JPS62103983A - Fuel cell power generation system - Google Patents

Fuel cell power generation system

Info

Publication number
JPS62103983A
JPS62103983A JP60241690A JP24169085A JPS62103983A JP S62103983 A JPS62103983 A JP S62103983A JP 60241690 A JP60241690 A JP 60241690A JP 24169085 A JP24169085 A JP 24169085A JP S62103983 A JPS62103983 A JP S62103983A
Authority
JP
Japan
Prior art keywords
cooling water
joint
fuel cell
cooling
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60241690A
Other languages
Japanese (ja)
Other versions
JPH0624136B2 (en
Inventor
Shigeho Kobayashi
小林 繁鋪
Teruo Makabe
真壁 輝男
Sumio Yamamoto
澄夫 山本
Kiyoshi Fukui
清 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP60241690A priority Critical patent/JPH0624136B2/en
Publication of JPS62103983A publication Critical patent/JPS62103983A/en
Publication of JPH0624136B2 publication Critical patent/JPH0624136B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To enhance the performance of a fuel cell and lengthen the life thereof, by providing a flow rate distribution orifice in a coupling metal located upstream as to the direction of passage of cooling water in an insulated coupling, and by performing electric connection so that the potential of the coupling metal provided with the orifice is lower than that of another coupling 27a comprises an anode and an cathode. CONSTITUTION:An insulated coupling 27a comprises an anode and an cathode meals 34, 35 and an insulation TEflon tube 33 connecting both the metals to each other. A flow rate distribution orifice for improving the balance of flow rates is provided in the anode metal 34 located upstream as to the direction of passage of cooling water in the insulated coupling 27a. Another insulated coupling 27b similarly comprises an anode and a cathode metals 34, 35 and an insulation Teflon tube 33 but is provided with no flow rate distribution orifice. Since the potential of the anode metal 34 provided with the orifice is lower than that of the cathode metal 35 provided with no orifice, a corrosion product does not clinging in the orifice. This results in preventing local overheating due to the decrease in the flow rate of the cooling water, to enable the very-efficient and stable operation of a fuel cell.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は燃料電池発電システムに係り、特に燃料電池の
発生熱を除去する冷却水系統を備えて成る燃料霊地発電
システムの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell power generation system, and more particularly to an improvement of a fuel cell power generation system comprising a cooling water system for removing heat generated by a fuel cell.

〔発明の技術的背景〕[Technical background of the invention]

燃料電池は、燃料の持つ化学エネルギーを電気化学プロ
セスで酸化させることにより、酸化反応に伴って放出さ
れるエネルギーを直接電気エネルギーに変換する装置で
ある。この燃料電池を用いた発電システムは、比較的小
さな規模でも発電の効率が40〜50%にも達し、新鋭
火力をはるかにしのぐと期待されている。さらに、近年
大きな社会問題になっている公害要因であるSOx。
A fuel cell is a device that directly converts the energy released from the oxidation reaction into electrical energy by oxidizing the chemical energy of fuel through an electrochemical process. Power generation systems using fuel cells are expected to achieve power generation efficiency of 40 to 50% even on a relatively small scale, far exceeding new thermal power plants. Furthermore, SOx is a pollution factor that has become a major social problem in recent years.

NOXの排出が極めて少ない、発電装置内に燃焼サイク
ルを含まないので大量の冷却水を必要としない、振動音
が小さいなど、原理的に高いエネルギー変換効率が期待
できると共に、騒音・排ガス等の環境問題が少なく、さ
らに、負荷変動に対して応答性が良い等の特徴があるこ
とから、その開発、実用化の研究に期待と関心が寄せら
れている。
In principle, high energy conversion efficiency can be expected due to extremely low NOX emissions, no combustion cycle is included in the power generation equipment, so large amounts of cooling water are not required, and vibration noise is small. Because it has such characteristics as having few problems and good responsiveness to load fluctuations, there are expectations and interest in research into its development and practical application.

また、この燃料電池発電システムはモジュール化するこ
とができるので、建設工事期間が短いという特徴もある
。さらに、燃料電池本体の排熱温度が給湯等の熱源とし
て利用できる範囲にあり、熱供給発電システムを作るこ
とができるなど高効率であるため、将来火力発電の一部
代替え用大形発電システムとしても期待と関心が寄せら
れている。
Additionally, since this fuel cell power generation system can be modularized, it also has the advantage of shortening the construction period. In addition, the exhaust heat temperature of the fuel cell itself is within the range that can be used as a heat source for hot water supply, etc., and it is highly efficient, making it possible to create a heat supply power generation system, so it can be used as a large-scale power generation system to partially replace thermal power generation in the future. There are also high expectations and interest.

この様な燃料電池発電システムのうち小規模のものはす
でに試作され、実験運転の段階に入っている。しかし、
大容量の燃料電池発電システムの実用化への最大の技術
的問題点は、単器容量の増加による個々の燃料電池の小
型化と、多数台の燃料電池をいかに効率良く配設し、そ
の据付スペースを縮小し、燃料ガス冷却系統の各種配管
及び電力端子の接続系統をいかに効率化することができ
るかにかかっている。
A small-scale fuel cell power generation system like this has already been prototyped and is now in the experimental operation stage. but,
The biggest technical problems in the practical application of large-capacity fuel cell power generation systems are miniaturization of individual fuel cells due to increased unit capacity, and how to efficiently arrange and install a large number of fuel cells. It all depends on how much space can be reduced and how efficiently the various piping and power terminal connection systems of the fuel gas cooling system can be made more efficient.

さて、この様な燃料電池の原理を示す断面模型図を第4
図に示した。即ち、−組の多孔質電極1の間に、リン酸
等の電解液を含浸させた電解質層2を介在させて単電池
を形成し、この単電池の両端面に燃料ガスである水素ガ
スHと酸化剤ガスである空気Aを連続して供給する。こ
の様にすると、反応生成物及び反応残余物りが外部に連
続して除去されるので発電が長期にわたり継続される。
Now, a cross-sectional model diagram showing the principle of such a fuel cell is shown in Section 4.
Shown in the figure. That is, a single cell is formed by interposing an electrolyte layer 2 impregnated with an electrolyte such as phosphoric acid between the - set of porous electrodes 1, and hydrogen gas H, which is a fuel gas, is formed on both end faces of the single cell. and air A, which is an oxidant gas, are continuously supplied. In this way, reaction products and reaction residues are continuously removed to the outside, so power generation can be continued for a long period of time.

また、この様な燃料電池の基本的な構成は、第5図に示
す通りである。即ち、電解質マトリックス層3の両側に
正極4及び負極5が配設されて四角形の板状をなす単電
池が構成され、この単電池を発電装置として使用するた
めに多数の単電池が直列に結合して積層されているが、
これら単電池の間にはガスを供給するための溝を設けた
インクコネクタ6が配設され、上記単電池と交互に積重
ねられている。このインクコネクタ6には、対向する二
側縁に開口する複数の溝が設けられており、−側面の溝
を流路とする水素ガス流路7と空気流路8は互いに直交
する方向に配列されている。
Further, the basic configuration of such a fuel cell is as shown in FIG. That is, a positive electrode 4 and a negative electrode 5 are arranged on both sides of an electrolyte matrix layer 3 to form a square plate-shaped unit cell, and in order to use this unit cell as a power generation device, a large number of unit cells are connected in series. Although it is laminated with
Ink connectors 6 having grooves for supplying gas are arranged between these single cells, and are stacked alternately with the above single cells. This ink connector 6 is provided with a plurality of grooves opening on two opposing side edges, and the hydrogen gas flow path 7 and the air flow path 8, which use the grooves on the side surfaces as flow paths, are arranged in directions orthogonal to each other. has been done.

ところで、現在開発が進められている燃料電池Nは第6
図(a)(b)に示す如く、上記の様な単電池を四角柱
状に複数個積層してセルスタック9が構成され、その四
周の側面には反応ガス供給用のマニホールド10が取付
けられている。このマニホールド10には、それぞれ水
素ガス供給管11、水素ガス排出管12、空気供給管1
3及び空気排出管14が接続されており、水素ガス及び
空気は、セルスタック9内を図示矢印A、Bの方向に流
れる様に設計されている。また、セルスタック9の運転
温度は高い方が反応論的には好ましいが、構成材料の耐
熱性や電解質の蒸気圧等の制約から200℃前後に維持
することが望ましい。
By the way, the fuel cell N currently under development is the sixth
As shown in Figures (a) and (b), a cell stack 9 is constructed by stacking a plurality of cells as described above in a square column shape, and manifolds 10 for supplying reaction gas are attached to the four circumferential sides of the cell stack 9. There is. This manifold 10 includes a hydrogen gas supply pipe 11, a hydrogen gas discharge pipe 12, and an air supply pipe 1, respectively.
3 and an air exhaust pipe 14 are connected, and the hydrogen gas and air are designed to flow in the directions of arrows A and B in the cell stack 9. Further, although a higher operating temperature of the cell stack 9 is preferable in terms of reaction theory, it is desirable to maintain the operating temperature at around 200° C. due to constraints such as the heat resistance of the constituent materials and the vapor pressure of the electrolyte.

従って、セルスタック9内に埋設された導管(冷却管)
内に冷却水を循環通水させて、燃料電池起動時の加熱と
運転中に発生する熱を冷却するようにしている。即ち、
この型の燃料電池では、第6図(a)に示した様に冷却
水供給管15及び冷却水排出管16が配設され、冷却水
はセルスタック9内を図示破線Cの様に循環している。
Therefore, the conduit (cooling pipe) buried in the cell stack 9
Cooling water is circulated inside the fuel cell to cool down the heat generated during fuel cell startup and during operation. That is,
In this type of fuel cell, a cooling water supply pipe 15 and a cooling water discharge pipe 16 are arranged as shown in FIG. 6(a), and the cooling water circulates within the cell stack 9 as shown by the broken line C. ing.

さらに、燃料電池Nの出力は直流で、セルスタック9の
上下端に配設された電力端子(プラス極)17、電力端
子(マイナス極)18から、接続導体19及びブッシン
グ20を介してタンク21外に引出される。
Furthermore, the output of the fuel cell N is direct current, which is connected to the tank 2 through a connecting conductor 19 and a bushing 20 from a power terminal (positive pole) 17 and a power terminal (minus pole) 18 arranged at the upper and lower ends of the cell stack 9. being pulled outside.

以上、説明した様な燃料電池の本体はタンク21内に収
納され、タンク21内にはマニホールド10やその他か
らの反応ガスの漏れを抑制するために窒素ガス等が封入
されている。そして、セルスタック9を適切な温度に保
持するためと、運転中の発生熱を外部に放散することな
く冷却管を通じて有効に利用するために、タンク21の
内面などに保温材22が取付けられている。
The main body of the fuel cell as described above is housed in the tank 21, and the tank 21 is filled with nitrogen gas or the like in order to suppress leakage of reaction gas from the manifold 10 and others. In order to maintain the cell stack 9 at an appropriate temperature and to effectively utilize the heat generated during operation through cooling pipes without dissipating it to the outside, a heat insulating material 22 is attached to the inner surface of the tank 21, etc. There is.

〔背景技術の問題点〕[Problems with background technology]

さて、燃料電池は電気化学反応により直流電圧を発生ず
るが、その反応にともない熱が発生する。
Now, fuel cells generate DC voltage through an electrochemical reaction, but heat is generated along with this reaction.

この燃料電池を効率よく、適切な運転を行なうためには
セルスタックの温度を一定に制御する必要があり、その
目的で冷却水系統を備えて水による冷却がなされている
。また、燃料電池は単電池あるいはセルスタックを直並
列に多数接続するので、均一な温度分布を得るためには
冷却水流量のバランスを良くする必要があり、この目的
のためには通水路に絞りを設けるという一般的な方法を
用いることができる。しかし、並列に接続される冷却系
統が多数ある場合には絞りの数も多くなり、それが占る
スペースあるいは製作時の接合点数の増加によるコスト
アップ、信頼性の低下等の問題が生じる恐れがある。
In order to operate this fuel cell efficiently and appropriately, it is necessary to control the temperature of the cell stack at a constant level, and for this purpose, a cooling water system is provided to perform cooling with water. In addition, since fuel cells connect a large number of single cells or cell stacks in series and parallel, it is necessary to balance the flow rate of cooling water in order to obtain a uniform temperature distribution. It is possible to use a general method of providing a. However, when there are many cooling systems connected in parallel, the number of apertures increases, which can lead to problems such as increased cost and reduced reliability due to increased space taken up or increased number of connection points during manufacturing. be.

一方、燃料電池発電システムの冷却水系統には、燃料電
池で発生する直流電圧を電気的に絶縁する必要があるこ
とから絶縁継手が設けられる。各燃料電池への流量はこ
の絶縁継手内のR量と同じであるから、流量バランスを
絶縁継手部でとる方法が考えられる。すなわち、絶縁継
手内の継手金具内に絞りを設けると前述したような問題
点は解決される。しかしながら、この絶縁継手にはセル
スタック内でも直流30’0ボルト程度、セルスタック
間では数千ボルトもの直流電圧がかかるものもある。そ
して、このように絶縁継手に直流電圧がかかつている場
合、冷却水配管等で発生した腐蝕生成物が、電圧がプラ
ス側の極性となる継手金具内面に付11(水の流れ方向
とは無関係)することが判明した。なお、この関係を下
表に示しており、表中ではプラス側の電圧が印加された
継手金具の漏れ電流をプラス(+)として表わしている
。この付着物は、継手金具内面に鋭いオリフィス状に付
着するため通水抵抗が大きくなり、その結果冷却水母が
減少して冷却能力が低下する。そして、この付着量によ
っては冷却水の流量バランスが悪くなったり、通水路の
狭い上述した絞り部などに付着した場合は付着量が少量
でも閉塞状態となる恐れがあり、通水路が閉塞すると局
所的な過熱を起こし、燃料電池の性能低下や寿命の短縮
につながることになる。
On the other hand, the cooling water system of the fuel cell power generation system is provided with an insulating joint because it is necessary to electrically insulate the DC voltage generated by the fuel cell. Since the flow rate to each fuel cell is the same as the amount of R in this insulated joint, a method of balancing the flow rate at the insulated joint may be considered. That is, the above-mentioned problems can be solved by providing a restriction in the joint fitting in the insulated joint. However, some of these insulating joints receive a DC voltage of about 30'0 volts even within the cell stack, and several thousand volts between the cell stacks. When a DC voltage is applied to the insulated joint in this way, corrosion products generated in the cooling water piping, etc. will be attached to the inner surface of the joint fitting where the voltage has a positive polarity (regardless of the direction of water flow). ) was found to be. This relationship is shown in the table below, in which the leakage current of the joint fittings to which a positive voltage is applied is expressed as plus (+). This deposit adheres to the inner surface of the fitting in the form of a sharp orifice, increasing water flow resistance, and as a result, the cooling water base decreases and the cooling capacity decreases. Depending on the amount of this adhesion, the flow rate balance of the cooling water may become unbalanced, and if the adhesion adheres to the above-mentioned narrow constriction part of the water passage, even a small amount of adhesion may cause a blockage. This can cause overheating, leading to decreased performance and shortened fuel cell life.

0表)腐食生成物の付着と漏電流との関係〔発明の目的
〕 本発明は上記のような問題を解決するために成されたも
ので、その目的は腐蝕生成物の付着による冷却水流量の
アンバランスを最少銀に抑え?ll減少による局部過熱
を確実に防止して燃料電池性能を向上させると共に長寿
命化を図り、効率の高い安定した電池運転を行なうこと
が可能な小形でかつ安価なしかも信頼性の高い燃料電池
発電システムを提供することにある。
Table 0) Relationship between the adhesion of corrosion products and leakage current [Object of the invention] The present invention was made to solve the above problems, and its purpose is to reduce the flow rate of cooling water due to the adhesion of corrosion products. Minimize the imbalance of silver? A small, inexpensive, and highly reliable fuel cell power generation system that reliably prevents local overheating due to ll reduction, improves fuel cell performance, and extends its service life, allowing for highly efficient and stable battery operation. The goal is to provide a system.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明では、電解質を含浸さ
せた電解質層を挟んで一対の多孔質電極を配置してなる
単電池を複数個積層して成るセルスタックをタンク内に
収納すると共に、一方の電極に燃料ガスをまた他方の電
極に酸化剤ガスを夫々供給してこのとき起こる電気化学
的反応により上記各電極間から電気エネルギーを取出す
ように構成した燃料電池と、上記セルスタックの内部に
複数本の冷却管を埋設すると共に当該冷却管に冷却水供
給用および排出用の配管を夫々接続して冷却水を循環通
水させるようにし、かつ上記冷却管と冷却水供給用配管
との間および上記冷却管と冷却水排出用配管との間の夫
々の接続部分に、2つの管状の継手金具およびこれら各
継手金具相互を接続する絶縁管からなる電気的絶縁用の
絶縁継手を設けて構成した冷却水系統とを備えて成る燃
料電池発電システムにおいて、上記絶縁継手における冷
却水通水方向の上流側になる継手金具内に流量分配用の
絞りを設け、かつ当該絞りを設けた継手金具の電圧がこ
れと対向する他の継手金具に対してマイナス側の極性と
なるように電気的接続を行なうことにより、腐蝕生成部
の付着による冷却水流量のアンバランスを最少限に抑え
て均一な冷却が行なえるようにしたことを特徴とする。
In order to achieve the above object, the present invention stores in a tank a cell stack formed by stacking a plurality of single cells each having a pair of porous electrodes sandwiching an electrolyte layer impregnated with an electrolyte, and A fuel cell configured to supply fuel gas to one electrode and oxidant gas to the other electrode, and extract electrical energy from between the electrodes through an electrochemical reaction that occurs, and an interior of the cell stack. A plurality of cooling pipes are buried in the cooling pipe, and cooling water supply and discharge pipes are respectively connected to the cooling pipe to circulate the cooling water, and the cooling pipe and the cooling water supply pipe are connected to each other. An insulating joint for electrical insulation consisting of two tubular joint fittings and an insulating tube connecting these joint fittings to each other is provided at each connecting portion between the cooling pipe and the cooling water discharge pipe. In a fuel cell power generation system comprising a cooling water system configured as described above, a fitting for distributing a flow rate is provided in a fitting fitting on the upstream side of the cooling water flow direction of the insulating joint, and a fitting fitting provided with the restriction. By making electrical connections so that the voltage on the other fittings is negative in polarity with respect to the other fittings facing it, imbalances in the cooling water flow rate due to corrosion-generating parts can be minimized and a uniform flow rate can be achieved. It is characterized by being able to perform cooling.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面に示す一実施例について説明する。 An embodiment of the present invention shown in the drawings will be described below.

第1図は、本発明による燃料電池発電システムの構成例
を示すもので、本例では2つのセルスタックから成る燃
料電池発電システムについて示している。なお、図にお
いて第6図(a)(b)と同一部分には同一符号を付し
てその説明を省略し、ここでは異なる部分についてのみ
述べる。
FIG. 1 shows an example of the configuration of a fuel cell power generation system according to the present invention, and this example shows a fuel cell power generation system consisting of two cell stacks. In the figure, the same parts as in FIGS. 6(a) and 6(b) are given the same reference numerals, and the explanation thereof will be omitted, and only the different parts will be described here.

図においてまず冷却水系統について説明すると、各セル
スタック9内に埋設された複数本の冷却管26は、その
各端部が供給および排出側のヘッダー25に夫々接続し
ている。また、供給側のヘッダー25は絶縁継手27a
を介して供給側マニホールド23に接続すると共に、排
出側のヘッダー25は絶縁継手27bを介して排出側マ
ニホールド24に接続している。さらに上記供給側マニ
ホールド23は、上側のセルスタック9では絶縁継手2
7aを介して、また下側のセルスタック9では直接に、
冷却水供給管15に夫々接続している。
In the figure, first, the cooling water system will be described. Each end of a plurality of cooling pipes 26 buried in each cell stack 9 is connected to a header 25 on the supply and discharge sides, respectively. In addition, the header 25 on the supply side is connected to an insulating joint 27a.
The header 25 on the discharge side is connected to the supply side manifold 23 via an insulating joint 27b, and the discharge side header 25 is connected to the discharge side manifold 24 via an insulating joint 27b. Furthermore, the supply side manifold 23 has an insulating joint 2 in the upper cell stack 9.
7a and directly in the lower cell stack 9.
They are connected to the cooling water supply pipes 15, respectively.

また上記排出側マニホールド23は、上側のセルスタッ
ク9では絶縁継手27bを介して、また下側のセルスタ
ック9では直接に、冷却水排出管16に夫々接続してい
る。一方、冷却水は冷却水供給管15側から入り、冷却
管26で加熱されて冷却水排出管16側へと流れる。こ
の加熱された冷却水は、一部水蒸気を含んだ流体いわゆ
る二相流となって流れることもあるが、この熱を含んだ
冷却水は気水分離器31内で冷却して適温に調節された
後、冷却水配管29を通り循環ポンプ28により冷却水
配管30を通って冷却水供給管15へと送られる。この
ようにして冷却水を循環させることにより、燃料電池を
適当な温度に保つようにしている。
Further, the discharge side manifold 23 is connected to the cooling water discharge pipe 16 in the upper cell stack 9 via an insulating joint 27b, and directly in the lower cell stack 9. On the other hand, the cooling water enters from the cooling water supply pipe 15 side, is heated by the cooling pipe 26, and flows to the cooling water discharge pipe 16 side. This heated cooling water may flow as a so-called two-phase flow containing some water vapor, but this cooling water containing heat is cooled in the steam water separator 31 and adjusted to an appropriate temperature. After that, the water is sent through the cooling water piping 29 to the cooling water supply pipe 15 through the cooling water piping 30 by the circulation pump 28 . By circulating the cooling water in this manner, the fuel cell is maintained at an appropriate temperature.

一方、図中の絶縁継手27aおよび27k)はそれに接
続される配管を電気的に絶縁するために設けられたもの
であり、直流電圧を発生する燃料電池の冷却水通水用の
配管には必要不可欠なものである。この絶縁継手27a
および27bを用いることにより、それに接続される配
管を異なる電位に保つ事が可能となる。また、第2図(
a)は第1図における絶縁継手27aの拡大図を示すも
のであり、同図(b)はその断面構成を示すものである
。つまり絶縁継手27aは、2つの管状の継手金具であ
る陰極、陽極金具34.35およびこれら陰極、#I極
金具34.35相互を接続するテフロン絶縁管33から
成るもので、当該絶縁継手27aにおける冷却水通水用 具34内には、流量バランスを良くするための流量分配
用の絞りを図示の如く設けている。なお絶縁継手27b
は、同様に陰極、陽極金具34゜35およびテフロン絶
縁管33から成り、上記流量分配用の絞りを設けない構
成となっている。ここで、陰極金具34の材料としては
一般の配管に使用される金属(炭素鋼、ステンレス銅、
銅および銅合金など)が使用できる。これに対して、陽
極金具35の材料としては銅および銅合金あるいは炭素
鋼以外の電食を起こしにくい金属(ステンレス銅等の高
ニッケル、高クロム合金)を使用することが好ましい。
On the other hand, the insulating joints 27a and 27k in the figure are provided to electrically insulate the pipes connected to them, and are necessary for the piping for cooling water passage of fuel cells that generate DC voltage. It is essential. This insulation joint 27a
By using 27b and 27b, it is possible to maintain the pipes connected thereto at different potentials. Also, Figure 2 (
1A is an enlarged view of the insulating joint 27a in FIG. 1, and FIG. 1B is a cross-sectional view thereof. In other words, the insulating joint 27a consists of two tubular joint fittings, namely a cathode and an anode fitting 34.35, and a Teflon insulating tube 33 that connects these cathodes and #I electrode fittings 34.35. Inside the cooling water passage device 34, a flow rate distribution throttle is provided as shown in the figure to improve the flow rate balance. In addition, the insulation joint 27b
Similarly, it consists of a cathode, anode fittings 34 and 35, and a Teflon insulating tube 33, and is constructed without the above-mentioned flow rate distribution restrictor. Here, the material of the cathode fitting 34 is a metal used for general piping (carbon steel, stainless copper,
Copper and copper alloys, etc.) can be used. On the other hand, as the material for the anode fitting 35, it is preferable to use copper, a copper alloy, or a metal other than carbon steel that does not easily cause electrolytic corrosion (high nickel or high chromium alloy such as stainless steel copper).

次に電気的な接続について説明すると、第1図において
下側のセルスタック9の電力端子(マイナス極)18は
負荷32の一端および大地に接続すると同時に、供給側
マニホールド23および排出側マニホールド24にも接
続する。また、電力端子(プラスtΦ)17は上側のセ
ルスタック9の電力端子(マイナス極)18と接続し、
その電力端子(マイナス極)18は供給側マニホールド
23および排出側マニホールド24に接続している。
Next, to explain the electrical connections, the power terminal (negative pole) 18 of the lower cell stack 9 in FIG. Also connect. Further, the power terminal (plus tΦ) 17 is connected to the power terminal (minus pole) 18 of the upper cell stack 9,
The power terminal (negative pole) 18 is connected to a supply side manifold 23 and a discharge side manifold 24.

一方、上側セルスタック9の電力端子(プラス極)17
は負荷32のもう一方の端子に接続し、燃料電池のセル
スタック9で発生した電気エネルギーが負荷32で消費
される。さらに、上記冷却水系統の冷却水供給管15.
冷却水排出管16.冷却水配管29および30.気水分
離器31.循環ポンプ28は電気的に接続され大地に接
地している。
On the other hand, the power terminal (positive electrode) 17 of the upper cell stack 9
is connected to the other terminal of the load 32, and the electrical energy generated in the cell stack 9 of the fuel cell is consumed by the load 32. Furthermore, the cooling water supply pipe 15 of the cooling water system.
Cooling water discharge pipe 16. Cooling water piping 29 and 30. Steam water separator 31. The circulation pump 28 is electrically connected and grounded.

ここで、セルスタック間およびセルスタック9と負荷3
2間には大電流が流れるので電力線で接続する必要があ
るが、電力端子(マイナス極)18と供給側マニホール
ド23あるいは排出側マニホールド24間の電線には大
電流は流れないので電力線を用いる必要はない。つまり
、この電線には絶縁継手27aおよび27bの漏電流分
が流れる。
Here, between the cell stack and between the cell stack 9 and the load 3
Since a large current flows between the two, it is necessary to connect them with a power line, but a large current does not flow in the wire between the power terminal (negative pole) 18 and the supply side manifold 23 or the discharge side manifold 24, so it is necessary to use a power line. There isn't. That is, the leakage current of the insulated joints 27a and 27b flows through this electric wire.

かかる如く構成した冷却水系統を備えて成る燃料電池発
電システムにおいては、冷却水の供給側に設けられた絶
縁継手27aにおける冷却水通水方向の上流側となる絞
りの付いた陰極金具34の電圧が、これと対向する絞り
のない陽極金具35からみてマイナス側の極性となるの
で、この絞り内に腐蝕生成物が付着するようなことがな
くなる。
In a fuel cell power generation system equipped with a cooling water system configured as described above, the voltage of the cathode metal fitting 34 with a restriction located on the upstream side in the cooling water flow direction of the insulating joint 27a provided on the cooling water supply side is However, since the polarity is on the negative side when viewed from the anode metal fitting 35 without a restriction which is opposite to this, there is no possibility that corrosion products will adhere to the inside of this restriction.

また、付着は冷却水通水方向の下流側の継手金具である
陽極金具35内で起こるが、この部分は内径が大きいた
め付着による内径の減少は小さい。
Further, adhesion occurs within the anode metal fitting 35, which is a joint fitting on the downstream side in the cooling water flow direction, but since this portion has a large inner diameter, the decrease in the inner diameter due to adhesion is small.

さらに、絞りによる抵抗は絞りの断面積減少率に比例す
るので、絞りの中に付着する場合に比較して抵抗の増加
率は非常に少ない。
Furthermore, since the resistance due to the diaphragm is proportional to the rate of decrease in the cross-sectional area of the diaphragm, the rate of increase in resistance is very small compared to when it is attached inside the diaphragm.

上述したように、燃料電池は通常多数の単電池を積層す
ることで必要な電流容量が得られるので、それにともな
う冷却管の本数、絶縁継手の本数。
As mentioned above, fuel cells usually obtain the necessary current capacity by stacking a large number of single cells, so the number of cooling pipes and insulating joints must be increased accordingly.

大きさ、長さなどが電池全体のスペースに大きく効いて
くる。この点、本実施例による燃料電池発電システムで
は、冷却水の流量バランスを良くするための方法として
用いられる絞りが、絶縁継手27a内に納められている
ことからスペースの面でメリットがあり、更にその近く
で絞りのない部分に腐蝕生成物を付着させることで、付
着による流路抵抗の増加を低く抑えることができ、冷却
水の流量減少による局部過熱を防止することができ、極
めて効率の高い安定した燃料電池の運転を行なうことが
可能となる。
Size, length, etc. have a big effect on the overall space of the battery. In this regard, in the fuel cell power generation system according to the present embodiment, the throttle, which is used as a method for improving the flow balance of cooling water, is housed within the insulating joint 27a, which has an advantage in terms of space. By allowing corrosion products to adhere to the unrestricted area in the vicinity, the increase in flow path resistance due to adhesion can be suppressed to a low level, and local overheating due to a decrease in the flow rate of cooling water can be prevented, resulting in extremely high efficiency. It becomes possible to operate the fuel cell stably.

尚、本発明は上記実施例に限定されるものではなく、そ
の要旨を変更しない範囲で種々に変形して実施すること
ができるものである。
It should be noted that the present invention is not limited to the above embodiments, and can be implemented with various modifications without changing the gist thereof.

(a)  上記実施例では、供給側マニホールド23と
冷却水供給用のヘッダー25との間の接続部分に設けら
れる絶縁継手の継手金具内にのみ絞りを設けたが、第3
図に示すように供給側マニホールド23と冷却水供給用
のヘッダー25との間および排出側マニホールド24と
冷却水排出用のヘッダー25との間の接続部分に設けら
れる夫々の絶縁継手における冷却水通水方向の上流側に
なる継手金具内に絞りを設けるようにしても、上述と同
様の作用効果が得られるものである。この場合、供給側
および排出側に設けられる夫々の絶縁継手27aは、前
述と同様に絶縁継手27aの絞りを設けた継手金具の電
圧がこれと対向する他の継手金具に対してマイナス側の
極性となるように電気的な接続を行なっている。
(a) In the above embodiment, the throttle was provided only in the joint fitting of the insulating joint provided at the connection part between the supply side manifold 23 and the header 25 for supplying cooling water.
As shown in the figure, the cooling water flows through the respective insulating joints provided at the connection parts between the supply side manifold 23 and the header 25 for cooling water supply and between the discharge side manifold 24 and the header 25 for cooling water discharge. Even if a throttle is provided in the joint fitting on the upstream side in the water direction, the same effects as described above can be obtained. In this case, each of the insulating joints 27a provided on the supply side and the discharge side is configured such that the voltage of the joint metal fitting provided with the throttle of the insulating joint 27a has a negative polarity with respect to the other joint metal fittings facing it, as described above. Electrical connections are made so that

(b)  上記実施例では、2つのセルスタックから構
成される燃料電池発電システムに本発明を適用した場合
を述べたが、これに限らず1つのセルスタックあるいは
3つ仄上の複数のセルスタックから構成される燃料電池
発電システムについても同様に本発明を適用し得るもの
である。
(b) In the above embodiment, the case where the present invention is applied to a fuel cell power generation system composed of two cell stacks is described, but the present invention is not limited to this. The present invention can be similarly applied to a fuel cell power generation system composed of the following.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、電解質を含浸させ
た電解質層を挟んで一対の多孔質電極を配置してなる単
電池を複数個積層して成るセルスタックをタンク内に収
納すると共に、一方の電極に燃料ガスをまた他方の電極
に酸化剤ガスを夫々供給してこのとき起こる電気化学的
反応により上記各電極間から電気エネルギーを取出すよ
うに構成した燃料電池と、上記セルスタックの内部に複
数本の冷却管を埋設すると共に当該冷却管に冷却水供給
用および排出用の配管を夫々接続して冷却水を循環通水
させるようにし、かつ上記冷却管と冷却水供給用配管と
の間および上記冷却管と冷却水排出用配管との間の夫々
の接続部分に、2つの管状の継手金具およびこれら各継
手金具相互を接続する絶縁管からなる電気的絶縁用の絶
縁継手を設けて構成した冷却水系統とを備えて成る燃料
電池発電システムにおいて、上記絶縁継手における冷却
水・通水方向の上流側になる継手金具内に流量分配用の
絞りを設け、かつ当該絞りを設けた継手金具の電圧がこ
れと対向する他の継手金具に対してマイナス側の極性と
なるように電気的接続を行なうようにしたので、腐蝕生
成物の付着による冷却水流量のアンバランスを最少限に
抑え流量減少による局部過熱を確実に防止して燃料電池
性能を向上させると共に長寿命化を図り、効率の^い安
定した電池運転を行なうことが可能な小形でかつ安価な
しかも信頼性の高い燃料電池発電システムが提供できる
As explained above, according to the present invention, a cell stack consisting of a plurality of stacked cells each having a pair of porous electrodes arranged with an electrolyte layer impregnated in between is housed in a tank, and A fuel cell configured to supply fuel gas to one electrode and oxidant gas to the other electrode, and extract electrical energy from between the electrodes through an electrochemical reaction that occurs, and an interior of the cell stack. A plurality of cooling pipes are buried in the cooling pipe, and cooling water supply and discharge pipes are respectively connected to the cooling pipe to circulate the cooling water, and the cooling pipe and the cooling water supply pipe are connected to each other. An insulating joint for electrical insulation consisting of two tubular joint fittings and an insulating tube connecting these joint fittings to each other is provided at each connecting portion between the cooling pipe and the cooling water discharge pipe. In a fuel cell power generation system comprising a cooling water system configured as described above, a joint for flow distribution is provided in the joint fitting on the upstream side of the cooling water/water flow direction of the insulated joint, and the joint is provided with the restriction. Electrical connections are made so that the voltage of the metal fitting has negative polarity with respect to the other fittings facing it, minimizing imbalance in the cooling water flow rate due to the adhesion of corrosion products. A small, inexpensive, and highly reliable fuel cell that reliably prevents local overheating due to a decrease in flow rate, improves fuel cell performance, and extends its lifespan to ensure efficient and stable cell operation. Power generation system can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の燃料電池の一実施例を示す構成図、第
2図(a)(b)は同実施例に適用する絶縁継手を夫々
示す拡大図および断面図、第3図は本発明の他の実施例
を示す構成図、第4図は燃料電池の原理を示す断面模型
図、第5図は燃料電池の基本構成を示す縦断面斜視図、
第6図(a)は現在開発が進められている燃料電池の概
略構成を示す平面図、第6図1)は同じくその縦断面図
である。 N・・・燃料電池、1・・・多孔質電極、2・・・電解
質層、3・・・電解質マトリックス、4・・・正極、5
・・・負極、6・・・インクコネクタ、7・・・水素ガ
ス流路、8・・・空気流路、9・・・セルスタック、1
0・・・マニホールド、11・・・水素ガス供給管、1
2・・・水素ガス排出管、13・・・空気供給管、14
・・・空気排出管、15・・・冷却水供給管、16・・
・冷却水排出管、17・・・電力端子(プラス極)、1
8・・・電力端子(マイナス極)、19・・・接続導体
、20・・・ブッシング、21・・・タンク、22・・
・保温材、23・・・供給側マニホールド、24・・・
排出側マニホールド、25・・・ヘッダー、26・・・
冷却管、27a・・・(絞り付き)絶縁継手、27b・
・・(絞り無し)絶縁継手、28・・・循環ポンプ、2
9・・・冷却水配管、30・・・冷却水配管、31・・
・気水分離器、32・・・負荷、33・・・テフロン絶
縁管、34・・・(絞り付き)陰極金具、35・・・g
i極合金具36・・・配管、A・・・空気、H・・・水
素、L・・・反応生成物及び反応残余物。 出願人代理人  弁理士 鈴江武彦 第1図 (a) (b) 第2図 第3図 第4図 第5図 第6図
FIG. 1 is a configuration diagram showing an embodiment of the fuel cell of the present invention, FIGS. 2(a) and 2(b) are enlarged views and cross-sectional views showing insulating joints applied to the same embodiment, and FIG. 3 is a diagram of the present invention. A configuration diagram showing another embodiment of the invention, FIG. 4 is a cross-sectional model diagram showing the principle of the fuel cell, and FIG. 5 is a vertical cross-sectional perspective view showing the basic configuration of the fuel cell.
FIG. 6(a) is a plan view showing a schematic configuration of a fuel cell currently under development, and FIG. 6(1) is a longitudinal sectional view thereof. N... Fuel cell, 1... Porous electrode, 2... Electrolyte layer, 3... Electrolyte matrix, 4... Positive electrode, 5
... Negative electrode, 6... Ink connector, 7... Hydrogen gas channel, 8... Air channel, 9... Cell stack, 1
0... Manifold, 11... Hydrogen gas supply pipe, 1
2... Hydrogen gas discharge pipe, 13... Air supply pipe, 14
...Air discharge pipe, 15...Cooling water supply pipe, 16...
・Cooling water discharge pipe, 17...Power terminal (positive pole), 1
8... Power terminal (negative pole), 19... Connection conductor, 20... Bushing, 21... Tank, 22...
・Heat insulation material, 23...Supply side manifold, 24...
Discharge side manifold, 25...header, 26...
Cooling pipe, 27a... (with orifice) insulation joint, 27b...
...(No throttle) Insulation joint, 28...Circulation pump, 2
9... Cooling water piping, 30... Cooling water piping, 31...
・Steam water separator, 32...Load, 33...Teflon insulation tube, 34...Cathode fitting (with aperture), 35...g
i-electrode alloy fitting 36...piping, A...air, H...hydrogen, L...reaction products and reaction residues. Applicant's representative Patent attorney Takehiko Suzue Figure 1 (a) (b) Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)電解質を含浸させた電解質層を挟んで一対の多孔
質電極を配置してなる単電池を複数個積層して成るセル
スタックをタンク内に収納すると共に、一方の電極に燃
料ガスをまた他方の電極に酸化剤ガスを夫々供給してこ
のとき起こる電気化学的反応により前記各電極間から電
気エネルギーを取出すように構成した燃料電池と、前記
セルスタックの内部に複数本の冷却管を埋設すると共に
当該冷却管に冷却水供給用および排出用の配管を夫々接
続して冷却水を循環通水させるようにし、かつ前記冷却
管と冷却水供給用配管との間および前記冷却管と冷却水
排出用配管との間の夫々の接続部分に、2つの管状の継
手金具およびこれら各継手金具相互を接続する絶縁管か
らなる電気的絶縁用の絶縁継手を設けて構成した冷却水
系統とを備えて成る燃料電池発電システムにおいて、前
記絶縁継手における冷却水通水方向の上流側になる継手
金具内に流量分配用の絞りを設け、かつ当該絞りを設け
た継手金具の電圧がこれと対向する他の継手金具に対し
てマイナス側の極性となるように電気的接続を行なうよ
うにしたことを特徴とする燃料電池発電システム。
(1) A cell stack consisting of a plurality of single cells stacked with a pair of porous electrodes sandwiched between an electrolyte layer impregnated with an electrolyte is housed in a tank, and one electrode is also supplied with fuel gas. A fuel cell configured to supply an oxidizing gas to each of the other electrodes and extract electrical energy from between each of the electrodes through an electrochemical reaction that occurs, and a plurality of cooling pipes buried inside the cell stack. At the same time, cooling water supply and discharge piping are respectively connected to the cooling pipe to circulate the cooling water, and between the cooling pipe and the cooling water supply piping and between the cooling pipe and the cooling water. A cooling water system comprising two tubular joint fittings and an insulating joint for electrical insulation consisting of an insulating tube that connects these joint fittings to each connection portion with the discharge piping. In the fuel cell power generation system, a throttle for flow distribution is provided in the joint fitting on the upstream side of the cooling water flow direction of the insulated joint, and the voltage of the joint fitting provided with the restriction is opposite to this. A fuel cell power generation system characterized in that the electrical connection is made so that the polarity is on the negative side with respect to the joint fitting.
(2)冷却管と冷却水供給用配管との間の接続部分に設
けられる絶縁継手の継手金具のみに絞りを設けるように
したことを特徴とする特許請求の範囲第(1)項記載の
燃料電池発電システム。
(2) The fuel according to claim (1), characterized in that a restriction is provided only in the joint fitting of the insulated joint provided at the connection portion between the cooling pipe and the cooling water supply pipe. Battery power generation system.
(3)冷却管と冷却水供給用配管との間および冷却管と
冷却水排出用配管との間の接続部分に設けられる夫々の
絶縁継手の継手金具に絞りを設けるようにしたことを特
徴とする特許請求の範囲第(1)項記載の燃料電池発電
システム。
(3) A restriction is provided in the joint fitting of each insulating joint provided at the connection portion between the cooling pipe and the cooling water supply pipe and between the cooling pipe and the cooling water discharge pipe. A fuel cell power generation system according to claim (1).
JP60241690A 1985-10-30 1985-10-30 Fuel cell power generation system Expired - Lifetime JPH0624136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60241690A JPH0624136B2 (en) 1985-10-30 1985-10-30 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60241690A JPH0624136B2 (en) 1985-10-30 1985-10-30 Fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPS62103983A true JPS62103983A (en) 1987-05-14
JPH0624136B2 JPH0624136B2 (en) 1994-03-30

Family

ID=17078066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60241690A Expired - Lifetime JPH0624136B2 (en) 1985-10-30 1985-10-30 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JPH0624136B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217862A (en) * 1988-02-24 1989-08-31 Mitsubishi Electric Corp Cooler of stack type fuel cell
JPH03102775A (en) * 1989-09-18 1991-04-30 Toshiba Corp Fuel cell device
JPH0589896A (en) * 1991-01-30 1993-04-09 Mitsubishi Electric Corp Fuel cell device and coupling part used therefor
JP2005005087A (en) * 2003-06-11 2005-01-06 Toyota Motor Corp Fuel cell system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217862A (en) * 1988-02-24 1989-08-31 Mitsubishi Electric Corp Cooler of stack type fuel cell
JPH03102775A (en) * 1989-09-18 1991-04-30 Toshiba Corp Fuel cell device
JPH0589896A (en) * 1991-01-30 1993-04-09 Mitsubishi Electric Corp Fuel cell device and coupling part used therefor
JP2005005087A (en) * 2003-06-11 2005-01-06 Toyota Motor Corp Fuel cell system

Also Published As

Publication number Publication date
JPH0624136B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
US3964930A (en) Fuel cell cooling system
US3969145A (en) Fuel cell cooling system using a non-dielectric coolant
US8105731B2 (en) Fuel cell system
US3964929A (en) Fuel cell cooling system with shunt current protection
JP3607718B2 (en) Water and inert gas discharge method and apparatus for fuel cell equipment
US7393605B2 (en) Fuel cell end unit with integrated heat exchanger
US6589681B1 (en) Series/parallel connection of planar fuel cell stacks
JP4397886B2 (en) Multi-layer circular pipe type solid oxide fuel cell module
US6670069B2 (en) Fuel cell stack assembly
JPS61173470A (en) Positively cooling type cooler for electrochemical battery
US20060199054A9 (en) Fuel cell stacks of alternating polarity membrane electrode assemblies
EP3660187A2 (en) Bipolar plate for use in an electrochemical device
US20040131905A1 (en) Fuel cell
JP2005522847A (en) Methanol unipolar small fuel cell and manufacturing method thereof
JPS62103983A (en) Fuel cell power generation system
JPS62103982A (en) Fuel cell power generation system
US9444117B2 (en) Proton exchange membrane fuel cell with open pore cellular foam
CN211629219U (en) Proton exchange membrane fuel cell and stack
JPS6266581A (en) Fuel cell
JPS6116482A (en) Cooling plate for fuel cell
JPS63133464A (en) Solid electrolyte type fuel cell
JPH05325993A (en) Fuel cell
JPH11111324A (en) Gas insulating device direct-coupled fuel cell
JPH0514457Y2 (en)
JPH0945359A (en) Fuel cell

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term