滑剤を配合することも可能であり、さらには油しみ込
み性のあるカーボンなどt用いることも可能である。
In addition, it is also possible to add so-called solid lubricants such as molybdenum disulfide and hexagonal boron nitride to provide other functions, such as sliding properties. It is also possible to use t, etc.

その他、熱云尋性、電気六等性などの特殊な性能全付与
するものt−配合させることも可能である。
In addition, it is also possible to incorporate materials that impart special properties such as thermal properties and electrical properties.

上記各材料の混合および提練方舐は均一に混合及び混線
できれば、いずれの方法でも良く、添加順序にも特に制
限されるものではない。
Any method of mixing and kneading the above-mentioned materials may be used as long as they can be mixed and mixed uniformly, and the order of addition is not particularly limited.

成形物の養生は各種の養生方法が可能であり常温養生、
常圧蒸気養生、高温間圧養生、高温養生のいずれの方法
も採用することができ、必要ならば、これらの組み合せ
を行なって高強度硬化体を得ることもできる。
Various curing methods are possible for curing the molded product, including room temperature curing,
Any of the methods of normal pressure steam curing, high temperature pressure curing, and high temperature curing can be employed, and if necessary, a combination of these methods can be used to obtain a high-strength cured product.

なお、FRPにおいて用いられる合成樹脂としては一般
的には不飽和ポリエステル、エポキシなどの熱硬化性の
ものであり、繊維としては、各種繊維が可能であるが、
疎水化処理したガラス繊維が一般的である。
In addition, the synthetic resin used in FRP is generally a thermosetting one such as unsaturated polyester or epoxy, and various fibers are possible as the fiber.
Hydrophobically treated glass fibers are common.

又、繊維と合成樹脂を主成分とする混合物とは、成形さ
れる前に繊維と合成樹脂が混合されているもので、例え
ば、まだ硬化していない混合物や混合してシート状にな
ったものなどが挙げられる。
Also, a mixture whose main components are fibers and synthetic resin is one in which fibers and synthetic resin are mixed before being molded, such as a mixture that has not yet hardened or a mixture that has been mixed into a sheet shape. Examples include.

亥た、本発明における型は、PRPにおいて一般的に熱
硬化性である不飽和ポリエステル、エポキシなどが使用
されているが、その場合は加熱し硬化させる必要がある
。これは、型内部に温調パイプあるいは電熱脈などを配
置することあるいは外導率が低いが、これは一度加熱し
たものが冷えに脂、セラミックス鳩など全形成すること
も可能である。
In addition, the mold used in the present invention generally uses thermosetting unsaturated polyester, epoxy, etc. in PRP, but in that case, it is necessary to heat and harden it. This can be done by placing temperature control pipes or electric heating veins inside the mold, or by having a low external conductivity, but once heated, it is possible to completely mold the mold by cooling it with fat or ceramics.

実施例1 間強度セメン褒型を下記配合により作製した。Example 1 Inter-strength cement molds were prepared using the following formulation.

製作期間は1週間であり、通常の金型等と/2!i:形
力Ω工するための製作期間12〜22週間に比して驚異
的に短縮される。
The production period is one week, and the usual mold etc./2! i: The production period for shaping is surprisingly shortened compared to the 12 to 22 weeks required for machining.

高強度セメントの圧#強度は1,750に、!9f/α
2であった。
The pressure strength of high-strength cement is 1,750! 9f/α
It was 2.

セメント:普通ポルトランドセメント8[1jjLff
i部(住友セメント) 超微粉ニジリカヒユーム 20嵐菫都 (日本ム化) 員 背W:net工ん止鬼岩U、6〜1 、l tm z1
20!一部 高a能減水剤:β−ナフタレンスルホ/酸塩 2重量部
ホルマリン栂曾物糸1セルフ0−11 CJPJ(弔−
工東裂楽」 繊維:ひひ9切剛による鋼繊維 7厘意地(神戸鋳鉄所
H)   Jl = 2 ms水 :水道水 20X量
部 上記高強度セメント製成形型金用いて、8MC成形を実
施した。SMCはガ、ラス繊維、不飽和ポリエステル、
硬化剤、増粘剤、充てん剤及び顔料よりなるものであり
、型を熱風で150℃に加熱後、SMCf 120 k
g/ CrrL”で加圧プレスした。その結果戎面元沢
も良い、FRP成形品を得ることができた。
Cement: Ordinary Portland cement 8 [1jjLff
Part I (Sumitomo Cement) Ultra-fine powder Nijirikahiyum 20 Arashi Sumito (Japanese Mukai) Member back W: Net work Oniwa U, 6-1, l tm z1
20! Partially high aqueous reducing agent: β-naphthalene sulfo/acid acid 2 parts by weight Formalin
Fiber: Steel fiber made by Tsuyoshi Hihi 9 Kiri 7 Rin Yiji (Kobe Foundry Works H) Jl = 2 ms Water: 20X parts of tap water 8MC molding was carried out using the above high-strength cement mold. . SMC is glass, glass fiber, unsaturated polyester,
It consists of a hardening agent, thickener, filler and pigment, and after heating the mold to 150℃ with hot air, it is made into SMCf 120k.
g/CrrL". As a result, an FRP molded product with good surface roughness was obtained.

実施例2 下記に示す配付により、高強度セメント装成形型を作成
した。その際の圧縮強度は1,540kgf/dであつ
之。
Example 2 A high-strength cement-filled mold was created according to the distribution shown below. The compressive strength at that time was 1,540 kgf/d.

セメント:普通ポルトランドセメント8[]JUf部(
住友セメント9 超微粉ニジリカヒユーム 20!jt部(日本1化〕 骨材:妖紛(尾圓)  2LILJ厘重都尚性舵秋累舜
」;「セルフ0−110#J  2厘意地(第−工) 繊維:びびり切削法による 7ム量部 鋼愼維 l;2朋 (アイシン鞘機) 水:X逼X 23J[置部 上記高強度セメント製成形型?用いて、BMC’を射出
成形した。BMCはガラス繊維、エポキシ樹脂、充てん
剤からなるものを用いたが、成形温度150℃、注入圧
力は250 kg/ crn2とした。このような条件
によりF’RP成形品を得ることができた。
Cement: Ordinary Portland cement 8 [] JUf part (
Sumitomo Cement 9 Ultra Fine Powder Nijirikahium 20! jt part (Japan No. 1) Aggregate: Yomu (Oen) 2LILJ 厘jutoshosei rudder akikushun''; ``Self 0-110#J 2rinyiji (No. 1) Fiber: By chatter cutting method 7 BMC' was injection molded using the above high-strength cement mold.BMC was made of glass fiber, epoxy resin, A filler was used, and the molding temperature was 150°C and the injection pressure was 250 kg/crn2.Under these conditions, an F'RP molded product could be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によって非常に容易に成形でき、
かつ経済的で転写性のすぐれた、かつ高強度のFBI’
用成形型の提供が可能となった。
As described above, the present invention allows for very easy molding.
FBI' is economical, has excellent transferability, and has high strength.
We are now able to provide molds for

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の型全使用する成形法のフローシートであ
る。 ロー11よ5tiCへ形絨の、 1配−21tBI−I
Cへ形造りフローシートて゛ち1゜
The drawing is a flow sheet of a molding method using all the molds of the present invention. Row 11 to 5tiC, 1-21tBI-I
Forming flow sheet to C ゛chi 1゜

Claims (1)

【特許請求の範囲】[Claims] (1)高強セメントからなり、繊維と合成樹脂を主成分
とする混合物の成形用型。
(1) A mold for molding a mixture made of high-strength cement and whose main components are fiber and synthetic resin.
JP60244080A 1985-03-14 1985-11-01 Mold for forming Pending JPS62104712A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60244080A JPS62104712A (en) 1985-11-01 1985-11-01 Mold for forming
US06/837,449 US4708626A (en) 1985-03-14 1986-03-07 Mold assembly
KR1019860001815A KR900002150B1 (en) 1985-03-14 1986-03-13 Mold assembly
CN86102615.2A CN1006052B (en) 1985-03-14 1986-03-14 Assembling die
PCT/JP1986/000457 WO1987001627A1 (en) 1985-09-11 1986-09-10 Mold assembly
AU63370/86A AU6337086A (en) 1985-09-11 1986-09-10 Mold assembly
EP19860905409 EP0237575A1 (en) 1985-09-11 1986-09-10 Mold assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60244080A JPS62104712A (en) 1985-11-01 1985-11-01 Mold for forming

Publications (1)

Publication Number Publication Date
JPS62104712A true JPS62104712A (en) 1987-05-15

Family

ID=17113433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60244080A Pending JPS62104712A (en) 1985-03-14 1985-11-01 Mold for forming

Country Status (1)

Country Link
JP (1) JPS62104712A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019203A1 (en) * 2007-08-09 2009-02-12 MAX BÖGL Fertigteilwerke GmbH & Co. KG Casting mold and method for producing a casting mold

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019203A1 (en) * 2007-08-09 2009-02-12 MAX BÖGL Fertigteilwerke GmbH & Co. KG Casting mold and method for producing a casting mold
EP2025488A1 (en) * 2007-08-09 2009-02-18 Max Bögl Fertigteilwerke GmbH & Co. KG Mould and method for manufacturing a mould

Similar Documents

Publication Publication Date Title
JPS59217658A (en) Manufacture of super high strength hardened body
JPH0231026B2 (en)
JPS62104712A (en) Mold for forming
JPH0794341B2 (en) High strength mortar concrete
JPH05116996A (en) Cement admixture and production of cement hardened body
JPH05238787A (en) High-strength cement composition
JPS61227959A (en) Manufacture of superhigh strength cement products
JPH07106575B2 (en) High strength cement mold
JP6703446B2 (en) Fast-setting admixture and cement composition
JP4695980B2 (en) Cement composition for steam curing product, mortar for steam curing product and concrete for steam curing product using the same
JPS61178462A (en) High strength cement composition
JPS60221355A (en) High strength non-shrink grout material
JP3662049B2 (en) Concrete composition
JPS62207754A (en) Low shrinkage high strength hydraulic composition
JPS62170302A (en) Molding tool for high-strength cement
JPS61205654A (en) Superhigh strength cement concrete composition
JPH0443865B2 (en)
JPS61197173A (en) Surface plate
JPH0478380B2 (en)
JPS6252160A (en) High strength cement composition
JPH0569784B2 (en)
JPS62176620A (en) Press forming die
JPH04357146A (en) Production of hardened body of cement having high bulk specific gravity
JPS59202810A (en) Manufacture of extra-high strength concrete pile
JPS61215239A (en) Superhigh strength mortar concrete composition